skip to main content
Menu
Review Article

Nanotechnology advancements transforming molecular diagnostics: Applications in precision healthcare

Authors

Abstract

 

Nanotechnology’s impact on diagnostics is transformative, introducing cutting-edge tools that operate at the nanoscale, thereby revolutionizing clinical laboratory procedures. The development of nanoscale sensors, imaging agents, and other diagnostic tools has significantly elevated the sensitivity, precision, and efficiency of diagnostic processes. Indeed, engineered sensors that utilize nanomaterials (size < 100 nm) can detect minute biomarkers, allowing for early disease detection. Additionally, nanotechnology’s integration with molecular diagnostics creates a synergistic effect, expediting diagnostic procedures and advancing personalized medicine. This convergence facilitates tailored treatments based on individual genetic and molecular profiles, optimizing therapeutic interventions. This review focuses on the application of these technologies in the clinical laboratory setting, analyzing the interrelationships of nanotechnology and molecular diagnostics. As these cutting-edge technologies continue to advance, they hold the potential to redefine the standard of care, ultimately contributing to a future world where healthcare is not only more sophisticated but also patient-centric and optimized for individual needs.

 

Graphical Abstract

Read the full text of the article

Keywords

References

[1] Conte R, Calarco A, Peluso G. (2018) Nanosized biomaterials for regenerative medicine. Int. J. Nano Dimens. 2018; 9 (3): 209-214. Article ID: 660188.

[2] Ghosh, C.K. (2015). Quantum Effect on Properties of Nanomaterials. In: Sengupta, A., Sarkar, C. (eds) Introduction to Nano. Engineering Materials. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-662-47314-6_5.

[3] Conte R., De Luca I., Valentino A., Di Salle A., Calarco A., Riccitiello, F. &Peluso, G. (2017) Recent advances in “bioartificial polymeric materials” based nanovectors . Physical Sciences Reviews, 2(4), 20160131. DOI: https://doi.org/10.1515/psr-2016-0131.

[4] Conte R., Marturano V., Peluso G., Calarco A., Cerruti, P. (2017) Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds. Int. J. Mol. Sci. 2017, 18, 709. DOI: 10.3390/ijms18040709.

[5] Nitika Thakur, Trupti R. Das, SantanuPatra, MeenakshiChoudhary, Sudheesh K. Shukla (2022) - Miniaturization devices: A nanotechnological approach,Editor(s): Giuseppe Maruccio, JagritiNarang,In Woodhead Publishing Series in Electronic and Optical Materials, Electrochemical Sensors,Woodhead Publishing,2022,Pages 241-259. DOI:https://doi.org/10.1016/B978-0-12-823148-7.00009-X.

[6] Qiao M., Liu X.& Zhang L. (2014) Nanotechnology: Engineering Materials for a Better 21st Century. Current Research in Nanotechnology, 5(1), 1-2. DOI: https://doi.org/10.3844/ajnsp.2014.1.2.

[7] Estelrich J, Sánchez-Martín MJ, Busquets MA. (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. Mar 6;10:1727-41. DOI: 10.2147/IJN.S76501.

[8] Cormode DP, Naha PC, Fayad ZA. (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. Jan-Feb;9(1):37-52. DOI: 10.1002/cmmi.1551.

[9] Li L, Guan Y, Xiong H, (2020) Fundamentals and applications of nanoparticles for ultrasound-based imaging and therapy. Nano Select. 1: 263–284. DOI: https://doi.org/10.1002/nano.202000035.

[10] Chamorro-Garcia A, Merkoçi A.(2016) Nanobiosensors in diagnostics. Nanobiomedicine. 2016;3. DOI: 10.1177/1849543516663574.

[11] Fernanda Maria PolicarpoTonelli, Moline SeverinoLemos, Danilo Roberto Carvalho Ferreira, Flávia Cristina PolicarpoTonelli, HelonGuimarãesCordeiro(2023) Chapter 9 - Nanotechnology for point-of-care (POC) diagnostics,Editor(s): Nabeel Ahmad, GopinathPackirisamy,In Micro and Nano Technologies, Emerging Nanotechnologies for Medical Applications,Elsevier,2023,Pages 249-272. DOI: https://doi.org/10.1016/C2020-0-04503-2.

[12] Liu B., Wang F., Chao J. (2023) Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Sensors 2023, 23, 3313. DOI: https://doi.org/10.3390/s23063313.

[13] Tymm C, Zhou J, Tadimety A, Burklund A, Zhang JXJ. (2020) Scalable COVID-19 Detection Enabled by Lab-on-Chip Biosensors. Cell Mol Bioeng. Aug 10;13(4):313-329. DOI: https://doi.org/10.1007/s12195-020-00642-z.

[14] Zhu H, Fohlerová Z, Pekárek J, Basova E, Neužil P.(2020) Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron. Apr 1;153:112041. DOI: 10.1016/j.bios.2020.112041.

[15] Jokerst JV, Raamanathan A, Christodoulides N, Floriano PN, Pollard AA, Simmons GW, Wong J, Gage C, Furmaga WB, Redding SW, McDevitt JT.( 2009) Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron. Aug 15;24(12):3622-9. DOI: 10.1016/j.bios.2009.05.026.

[16] Yangjiayi Xiang, Cong Hu, Gou Wu, Shilin Xu, Yan Li (2023) Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives, TrAC Trends in Analytical Chemistry, Volume 158,116835. DOI: https://doi.org/10.1016/j.trac.2022.116835.

[17] Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P. (2005) DNA translocation in inorganic nanotubes. Nano Lett 2005;5:1633–7. DOI: 10.1021/nl0509677.

[18] BabakSadeghi, R.A.R. Vahdati, (2012) Comparison and SEM-characterization of novel solvents of DNA/carbon nanotube, Appl Surf Scie, Volume 258, Issue 7,Pages 3086-3088. DOI: 10.1016/j.apsusc.2011.11.042.

[19] Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY (2024). Self-assembling protein microarrays. Science 2004; 305:86 –90. DOI: 10.1126/science.1097639.

[20] Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, Gu Z. (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 2013 Jul 31;3(8):595-615. DOI: 10.7150/thno.5366.

[21] Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbonnanobeacons. Faseb J 2007;21:1647–54. DOI: 10.1096/fj.06-6505com.

[22] Sadeghi, B.(2015)Zizyphusmauritiana extract-mediated green and rapid synthesis of gold nanoparticles and its antibacterial activity. J NanostructChem 5, 265–273. DOI: https://doi.org/10.1007/s40097-015-0157-y.

[23] Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A, Baptista P. (2016) Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics. 6(4):43. DOI: 10.3390/diagnostics6040043.

[24] Chang C, Chen C, Wu T, Yang C, Lin C, Chen C. (2019) Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials. 9(6):861. DOI: 10.3390/nano9060861.

[25] Conde J, Dias JT, Grazu V, Moros M, Baptista PV, de la Fuente JM. (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. Vol. 2, 2014. DOI: 10.3389/fchem.2014.00048.

[26] Yang C, Xu Y, Pourhassan-Moghaddam M, Tran D, Wu L, Zhou X, Thierry B.(2019). Surface Plasmon Enhanced Light Scattering Biosensing: Size Dependence on the Gold Nanoparticle Tag. Sensors. 19(2):323. DOI: https://doi.org/10.3390/s19020323.

[27] Rasheed PA, Sandhyarani N. (2017)Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. MicrochimActa. 184(4):981-1000. DOI:10.1007/s00604-017-2143-1.

[28] Bouché M, Hsu JC, Dong YC, Kim J, Taing K, Cormode DP.(2020) Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjugate Chem. 31(2):303-314. DOI: 10.1021/acs.bioconjchem.9b00669.

[29] Kasera S, Herrmann LO, Barrio Jd, Baumberg JJ, Scherman OA. (2014) Quantitative multiplexing with nano-self-assemblies in SERS. Sci Rep. 4(1)2014 Oct 30:4:6785. DOI: 10.1038/srep06785.

[30] Abdellatif AAH, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. (2022) Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. Int J Nanomedicine. 2022 May 2;17:1951-1970. DOI: 10.2147/IJN.S357980.

[31] Rizvi SB, Rouhi S, Taniguchi S, Yang SY, Green M, Keshtgar M, Seifalian AM.(2014) Near-infrared quantum dots for HER2 localization and imaging of cancer cells. Int J Nanomedicine. 2014 Mar 11;9:1323-37. DOI: 10.2147/IJN.S51535.

[32] Barbara R. (2020)Carbohydrate Functionalized Quantum Dots in Sensing, Imaging and Therapy Applications. January 2020. In book: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. DOI: 10.1016/B978-0-12-819475-1.00041-9.

[33] Bentzen EL, House F, Utley TJ, Crowe JE, Wright DW. (2005) Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano Lett.  2005;5:591–5. DOI: 10.1021/nl048073u.

[34] Maeda M, Kuroda CS, Shimura T, Tada M, Abe M, Yamamuro S. (2006) Magnetic carriers of iron nanoparticles coated with a functional polymer for high throughput bioscreening. J ApplPhys 2006;99:08H103. DOI:  https://doi.org/10.1063/1.2165127.

[35] Cummings J, Morris K, Zhou C, Sloane R, Lancashire M, Morris D, Bramley S, Krebs M, Khoja L, Dive C. (2013) Method validation of circulating tumour cell enumeration at low cell counts. BMC Cancer. 2013 Sep 11;13:415. DOI: 10.1186/1471-2407-13-415.

[36] Atanasijevic T, Shusteff M, Fam P, Jasanoff A. (2006) Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. ProcNatlAcad Sci. USA 2006; 103:14707–12. DOI: 10.1073/pnas.0606749103.

[37] Jain KK. (2003). Current status of molecular biosensors. Med Device Technol. 2003;14:10 –5. PMID: 12774570.

[38] Conte, R., De Rosa, G., Cavallo, A., Fico, A. (2020). 'Low cost air quality monitors to evaluate nanosized particulate matter. A pilot study', Int J Nano Dimens, 11(4), pp. 399-404. Article ID: 675507.

[39] Gupta AK, Nair PR, Akin D,Ladisch MR, Broyles S, Alam MA (2006). Anomalous resonance in a nanomechanical biosensor. ProcNatlAcadSci USA 2006;103:13362–7. DOI: https://doi.org/10.1073/pnas.0602022103.

[40] Sha MY, Xu H, Natan MJ, Cromer R. (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc. 2008 Dec 24;130(51):17214-5. DOI: 10.1021/ja804494m.

[41] Vo-Dinh T. (2002) Nanobiosensors: probing the sanctuary of individual living cells. J Cell Biochem Suppl. 2002;39:154-61. DOI: 10.1002/jcb.10427.

[42]Vo-Dinh, T., Stokes, D.L., Griffin, G.D., Volkan, M., Kim, U.J. and Simon, M.I. (1999) Surface-enhanced Raman Scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc., 30: 785-793. DOI: https://doi.org/10.1002/(SICI)1097-4555(199909)30:9<785::AID-JRS450>3.0.CO;2-6.

[43] Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R. (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J AmChemSoc 2003;125:10192–3. DOI: 10.1021/ja036409g.

[44] Sadeghi, M., Kashanian, S., Naghib, S., Askari, E., Haghiralsadat, F. & Tofighi, D. (2022). A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells. Nanotechnology Reviews, 11(1), 793-810. DOI: https://doi.org/10.1515/ntrev-2022-0047.

[45] Javad M, Niki B, Fatemeh Y, Mehrab P, Javad S S, Meisam O, Mojdeh M, Abbas R, Ana M. D-P. (2023). Electrochemical nanobiosensor based on reduced graphene oxide and gold nanoparticles for ultrasensitive detection of microRNA-128, International Immunopharmacology, Vol. 117, 109960. DOI: 10.1016/j.intimp.2023.109960.

[46] Lad, Amitkumar N. Agrawal, Y. K. (2013). Platinum Based Nanobiosensor Monitoring Carboplatin-DNA Interaction In-Vitro. Advanced Science, Engineering and Medicine. Vol 5, N 4,pp. 314-318(5). DOI: https://doi.org/10.1166/asem.2013.1259.