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Abstract:
Nanofibrous scaffolds are employed as drug carriers in the healthcare industry. Coaxial Electrospin-
ning is a method for preparing core–shell nanofibers cost-effectively and efficiently in which the
drugs or bioactive components are encapsulated into a body covered by a shell layer. The coaxial
electrospun nanofiber morphology is affected by solution properties, process parameters, and
environment parameters. Therefore, Coaxial electrospun nanofibers have been developed for more
sustained drug release due to their well-controlled drug release rate, low cost, and reduced toxicity.
This paper provides a concise incursion into the application of coaxial electrospun nanofibers in
drug delivery and cites pertinent processing parameters that may influence the performance of
the nanofibers and drug release when applied to drug delivery. One of the critical challenges in
producing nanofibers is finding methods that have sufficient speed for producing industrial textiles.
Polymeric drug delivery systems can improve therapeutic efficacy, reduce toxicity, and increase
patient compliance by delivering drugs at a controlled rate over some time in an active setting.
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1. Introduction

Nanotechnology is one of the most promising and developed
technologies with many potential medicinal applications.
Recent research on nanotechnology in biomedicine shows
that this technology may solve problems such as controlled
release, various local administration, intestinal absorption,
etc. Nanofibers mimic the porous topography of natural
extracellular matrix (ECM), valid for tissue regeneration
and sustained release of encapsulated drug or growth factor.
Nanofibrous scaffolds’ unique features and easy adjustabil-
ity have made them a very flexible tool for drug delivery
to treat various pathologies. Since there is an inherent dif-
ference in pathologies, each field of application requires
release and specificity. It has the unique mechanical proper-
ties of nanofibers. Most real medical materials are derived
from fossil fuel sources, thus exacerbating pollution and
climate change, and require alternative and sustainable ma-
terials. For example, cellulose nanofibers have high specific
surface area, mechanical strength, reactive surface, bio-
compatibility, biodegradability, non-toxicity, and low-cost

[1, 2].
Polymeric delivery systems using electrospun nanofibers
have been in focus due to their flexibility in surface function-
alities, superior mechanical durability, and interconnected
and readily controlled secondary structures, which allow
them to be used as drug carriers. These systems employ
some of the most effective methods used in the manufac-
turing of high-performance nanofibers with remarkable fea-
tures such as large surface area per unit mass and high
porosity under certain fabrication conditions [3–8]. Thus, fi-
brous drug carriers have been developed for more sustained
drug release because of the well-controlled drug release
rate, low cost, and reduced toxicity [9]. Electrospinning is a
versatile technique that can produce nanofibers containing
compatible drugs with designed structure and morphology
[7, 10]. Over the years, drug-loading methods have been de-
veloped via blend electrospinning in which drug molecules
are directly unified within the nanofibers. Several problems
appeared in this method, such as the non-uniform distribu-
tion of drugs released from blended nanofibers, which is
undesirable due to the medicines adsorbed on the surfaces
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Figure 1. (a) A schematic diagram of electrospinning, (b) The schematic diagram of Coaxial electrospinning.

or in the interior of electrospun nanofibers. In 2003, the
coaxial electrospinning process introduced a new class of
nanofibers. In the coaxial electrospinning process, drugs
or bioactive components can be encapsulated into the core,
which is covered by the shell layer to mitigate the burst
release of the drug to some extent [5, 7, 11]. In this re-
view, we will concentrate on the coaxial electrospinning
designs to obtain various core–shell structure nanofibres.
Therefore, the general core–shell structure is examined, and
electrospinning parameters, including the type of polymer,
polymer concentration, solution feed rate, voltage, and class
of drugs, are discussed. These parameters can significantly
affect the core–shell nanofibers. The drug release mecha-
nism was described in monolithic and blended core designs
in drug delivery applications.

2. General Electrospinning Process
Different methods can be employed to create nanofibers,
such as drawing [12, 13], template synthesis [14, 15], phase
separation [16], self-assembly and Electrospinning [17, 18].
Among these, Electrospinning is a versatile technique that
allows us to spin many synthetic and natural polymers onto
polymer nanofibers with controllable morphology.
A schematic diagram of Electrospinning is illustrated in
Figure 1a. Electrospinning consists of a polymer solution,
or melt, placed in a syringe or pipette that is charged with
a high-voltage source. A syringe pump forces the polymer
solution through a small-diameter capillary [18, 19].
Although Electrospinning is a simple process, several pro-
cessing variables must be controlled to produce nanofibers
instead of droplets or bead morphologies [20]. The fiber
morphology is affected by solution properties and operating
conditions such as polymer molecular weight and concentra-
tion, the solvent of polymers, applied voltage, solution flow
rate and tip-collector distance, and environmental parame-
ters, including temperature and humidity. The optimization
of these parameters to achieve desirable nanofiber morphol-
ogy and properties is the main aim of the electrospinning
process [21, 22].

3. Coaxial Electrospinning
The general setup of coaxial Electrospinning is similar to
that of general Electrospinning [11, 22]. Coaxial Electro-
spinning was performed using a variable high DC voltage

power supply and a programmable pump, which could be
set from 1 kV to 30 kV. Two separate polymer solutions
using coaxial nozzles were mounted on the pump with a
multirack grip; the core and shell components’ flow rates
were identical during the tests [23, 24]. The schematic dia-
gram of coaxial Electrospinning is illustrated in Figure 1b.
The quality of the process and the morphology of the fibers
are affected by several parameters, i.e., the solution, pro-
cessing, and environment parameters [25]. In addition, the
interactions between the core and shell polymer solutions
and their flow rates can affect the morphology of nanofibers’
properties [10]. The core-shell structure features two parts,
with one outer part (’shell’) and the inner part (’core’) cov-
ered by the outer part. In addition, each core and shell can
perform independent functions [11].
Core-shell nanofibers hold great potential for improving the
loading of various drugs and bioactive agents. Antibiotics,
DNA, proteins, growth factors, etc., can be directly incorpo-
rated into the core, protected by the shell layer, and could
reveal a sustained release without any burst effect [5, 27].
The polymer of the shell layer provides a diffuse obstacle,
minimizing surface enrichment [28].
The core-shell fibers can be fabricated by coaxial and emul-
sion electrospinning, allowing us to load two drugs while
reducing the initial burst release and allowing for sustained
release profiles. However, the emulsifier used in emulsion
electrospinning is challenging to remove. Coaxial Electro-
spinning is extensively used and is simple to adopt. Mate-
rials not capable of forming electrospun fibers alone can
be used in the core solution after removing the shell layer,
and non-electrospinnable fibers can thus be obtained. These
reasons contributed to our choice of electrospinning method
[29–33]. In another study, present shell-core fibers were
successfully prepared by using Eudragit S100 (ES100) and
poly(vinyl alcohol) (PVA)/pectin (PEC) through coaxial
electrospinning technology [34]. In another study, poly-
lactic fibers were used to treat periodontitis using coaxial
electrospinning [35]. In another study, Co-axial electrospin-
ning of PLLA shell, collagen core nanofibers for skin tissue
engineering was reported [29].

4. Effect of the Solution Parameters
Solution viscosity is one of the critical factors in determin-
ing the morphology of electrospun nanofibers [22]. The
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Figure 2. Compound Taylor cone. Outer fluid: PVP–DMF (DMF: dimethyl formamide) melt. Inner solution: oil [26].

sheath solution’s thickness must be adequate to produce
enough viscous traction for the core solution to overcome
the interfacial tension and thus allow a stable Taylor cone
to be formed [36]. A sufficiently high viscosity of the shell
fluid and a low value of the solution interfacial tension are
essential for developing a compound cone in a steady state.
By lowering the shell and core solution interfacial tension,
the inner meniscus can be steadily dragged into a jet by
the outer melt. Figure 2 shows the compound Taylor cone
of core and shell fluids [26]. The viscosity of the core
fluid should be kept low to allow for a stable Taylor cone
[37]. The thickness of polymer solutions depends on the
concentration, temperature, and molecular weight. Nava-
porn Kaerkitcha experimented on the core–shell nanofibers
using PAN as the core polymer and PMMA as the shell
polymer. When using a constant concentration of the core
solution, the diameter of the obtained electrospun fibers
slightly increased with the increase in the viscosity of the
shell solution. In contrast, when using a constant concentra-
tion of shell solution, the average diameters of the electro-
spun fibers were not significantly different from one another
when the viscosity of the core solution was increased, Fig-
ure 3.
The viscosity can be controlled by the concentration of the
polymer solution [38]. When the polymer concentration is
low, bead-only structures will be produced due to a lack of
chain entanglements in the solution. When the concentra-
tion is too high, pumping the solution through the syringe
needle will be difficult, and the answers may dry at the tip of
the hand before the electrospinning Taylor cone can begin.
Increasing the concentration of the core solution results in
the formation of ultrafine fibers bead–less morphology [39].
Rui Chen observed an increase in the overall fiber diam-
eter when a higher core concentration was used, with the
shell solution concentration maintained at constant atten-
tion [40]. Moreover, the shell concentration could not be
too high because a lower viscosity tended to facilitate the
formation of more uniform fibers with a smaller fiber diam-
eter [40]. Similarly, [11]. They observed increased overall

fiber diameter when higher shell and core concentrations
were used in the solution. The immiscibility of the two
solutions is the critical factor for the successful fabrication
of [37]. The Taylor cone becomes unstable if the core and
shell solutions show high miscibility. The morphology of
the electrospun nanofibers was sprayed during Electrospin-
ning or showed blend types due to the blend of core and
shell solutions during Electrospinning. Figure 4 shows the
morphology of core–shell electrospun nanofibers [Figure 4
(b)] and their blended core and shell layer (Figure 4 (a and
c)] [37]. However, several groups have demonstrated that
coaxial electrospinning combinations can make polymeric
core-shell nanofibers of miscible polymer solutions. Sun
et al. [41] reported the formation of core-shell polymeric
nanofibers using various concentrations of the same answer.
On the other hand, in their study, Rahmani et al. [42] re-
ported that core–shell fibers of polymethyl methacrylate
(PMMA) and polystyrene (PS) had been successfully elec-
trospun to assess the influence of the solvent on the final
fiber morphology. Four organic solvents, such as N, N
dimethylformamide (DMF), dichloromethane, toluene, and
tetrahydrofuran (THF), were used in the shell solution while
the core solvent was preserved. They demonstrated that
DMF, THF, and toluene are considered suitable solvents
for PS. Their differences in viscosity play a role in the
fiber morphology, Figure 5. Moreover, In the DMF/toluene
core–shell solvents, nanofibers have large diameters; this
morphology is attributed to the low evaporation rate of the
solvent in a partially dried electrospinning jet.
Moreover, Zeynep Kurban [43] showed that the shell so-
lution must be more conducting and viscous than the core.
They reported that it is possible to drive the interface be-
tween the body and the shell to instability and thus con-
trollably create highly porous fibers by creating a case in
which a highly conducting core and sufficiently low surface
tension between the body and cover are both present.
The charge-carrying capacity of the polymer solutions with
high conductivity is more significant than those with low
conductivity. Therefore, it has been observed that an in-
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Figure 3. SEM images of core-shell nanofibers with different PAN(core) and PMMA (shell) concentrations [8].

crease in solution conductivity results in a substantial de-
crease in fiber diameter. It has also been shown that the
radius of the nanofiber jet is inversely related to the cube
root of the electrical conductivity of the solution [21]. The
conductivity of the shell is necessary. The effects of the
shell/core electrical conductivity ratio on the fiber diameter
were evaluated by enhancing the electrical conductivity of
the shell solution. This is probably due to the higher re-
pulsive forces of the stretching jet, leading to smaller fiber
yields [44]. In addition, Minoru Miyauchi [44] observed
that fiber mat conductivity increased by increasing the ratio
of the core solution. They reported that core–shell fibers
of multiwalled carbon nanotubes (MWNT)-cellulose mats
demonstrated excellent conductivity because of a conduc-
tive pathway of bundled MWNTs.
Mehdi Pakravan has reported that the core PEO solution
helped the shell chitosan solution, which is a non-electro
spinnable solution, by forming a stable Taylor cone and
continuous jet ejection during the entire process. This could
be attributed to a combination of parameters such as using

the same solvent in both solutions, higher conductivity of
the shell solution, and low solvent vapor pressure.

5. Polymers
Numerous materials, including hydrophobic and hy-
drophilic materials, have been successfully electrospuned
into ultrafine coaxial fibers. The selection of appropriate
materials and solvents is essential for the steady generation
of core-shell nanofibers, especially those for drug delivery
systems. Polymeric nanofiber carriers can be fabricated
through both synthetic and natural polymers. However, nat-
ural polymers play a more critical role in drug delivery than
synthetic polymers [22]. This may be due to good biocom-
patibility, biodegradable and toxicologically harmless, and
more abundantly available than synthetic polymers. The
Electrospinning of natural polymers has several problems,
such as destructive mechanical properties and weak mois-
ture resistance because of strong hydrogen bonding.
Furthermore, the electrospinning of these natural polymer
blend solutions was difficult with the high polymer con-
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tent. The crude polymer is usually blended with synthetic
polymers to provide sufficient mechanical properties and
improve electrospinnability. In addition, coaxial Electro-
spinning can overcome these problems without changing
the nature of the polymers [10, 23, 45, 46]. M. Merkle [47]
reported a synthetic polymer, polyvinyl alcohol (PVA), as a
shell polymer and natural protein gelatin as a core polymer
used as a model system for core–shell nanofibers. PVA
is a semicrystalline, hydrophilic, and biocompatible poly-
mer that can be electrospuned into nanofibers in aqueous
solution. Gelatin is often electrospun combined with syn-
thetic polymers such as poly (ε-caprolactone) and PVA to
improve the fiber’s mechanical properties [47]. Table 1 lists
studies using coaxial Electrospinning to prepare core-shell
nanofibers for biomedical applications. Esmaeili et al. [48]
has summarized the natural materials that have improved
electrospun nanofibers’ chemical and physical properties
for biomedical applications. Mehdi Pakravan [23] used this
method to prepare chitosan nanofibers by coaxial Electro-
spinning of PEO as a core solution for the chitosan shell.
Then it removed the core phase by washing PEO to expose
the chitosan nanofibers. In another study, composed of
poly(γ-benzyl-α ,L-glutamate) (PBLG) and poly(vinylidene
fluoride) (PVDF) with significantly enhanced electrome-
chanical properties was reported [50].

6. Effect of the processing parameters
It is accepted that voltage significantly influences
nanofibers’ morphology [51]. Increasing the applied volt-
age values leads to an increase in the standard deviation
of fiber alignment. It can be observed that voltage in the
range of 10-25 kV affects the morphology of nanofibers.
On the other hand, applied voltage initially leads to an in-
crease in the average fiber diameter until 20 kV. For higher
voltage values, the fiber diameter did not increase further.
This may be due to the high strength of the electrical field,
which increased the instabilities of jet polymer fluid at high
conducted voltage. Figure 6 shows the effect of voltage on
the fiber diameter [45, 52]. Akbar Esmaeili [48] examined
the effect of the applied voltage on coaxial Electrospinning
of TCMC/PEO/TCH nanofibers. They showed that the ap-
plied voltage significantly impacts the fiber diameter, and
increasing the voltage of Electrospinning in the range of
15–25 increased the fiber diameter.
In contrast, Kok Ho Kent Chan [53] reported that when the
applied voltage was increased to 18 kV, the Taylor cone
became unstable, with the surface of the fluid meniscus
subsiding rapidly into the inner walls of the spinneret. All
experiments were done with constant feed rates. This could
be attributed to the fact that the electric field pulls the so-
lution at the tip of the spinneret at a relatively fast speed,
and when the feed rate of the pump is unable to supply
enough answer to meet the rate at which the solution is
drawn; the meniscus subsides and breaks down within the
inner walls of the spinneret which knows it as the multijet
mode. The feed rate adjusts the flow rate of the fluid exiting
from the spinneret tip. It influences the nanofiber diameter
in Electrospinning, as observed by Kok Ho Kent Chan [53]
investigating the effect of feed rate. It has been reported

Figure 4. TEM images of the morphology of core-shell
nanofibers electrospun with two miscible liquids, (a) mor-
phology blend type,(b) indistinct core/sheath structure, and
(c) Collapsed core/sheath structure [49].

that when the sheath flow rate is maintained at fixed values.
In contrast, the core capillary feed rate is varied, the core
flow rate is too low, and an insufficient solution is delivered.
A continuous incorporation of the core into the shell does
not occur. In addition, Ying Li [54] have determined that
for the collagen-PEG heart–shell system, a core–shell flow
rate combination of a higher rate of shell solution resulted
in producing good quality core–shell nanofibers.
Moreover, higher flow rates with the same flow rate ratio
produced fibers with beads-on-string morphology. From
previous studies, we have gathered that the flow rate of
the core plays a more critical role in preparing the coaxial
fibers. Furthermore, the flow rate of the core solution is
usually lower than that of the shell solution [36]. Gener-

2228-5970[https://dx.doi.org/10.57647/j.ijic.2023.1401.03]

https://dx.doi.org/10.57647/j.ijic.2023.1401.03


Haseli et al. IJIC14 (2023) -142303 7/12

Figure 5. Size distribution of core-shell electrospun fibers
(PMMA as core and PS as a shell solution) with different
shell solvents [42].

ally, the tip-to-collector distance is one of the most criti-
cal parameters affecting the electrospinning process [36].
Solvent evaporation from the nanofibers is necessary to ob-
tain defect-free electrospun nanofibers, and the collector
distance determines this. Amir Houshang Hekmati [55]
reported that increasing the collector distance will decrease
the nanofibers’ diameter.

7. Core-shell electrospun nanofibers for drug
delivery

Since medical science is facing many problems in the pre-
vention, diagnosis and treatment of various diseases, new
technologies can be helpful as one of the most significant
solutions to solve or reduce these problems. Today’s nan-
otechnology has taken a big step towards reducing these
problems. The pharmaceutical world needs suitable carriers
and formulations to deliver the correct dose of medicine to
the place of effect and avoid the side effects of drugs. In this
regard, using colloidal carriers such as liposomes, nanopar-
ticles, polymers, and lipid nanofibers is one of the most
appropriate methods to achieve the aforementioned goal.
Drug delivery systems designed based on nanotechnology
will result in more therapeutic effects, less toxicity, more pa-
tient comfort and satisfaction from the treatment conditions,
and more drug accumulation at the impact site. Skins pro-
duced from nanofibers are used as two-dimensional systems
in skin drug delivery with a high surface-to-volume ratio.
There are different methods for making nanofibers, among
which electrospinning has been introduced as a simple and
unique method for making nanofibers, so that the final prod-
uct has a very high specific surface and according to the
type of materials used, it has various applications in differ-
ent fields, especially manufacturing. Drug delivery systems
play. Among the main advantages of skin drug delivery
systems, the following can be mentioned: Wide contact sur-
face that leads to faster tissue wetting. The dose prescribed
in them is more reliable compared to syrup and medici-
nal drops. The inherent flexibility of polymer nanofibers
compared to other Medicinal forms increases their shelf

Figure 6. SEM images effect of voltage on the fiber diameter
(a) 10 kV, (b) 15 kV, (c) 20 kV, (d) 25 kV. (flow rate = 1
mL/h, distance = 14 cm) [45].

life before consumption (during storage). Due to the lack
of need for water, patients do not face the problems of re-
tardation, swallowing, nausea, etc. They are convenient
for patients at any time and place. The drug used in the
nanofibrous layer enters the systemic circulation without
the liver’s first pass. For drugs with the first pass of the liver,
it is very desirable because it reduces the dosage and side
effects [56–58].
The coaxial electrospinning approach allows for the forma-
tion of core-shell fibers, which may result in burst release
at the initial stage of drug delivery. One challenge is to
obtain sustained release of a single drug to control the burst
release of drugs [6]. The two main features of electrospun
nanofibers that make them attractive as drug carriers are
the large surface area to volume ratio of nanofibers and
the control properties, such as the diameter, porosity, and
morphology by varying the processing variables and type
of materials, which can regulate the drug release profile
[21]. The drug release mechanism is dominated by swelling
followed by desorption from the nanofiber surface, diffu-
sion through the channels and pores of nanofibers, or matrix
degradation [36]. Loading the drug molecules in the shell
solution will result in burst release in the initial stage, where
the drug molecules are near the surface of the nanofibers.
This will result in short-term release [59]. Coaxial Electro-
spinning can provide burst release from the sheath surface
and a sustained release from the fiber core [59]. Various
drug delivery systems, including hydrophilic drugs and pro-
teins, are incorporated into nanofibers. One of the essential
aims of coaxial Electrospinning is to achieve long-term hy-
drophilic drug release from nanofibers. Furthermore, some
studies examined the different types of structures for drug
control burst release. Two types of core–shell nanofibers
with monolithic and blended bodies were investigated. The
drug delivery strategy for long-term effect is realized with
drug delivery systems [60].
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8. Core-core-shell nanofibers with monolithic
cores

The drug release mechanism was explored, and the drug
release from blended simple and core-shell nanofibers with
monolithic cores was examined and compared. Some stud-
ies noted that the core-shell nanofiber sample had a slower
and more sustained drug release compared to the blend
nanofibers. Akbar Esmaeili [11] reached the drug release of
core–shell and blended simple nanofibers. They fabricated
TCH-loaded blend and core-shell nanofibers from TCMC
and PEO. They showed that the core-shell nanofiber sample
containing TCH had a slower and more sustained drug re-
lease than the blend of simple nanofibers. Along the same
lines, Marziyeh Ranjbar-Mohammadi [25] fabricated TCH-
loaded blend and core-shell nanofibers from PLGA and GT
for application-controlled drug delivery systems. The re-
lease rate in blend nanofibers increased with the enhanced
hydrophilicity polymer and drug on the nanofiber surface,
which is randomly distributed across the diffusion path and
can significantly facilitate water uptake and swelling of the
polymeric matrix of the electrospun nanofibers [25]. In
addition, they showed the sustained drug release from the
core shell nanofibers from PLGA and GT for 75 days.
In addition, Mahboubeh Maleki [27] successfully demon-
strated the formation of core-shell nanofibers by coaxial
electrospinning system and investigated based on tetracy-
cline hydrochloride (TCH) as the core and poly(lactide-
co-glycolide) as the shell materials. Comparison of drug
release from blend electrospinning and core-shell structures
showed that the blend fiber mats had more excellent re-
leases than core-shell fiber networks with or without TCH
in the shell, as there was no boundary within fibers to delay
the migration of TCH to medium. This is attributed to the
border thickness between TCH and shell diameter being dif-
ferent, which might influence the ability of drug molecules
to reach the fiber surface. The critical factors changing
the release patterns of blend and various core-shell fiber
delivery with monolithic cores devices as the essential ele-
ments were drug concentration, delivery structure, and fiber
morphology. Therefore, the release profile of the drug was
controllable by adding TCH to the polymeric shell, which
would also affect the release profile at low drug concentra-
tions.
Despite all the positive and efficient features of nanofibers, a
series of limitations have caused the use of these structures
to face a significant challenge in the industry, and other
types of scaffolds have more efficiency and supply in the
market. One of the most important limitations is the com-
plex and time-consuming preparation of these nanofibers.
Devices are mainly capable of producing nanofiber sheets
in laboratory sizes, but for industrialization, devices are
needed that are the most devices of this type in the shortest
time. It has been the focus of many companies. To compen-
sate for this shortcoming, a new innovative method has been
predicted and designed, but it has not yet reached industrial
mass production. In this method, which Iranian researchers
invented, a simple method is considered to produce these
nanofibers, which eliminates the need for high voltage and
allows the use of any natural source, even citrus juice, to

make uniform nanofibers, and there is no need for synthesis.
Polymers are not used [61–63].

9. Core-shell nanofibers with blend cores
Developing a novel composite fiber system allowing for
core-shell nanofibers and burst release at the initial stage fol-
lowed by an extended sustained release remains a significant
challenge [6]. Spela Zupancic [5] compared drug release
from core-shell Nanofibers with monolithic and blended
core. They fabricated the core-shell nanofibers with poly
(methyl methacrylate) (PMMA) shell and monolithic poly
(vinyl alcohol) (PVA) core and core-shell nanofibers with
blended (PVA and PMMA) core loaded with ciprofloxacin
hydrochloride (CIP) as a drug model incorporated within
these nanofibers. Core-shell nanofibers with lower amounts
of PVA in the body could prevent burst release and achieve
sustained drug release for four weeks. Moreover, core-shell
nanofibers blend core (PVA: PMMA) and PMMA as a shell
of nanofibers have supported drug release for more than 25
days. The formation of the interconnected pores spanning
has affected the release mechanism, so core-shell nanofibers
with blend cores can achieve more sustained drug release.

10. Conclusion
Nanofibrous scaffolds have been applied as drug carriers
to improve human health. Electrospinning is one of the
techniques used in drug carriers with high loading capacity,
ease of operation, and cost-effectiveness. Core-shell
nanofibers hold great potential for drug delivery and tissue
engineering. The drug is often incorporated in blend
nanofibers, which might result in low delivery efficiency
and burst release. In contrast, core-shell nanofibers improve
the loading of hydrophilic drugs and proteins and could
reveal a sustained release without any burst effects. The
coaxial electrospinning approach allows the formation of
core-shell fibers, which can use some non-electrospinnable
materials to form a fibrous structure with two separate
polymer solutions (core and shell solutions). Electrospun
nanofibers are affected by several parameters, such as the
solution, process, and environmental conditions. In coaxial
Electrospinning, the interactions between the core and shell
polymer solutions and their flow rates can significantly
affect the release mechanism. Therefore, more sustained
drug release can be achieved. Presently, most studies of
coaxial nanofibers regarding drug delivery have shown new
methods of coaxial nanofibers with blend and monolithic
cores. These achieve more sustained drug release. To
fulfill the growing demand for drug delivery systems, novel
methods for coaxial nanofibers in loading drugs and other
bioactivities must be further explored.
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