skip to main content
Review Article

Nanotechnology advancements transforming molecular diagnostics: Applications in precision healthcare




Nanotechnology’s impact on diagnostics is transformative, introducing cutting-edge tools that operate at the nanoscale, thereby revolutionizing clinical laboratory procedures. The development of nanoscale sensors, imaging agents, and other diagnostic tools has significantly elevated the sensitivity, precision, and efficiency of diagnostic processes. Indeed, engineered sensors that utilize nanomaterials (size < 100 nm) can detect minute biomarkers, allowing for early disease detection. Additionally, nanotechnology’s integration with molecular diagnostics creates a synergistic effect, expediting diagnostic procedures and advancing personalized medicine. This convergence facilitates tailored treatments based on individual genetic and molecular profiles, optimizing therapeutic interventions. This review focuses on the application of these technologies in the clinical laboratory setting, analyzing the interrelationships of nanotechnology and molecular diagnostics. As these cutting-edge technologies continue to advance, they hold the potential to redefine the standard of care, ultimately contributing to a future world where healthcare is not only more sophisticated but also patient-centric and optimized for individual needs.


Graphical Abstract

Read the full text of the article



[1] Conte R, Calarco A, Peluso G., (2018), Nanosized biomaterials for regenerative medicine. Int. J. Nano Dimens. 9: 209-214.

[2] Ghosh, C. K., (2015), Quantum Effect on Properties of Nanomaterials. In: Sengupta, A., Sarkar, C. (eds) Introduction to Nano. Engineering Materials. Springer, Berlin, Heidelberg. DOI:

[3] Conte R., De Luca I., Valentino A., Di Salle A., Calarco A., Riccitiello, F. &Peluso, G., (2017), Recent advances in “bioartificial polymeric materials” based nanovectors . Physical Sciences Reviews, 2: 20160131. DOI:

[4] Conte R., Marturano V., Peluso G., Calarco A., Cerruti, P., (2017), Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds. Int. J. Mol. Sci. 18: 709-712. DOI:

[5] Nitika Thakur, Trupti R. Das, SantanuPatra, MeenakshiChoudhary, Sudheesh K. Shukla, (2022), Miniaturization devices: A nanotechnological approach,Editor(s): Giuseppe Maruccio, JagritiNarang, In Woodhead Publishing Series in Electronic and Optical Materials, Electrochemical Sensors,Woodhead Publishing, 12: 241-259. DOI:

[6] Qiao M., Liu X.& Zhang L., (2014), Nanotechnology: Engineering Materials for a Better 21st Century. Current Research in Nanotechnology. 5: 1-2. DOI:

[7] Estelrich J, Sánchez-Martín M. J., Busquets M. A., (2015), Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomedicine. 6: 1727-1741. DOI:

[8] Cormode DP, Naha PC, Fayad ZA. (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. Jan-Feb;9(1):37-52. DOI:

[9] Li L, Guan Y, Xiong H, (2020) Fundamentals and applications of nanoparticles for ultrasound-based imaging and therapy. Nano Select. 1: 263–284. DOI:

[10] Chamorro-Garcia A, Merkoçi A.(2016) Nanobiosensors in diagnostics. Nanobiomedicine. 3: 14-19.DOI:

[11] Fernanda Maria PolicarpoTonelli, Moline SeverinoLemos, Danilo Roberto Carvalho Ferreira, Flávia Cristina PolicarpoTonelli, HelonGuimarãesCordeiro, (2023),  Chapter 9 - Nanotechnology for point-of-care (POC) diagnostics,Editor(s): Nabeel Ahmad, GopinathPackirisamy,In Micro and Nano Technologies, Emerging Nanotechnologies for Medical Applications. 249-272. DOI:

[12] Liu B., Wang F., Chao J. (2023) Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Sensors 23: 3313-3316. DOI:

[13] Tymm C., Zhou J., Tadimety A., Burklund A., Zhang J. X. J., (2020), Scalable COVID-19 Detection Enabled by Lab-on-Chip Biosensors. Cell Mol Bioeng. 13: 313-329. DOI:

[14] Zhu H., Fohlerová Z., Pekárek J., Basova E., Neužil P., (2020), Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron. 153: 112041-112046. DOI:

[15] Jokerst J. V., Raamanathan A, Christodoulides N, Floriano P. N., Pollard A. A., Simmons G. W., Wong J., Gage C., Furmaga W. B., Redding S. W., McDevitt J. T., ( 2009), Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron. 24: 3622-3629. DOI:

[16] Yangjiayi X., Cong H., Gou W., Shilin X., Yan L., (2023), Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives, TrAC Trends in Anal. Chem. 158: 116835. DOI:

[17] Fan R., Karnik R., Yue M., Li D., Majumdar A., Yang P., (2005), DNA translocation in inorganic nanotubes. Nano Lett. 5:1633–1637. DOI:

[18] Sadeghi B., Vahdati R.A.R., (2012), Comparison and SEM-characterization of novel solvents of DNA/carbon nanotube. Appl. Surf. Scie. 258: 3086-3088. DOI:

[19] Ramachandran N., Hainsworth E., Bhullar B., Eisenstein S., Rosen B., Lau A. Y.,  (2024), Self-assembling protein microarrays. Science. 305: 86 –90. DOI:

[20] Li L., Jiang W., Luo K., Song H., Lan F., Wu Y., Gu Z., (2013), Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 3: 595-615. DOI:

[21] Partlow K. C., Chen J., Brant J. A., Neubauer A. M., Meyerrose T. E., Creer M. H., (2007), 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbonnanobeacons. Faseb. J. 21:1647–1654. DOI:

[22] Sadeghi B., (2015), Zizyphusmauritiana extract-mediated green and rapid synthesis of gold nanoparticles and its antibacterial activity. J. Nanostruct Chem. 5: 265–273. DOI:

[23] Cordeiro M., Ferreira Carlos F., Pedrosa P., Lopez A., Baptista P., (2016) ,Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics. 6: 43-48. DOI:

[24] Chang C., Chen C., Wu T., Yang C., Lin C., Chen C., (2019), Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials. 9: 861-865. DOI:

[25] Conde J., Dias J. T., Grazu V., Moros M., Baptista P. V., de la Fuente J. M., (2014), Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2: 2014. DOI:

[26] Yang C., Xu Y., Pourhassan-Moghaddam M., Tran D., Wu L., Zhou X, Thierry B., (2019), Surface Plasmon Enhanced Light Scattering Biosensing: Size Dependence on the Gold Nanoparticle Tag. Sensors. 19: 323-326. DOI:

[27] Rasheed P. A., Sandhyarani N., (2017), Electrochemical DNA sensors based on the use of gold nanoparticles: A review on recent developments. Microchim Acta. 184: 981-1000. DOI:

[28] Bouché M., Hsu J. C., Dong Y. C., Kim J., Taing K., Cormode D. P., (2020), Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjugate. Chem. 31: 303-314. DOI:

[29] Kasera S., Herrmann L. O., Barrio J. d., Baumberg J. J., Scherman O. A., (2014), Quantitative multiplexing with nano-self-assemblies in SERS. Sci Rep. 4: 6785-6788. DOI:

[30] Abdellatif A. A. H., Younis M. A., Alsharidah M., Al Rugaie O., Tawfeek H. M., (2022), Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. Int. J. Nanomedicine. 17: 1951-1970. DOI:

[31] Rizvi S. B., Rouhi S., Taniguchi S., Yang S. Y., Green M., Keshtgar M., Seifalian A. M., (2014), Near-infrared quantum dots for HER2 localization and imaging of cancer cells. Int. J. Nanomedicine. 11:1323-337. DOI:

[32] Barbara R., (2020), Carbohydrate Functionalized Quantum Dots in Sensing, Imaging and Therapy Applications. January 2020. In book: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. DOI:

[33] Bentzen E. L., House F., Utley T. J., Crowe J. E., Wright D. W., (2005), Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano Lett.  5: 591–595. DOI:

[34] Maeda M., Kuroda C. S., Shimura T., Tada M., Abe M., Yamamuro S., (2006), Magnetic carriers of iron nanoparticles coated with a functional polymer for high throughput bioscreening. J. Appl. Phys. 99: 08H103. DOI:

[35] Cummings J., Morris K., Zhou C., Sloane R., Lancashire M., Morris D., Bramley S., Krebs M., Khoja L., Dive C., (2013), Method validation of circulating tumour cell enumeration at low cell counts. BMC Cancer. 11: 415-419. DOI:

[36] Atanasijevic T., Shusteff M., Fam P., Jasanoff A., (2006), Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl. Acad. Sci. 103: 14707–14712. DOI:

[37] Jain K. K., (2003), Current status of molecular biosensors. Med Device Technol.14: 10–5. PMID: 12774570.

[38] Conte R., De Rosa G., Cavallo A., Fico A., (2020), Low cost air quality monitors to evaluate nanosized particulate matter. A pilot study. Int. J. Nano Dimens. 11: 399-404. 

[39] Gupta A. K., Nair P. R., Akin D., Ladisch M. R., Broyles S., Alam M. A., (2006), Anomalous resonance in a nanomechanical biosensor. Proc. Natl. Acad. Sci. 103: 13362–13367. DOI:

[40] Sha M. Y., Xu H., Natan M. J., Cromer R., (2008), Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J. Am. Chem. Soc. 130:17214-17215. DOI:

[41] Vo-Dinh T., (2002), Nanobiosensors: probing the sanctuary of individual living cells. J. Cell Biochem. Suppl. 39:154-161. DOI:

[42] Vo-Dinh, T., Stokes, D. L., Griffin, G. D., Volkan, M., Kim, U. J., Simon, M. I., (1999), Surface-enhanced Raman Scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 30: 785-793. DOI:;2-6.

[43] Perez J. M., Simeone F. J., Saeki Y., Josephson L., Weissleder R., (2003), Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125:10192–10193. DOI:

[44] Sadeghi M., Kashanian S., Naghib S., Askari E., Haghiralsadat F., Tofighi D., (2022), A highly sensitive nanobiosensor based on aptamer-conjugated graphene-decorated rhodium nanoparticles for detection of HER2-positive circulating tumor cells. Nanotechnol. Rev. 11: 793-810. DOI:

[45] Javad M., Niki B., Fatemeh Y., Mehrab P., Javad S. S., Meisam O., Mojdeh M., Abbas R., Ana M. D-P., (2023), Electrochemical nanobiosensor based on reduced graphene oxide and gold nanoparticles for ultrasensitive detection of microRNA-128. Int. Immunopharm. 117: 109960. DOI:

[46] Lad Amitkumar N., Agrawal Y. K., (2013), Platinum Based Nanobiosensor Monitoring Carboplatin-DNA Interaction In-Vitro. Adv. Sci. Eng. Medic. 5: 314-318. DOI: