skip to main content
Menu
Original Article

Investigating the impurity of single Carbon atom on the electronic transport of two side-closed (6, 6) single-walled Boron Nitride nanotubes

Authors

Abstract

In this study, the impurity of a single carbon atom on the electronic properties of two side-closed (6, 6) single-walled boron nitride nanotubes ((6, 6) TSC-SWBNNTs) has been investigated in the right, left, and center of this nanotube using the Slater-Koster method and tight-binding approximation. The non-equilibrium Green’s function approach has been used in this method. The figures of the transmission spectrum in the impurity state of the carbon atom in the right, left, and center of this nanotube were drawn at bias voltages of 0, 2.5, and 5 V and then compared with those of the DOS (density of states). In energy values where the peak of the transmission spectrum figure and the peak of the DOS exist simultaneously, the resonance state has occurred for the incoming electron. In addition, a new electron tunneling has occurred, and the current change can be observed as a jump and staircase state in the current figure according to the bias voltage. In addition, due to the effect of interference in the two ends of the nanotube and the reduction of the current in some values of the bias voltage, negative differential resistance can also be found, which can be employe Transmissiond as high-speed electronic switches.

Graphical Abstract

Keywords

References

[1] Turhan E. A., Pazarçeviren A. E., Evis Z., Tezcaner A., (2022), Properties and applications of boron nitride nanotubes. Nanotechnol. 33: 242001. https://doi.org /10.1088/1361-6528/ac5839.

[2] Iijima S., (1991), Helical microtubules of graphitic carbon. Nature. 354: 56–58. https://doi.org/10.1038/354056a0.

[3] Rubio A., Corkill J. L., Cohen M. L., (1994), Theory of graphitic boron nitride nanotubes. Phys. Rev. B: Condens. Matt. 49: 5081-5084. https://doi.org/10.1103/PhysRevB.49.5081.

[4] Chopra N. G., Luyken R. J., Cherrey K., Crespi V. H., Cohen M. L., Louie S.G., Zettl A., (1995),  Boron Nitride Nanotubes. Science. 269: 966-967. https://doi.org/10.1126/science.269.5226.966.

[5] Blase X., Rubio A., Louie S. G., Cohen M. L., (1994),   Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28: 335-340. https://doi.org/10.1209/0295-5075/28/5/007.

[6] Zhi C., Bando Y., Tang C., Golberg D., (2010),   Boron nitride nanotubes. Mater. Sci. Eng: R: Rep 70: 92-111. https://doi.org/10.1016/j.mser.2010.06.004.

[7] Wang J., Lee C. H., Yap Y. K., (2010), Recent advancements in boron nitride nanotubes. Nanoscale. 2: 2028-2034. https://doi.org/ 10.1039/C0NR00335B.

[8] Liu Z., Marder T. B., (2008), B-N versus C-C: How Similar Are They? Angew. Chem. Int. Ed. 47: 242-244. https://doi.org/10.1002/anie.200703535.

[9] Almahmoud E., Talla J. A., (2019), Band gap tuning in carbon doped boron nitride mono sheet with Stone-Wales defect: a simulation study. Mater. Res. Express. 6: 105038. https://doi.org/ 10.1088/2053-1591/ab39a3.

[10] Petrushenko I., Petrushenko K., (2017), Stone-Wales defects in graphene-like boron nitride-carbon heterostructures: formation energies, structural properties, and reactivity. Computat. Mater. Sci. 128: 243-248. https://doi.org/10.1016/j.commatsci.2016.11.039.

[11] Jia J. F., Wu H. S., Jiao H., (2006), The structure and electronic property of BN nanotube. Phys. B Condens. Matter. 381: 90-95. https://doi.org/10.1016/j.physb.2005.12.258.

[12] Zhao J. X., Tian Y., Dai B. Q., (2005), A theoretical study on the conductivity of carbon doped BNNT. J. Chin. Chem. Soc. 52: 395-398. https://doi.org/10.1002/jccs.200500059.

[13] Talla Jamal A., Ayman S., Sabbah H., (2014), Structural characterization of deformed boron nitride nanotubes. J. Comput. Theor. Nanosci 11: 1838-1843. https://doi.org/10.1166/jctn.2014.3576.

[14] Papaconstantopoulos D. A., Mehl M. J., (2003), The Slater–Koster tight-binding method: A computationally efficient and accurate approach. J. Phys: Condens. Matter 15: R413–440. https://doi.org/10.1088/0953-8984/15/10/201.

[15] Ci L., (2010), Atomic layers of hybridized boron nitride and grapheme domains. Nat. Mater. 9: 430–435. https://doi.org/10.1038/nmat2711.

[16] Kim J. H., Pham T. V., Hwang J. H., Kim C. S., Kim M. J., (2018),   Boron nitride nanotubes: Synthesis and applications. Nano Converg. 5: 17-23. https://doi.org/10.1186/s40580-018-0149-y.

[17] Ventra M. Di., Pantelides S. T., (2000), The benzene molecule as a molecular resonant-tunneling transistor. Appl. Phys. Lett. 76: 3448–3450. https://doi.org/10.1063/1.126673.

[18] Gao F., Qu J., Yao M., (2012), Electrical resistance at carbon nanotube/copper interfaces: Capped versus open-end carbon nanotubes. Mater. Lett. 82: 184–187. https://doi.org/10.1016/j.matlet.2012.05.095.                      

[19] Qiu M., Liew K. M., (2011), Transport properties of a single layer armchair h-BNC heterostructure. J. Appl. Phys.110: 064319. https://doi.org/10.1063/1.3639285.

[20] Cardamone D. M., Stafford C. A., Mazumdar S., (2006), Controlling quantum transport through a single molecule. Nano Lett. 6: 2422-2426. https://doi.org/10.1021/nl0608442.

[21] Tagami K., Wang L., (2004), Tsukada M., Interface sensitivity in quantum transport through single molecules. Nano Lett. 4: 209-212. https://doi.org/10.1021/nl0348894.

[22] Porath D., Levi Y., Tarabiah M., Millo O., (1997), Tunneling spectroscopy of isolated molecules in the presence of charging effects. Phys. Rev. B. 56: 9829-9835. https://doi.org/10.1103/PhysRevB.56.9829.

[23] Yadollahi A. M., Niazian M. R., (2023), The influence of single carbon atom impurity on the electronic transport of (6, 3) two side closed single walled boron nitride nanotubes. J. Molec. Model. 29: 133-137. https://doi.org/10.1007/s00894-023-05493-9.

[24] Schattauer C. , Todorovic M., Ghosh K. , Rinke P., Libisch F., (2022),  Machine learning sparse tight- binding parameters for defects, NPJ Comput. Mater. 116: 1-11. https://doi.org/10.1038/s41524-022-00791-x.                   

[25] Schneider J., Hamaekers J., Chill S. T., Smidstrup S., Bulin J., Thesen R., Blom A., Stokbro K., (2017), ATK-forcefield: A new generation molecular dynamics software package. Modell. Simul. Mater. Sci. Eng. 25: 085007. https://doi.org/ 10.1088/1361-651X/aa8ff0.

[26] Zhao P., Liu D. S., Li S. J., Chen G., (2012), Rectifying behavior in nitrogen-doped zigzag single-walled carbon nanotube junctions. Solid State Communic. 152: 2040–2044. https://doi.org/ 10.1016/j.ssc. 2012. 08. 013.                                                                                                                                                                              

[27] Wang M., Jiang X., Li X., Li D., Cui B., Liu D., (2019), Spin transport properties in Fe-doped graphene/ hexa- gonal boron-nitride nanoribbons heterostructures. Phys. Lett. A. 383: 2217-2222. https://doi.org/10.1016/j.physleta.2019.04.022.                                                                                                          

[28] Yadollahi A. M., Niazian M. R., Khodadadi A., (2023),  Investigating the thermoelectric properties of the (6, 6) two sided-closed single-walled boron nitride nanotubes ((6, 6) TSC-SWBNNTs) due to the impurity of a single car- bon  atom and temperature changes. J. Molec. Graphics and Modelling. 122: 108499-108504. https://doi.org/10.1016/j.jmgm.2023.108499.

[29] Markussen T., Jauho A. P., Brandbyge M., (2009), Surface-decorated Silicon nanowires: A route to high-ZT thermoelectrics. Phys. Rev. Lett. 103: 055502.  https://doi.org/10.1103/PhysRevLett.103.055502.

[30]Yadollahi A. M., Azimi Anaraki P., Yaghobi M., (2022), Thermoelectric properties of two sided-closed single-walled boron nitride nanotubes (6, 3). Indian J. Phys. 96: 3493–3500. https://doi.org/10.1007/s12648-021-02255-2.

[31] Yadollahi A. M., Azimi Anaraki P., Yaghobi M., Niazian M. R., (2022), Effect of temperature changes on thermoelectric properties of the two sided-closed single-walled Boron Nitride nanotubes (6, 3). J. Interf. Thin Films, and Low Dimens. Systems (JITL). 5: 421-427.http://doi.org/10.22051/JITL2022.40200.1072.                                                                                                                      

[32] Yadollahi A. M., Azimi Anaraki P., Yaghobi M., Niazian M. R., (2022), Effect of impurity and temperature changes on the thermoelectric properties of the (6, 3) two sided-closed single-walled boron nitride nanotubes ((6, 3) TSC-SWBNNTs). J. Therot. Appl. Phys. (JTAP). 16: 1-11.https://dx.doi.org/10.30495/ jtap . 162230.

[33] Sadeghi R., Niazian M. R., Yaghobi M., Ramzanpour M. A., (2022), Thermoelectric properties of zigzag single-walled Carbon nanotubes and zigzag single-walled Boron Nitride nanotubes (9, 0). Int. J. Nano Dimens. 13: 311-319. https://doi.org/10.22034/ijnd.2022.1951622.2118.

[34] Dehghan N., Niazian M. R., Yaghobi M., Ramzanpour M. A., (2022), Effect of the vacancy on the electrical tr-ansport properties of boron nitride nanosheets. J.  Theoret. Appl. Phys. (JTAP). 17: 1-13. https://doi.org/ 10.57647/j.jtap.2023.1701.11.

[35] Datta S., (1995), Electronic transport in mesoscopic systems. Cambridge University Press, New York.

[36] Chaudhuri P., Lima C. N., Frota H. O., Ghosh A., (2021), Density functional study of glycine adsorption on single-walled BN nanotubes. Appl. Surf. Sci. 536: 147686. https://doi. org/ 10.1016/ j.apsusc. 2020.147686.

[37] Zhao J. X., Tian Y., Dai B. Q., (2005), J. Chin. Chem. Soc. 52: 395-398. https://doi.org/10.1002/jccs. 200500059.

perties of B/P doped graphene nanoribbon field-effect transistor. Materials Science in Semiconductor Processing 130: 105826. https://doi.org/10.1016/j.mssp.2021.105826.

[38] Rui C., Shao C., Liu J., Chen A., Zhu K., Shao Q., (2021), Transport properties of B/P doped graphene nanoribbon field-effect transistor. Materials Science in Semiconductor Processing 130: 105826. https://doi.org/10.1016/j.mssp.2021.105826.

[39] Song L., (2010), Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10: 3209–3215. https://doi.org/10.1021/nl1022139.

[40] Roknabadi M. R., Ghodrati M., Modarresi M., Koohjani F., (2013), Electronic and optical properties of pure and doped boron-nitride nanotube. Physica. B. 410: 212–216. https://doi.org/ 10.1016/j.physb. 2012.10.033.

[41] Sadjadi M. A., Sadeghi B., Zare K., (2007), Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X = F (1), X = Cl (2). J. Mol. Str.:THEOCHEM. 817: 27-33. https://doi.org/10.1016/j.theochem.2007.04.015.

[42] Yaghobi M., Yuonesi M., (2011), Electronic transport through a C60– n X n (X=N and B) molecular bridge. Molecular Physics. 109: 1821–1829. https://doi.org/10.1080/00268976.2011.593567.