skip to main content
Menu
Original Article

Sol gel synthesis of undoped and Nitrogen doped Titanium Dioxide nanoparticles as nano fertilizer for plant growth

Authors

Abstract

The present study organized the different concentrations of undoped and Nitrogen doped Titanium dioxide Nanoparticles have synthesized during agriculture as Nano fertilizer as well as the physiological impact on the seeds of Green gram and Fenugreek. X-Ray Diffraction analysis confirms the presence of anatase and brookite structure of undoped and N doped TiO2 nanoparticles. The Fourier transform infrared spectroscopy shows the presence of functional groups of the prepared nanoparticles. The Scanning Electron Microscopy was carried out to determine the morphology of prepared Nitrogen doped Titanium dioxide nanoparticles. The Elemental composition and atomic percentage of the prepared samples were confirmed by Energy Dispersive X-Ray. The band gap energies of the prepared Nitrogen doped Titanium dioxide nanoparticles were studied using UV-vis Diffusion Reflectance Spectroscopy. The pH value and the total NPK availability were analysed for the undoped and Nitrogen doped Titanium dioxide nanoparticles at different ratio 1:1 and 1:2 and the biological growth of the plants were observed.

Graphical Abstract

Keywords

References

1.      Saleem H., Zaidi S. J., (2020), Recent developments in the applications of nanomaterials in agro ecosystems. Nanomaterials MDPI. 10: 1-34. https://doi.org/10.3390/nano10122411

2.      Prasad R., Bhattacharyya A., Nguyen Q. D., (2017), Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 8: 1-13. https://doi.org/10.3389/fmicb.2017.01014

3.      Kale R. D., Meena C. R., (2012), Synthesis of Titanium dioxide nanoparticles and application on nylon fabric using layer by layer technique for antimicrobial property. Adv. Appl. Sci. Res. 5: 3073-3080. https://www.researchgate.net/publication/234841463.

4.      Parthasarathi V., Thilagavathi G., (2009), Synthesis and characterization of Titanium dioxide nanoparticles and their application to textiles for microbe resistance. Journal of Textile and Apparel. Technol.  Manag. 6: 1-8. https://www.researchgate.net/publication/288569710.

5.      IndraJeet C., Vivek S., (2020), Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: A review. Res. J. Nanosci. Nanotechnol. 10: 1-8. http://dx.doi.org/10.3923/rjnn.2020.1.8

6.      Natarajan T. S., Mozhiarasi V., Tayade R. J., (2020), Nitrogen doped Titanium dioxide (N-TiO2): Synopsis of synthesis methodologies, doping mechanisms, property evaluation and visible light photocatalytic applications. Photochem. 1: 371–410. https://doi.org/10.3390/photochem1030024

7.      Mustafa H., Ilyas N., Akhtar N., Iqbal Raja N., Zainab T., Shah T., Ahmad A., (2021),  Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicology and Environmental Safety. 223: 1-13. https://doi.org/10.1016/j.ecoenv.2021.112519

8.       Sepahvand S.,  Bahrami M., Fallah N., (2022), Photocatalytic degradation of 2, 4-DNT in simulated wastewater by magnetic CoFe2O4/SiO2/TiO2 nanoparticles. PUB MED. 29: 6479-6490. https://doi.org/10.1007/s11356-021-13690-3

9.      Fardood S. T., Zare F. Y., Moradnia F., Ramazani A., (2024), Preparation, characterization and photocatalysis performances of superparamagnetic MgFe2O4@CeO2 nanocomposites: Synthesized via an easy and green sol–gel method. J. Rare Earth. In Press. https://doi.org/10.1016/j.jre.2024.03.006

10.  Nadeem M., Tungmunnithum D., Hano C., Abbasi B. H., Hashmi S. S., Ahmad W., Zahir A., (2018), The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem. Lett. Rev. 11: 492-502. https://doi.org/10.1080/17518253.2018.1538430

11.  Feng C., Wang Y., Jin Z., Zhang J., Zhang S., Wu Z., Zhang Z., (2008), Photoactive centers responsible for visible-light photoactivity of N-doped TiO2. New J. Chem. 32: 1038–1047. https://doi.org/10.1039/B719498F

12.  Fardood S. T., Moradnia F., Zare F.Y., Heidarzadeh S., Majedi M. A., Ramazani A., Sillanpa M., Nguyen K., (2024), Green synthesis and characterization of α‑Mn2O3 nanoparticles for antibacterial activity and efcient visible‑light photocatalysis. Sci. Rep. 14: 6755-6759. https://doi.org/10.1038/s41598-024-56666-2

13.    Moradnia F., Fardood S. T., Ramazani A., (2024), Green synthesis and characterization of NiFe2O4@ZnMn2O4 magnetic nanocomposites: An efficient and reusable spinel nanocatalyst for the synthesis of tetrahydropyrimidine and polyhydroquinoline derivatives under microwave irradiation. Appl. Organomet. Chem. 38: e7315. https://doi.org/10.1002/aoc.7315

14.  Fardood S. T., Moradnia F., Joo S. W., (2018), Green chemistry approach for the synthesis of coper oxide nanoparticles using tragacanth gel and their structural characterization. Green Chem. 59: 482-486. http://dx.doi.org/10.26902/JSC20180232

15.  Kim T. H., Go G. M., Cho H. B., Song Y., Lee C. G., Choa Y. H., (2018), A novel synthetic method for N doped TiO2 nanoparticles through plasma-assisted electrolysis and photocatalytic activity in the visible region. Front. Chem. 6: 1-10. https://doi.org/10.3389/fchem.2018.00458

16.  Yang X., Cao C., Erickson L., Hohn H., Maghirang R., Klabunde K., (2008), Synthesis of visible-light-active TiO-based photocatalysts by carbon and nitrogen doping. J.  Catal. 260: 128-133. http://dx.doi.org/10.1016/j.jcat.2008.09.016

17.  Anchal S., Puneet N., Ruhit J. K., Hemaunt K., Yogita V., Himanshu D., Shah N. A., Solanki P. S., (2022), Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions. J. Mater. Sci. Tech. 111: 287–297. http://dx.doi.org/10.1016/j.jmst.2021.09.014

18.  Arunananthan M. V., Selvaraj D., Natarajan P., (2019), Synthesis and electrochemical studies on Cu-TiO2 thin films deposited by spray pyrolysis technique for sensing Uric acid. Int. J. Nano Dimens. 10: 230-241. https://www.researchgate.net/publication/234841463.

19.  Bagheri S., Shameli K., Hamid S. B., (2013), Synthesis and characterization of anatase Titanium Dioxide nanoparticles using egg white solution via sol-gel method.  J. Chem. 848205: 1-5. https://doi.org/10.1155/2013/848205

20.   Vathani A. M., Dhanalakshmi S., Prithivikumaran N., (2019), Synthesis and electrochemical studies on Cu-TiO2 thin films deposited by spray pyrolysis technique for sensing Uric acid. Int. J. Nano Dimens. 10: 230-249. https://ijnd.tonekabon.iau.ir/article.

21.  Yongquan Z., Fei D., Xiao Y., Yuming J., Kai Z., Xue W., Haoming L., Gang C., Chunzhong W., Yingjin W., (2014), Improvements in the electrochemical kinetic properties and rate capability of anatase Titanium Dioxide nanoparticles by nitrogen doping. ACS Appl. Mater. Interfaces. 6: 44584465. https://doi.org/10.1021/am5002053

22.   Sadeghi B., Sadjadi M. A. S., Pourahmad A., e(2008), Effects of protective agents (PVA & PVP) on the formation of silver nanoparticles. 4: 3-12. https://www.ijnnonline.net/article.

23.  Endang T. W., Titi R., Aulia R. H., Suherman S., Adhitasari S., (2021), Photocatalysis over N-Doped TiO2 driven by visible light for Pb(II) removal from aqueous media. Catal. 11: 945-949. https://doi.org/10.3390/catal11080945

24.  Srinivasan M., Venkatesan M., Arumugam V., Natesan G., Saravanan N., Murugesane S., Ramachandran S., Ayyasamy R., Pugazhendhi A., (2019), Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem. 80: 197-202. https://doi.org/10.1016/J.PROCBIO.2019.02.010

25.  Mohammad Jafri N. N., Jaafar J., Alias N. H., Samitsu S., Aziz F., Wan Salleh W. N., Mohd Yusop M. Z., Othman M. H. D., Rahman M. A., Ismail A. F.,  (2021), Synthesis and Characterization of Titanium Dioxide hollow nanofiber for photocatalytic degradation of methylene blue dye. Membranes. 581: 1-19. https://doi.org/10.3390/membranes11080581

26.  Valencia S., Marín J. M., Restrepo G., (2010), Study of the bandgap of synthesized Titanium Dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. The Open Mater. Sci. J. 4: 9-14. http://dx.doi.org/10.2174/1874088X01004020009

27.  Phattepur H., Bychapur Siddaiah G., Ganganagappa N., (2019), Synthesis and characterisation of mesoporous TiO2 nanoparticles by novel surfactant assisted sol-gel method for the degradation of organic compounds. Period. Polytech. Chem. Eng. 63: 85–95.  https://doi.org/10.3311/PPch.11789