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Abstract This work evaluates the efficiency of SiO,-
coated Fe;O, magnetic nanoparticles (SMNPs) for
adsorption of methyl orange (MO). Adsorption of MO on
the studied nanoparticle was developed for removal, pre-
concentration and spectrophotometric determination of
trace amounts of it. To find the optimum adsorption con-
ditions, the influence of pH, dosage of the adsorbent and
contact time was explored by central composite design. In
pH 2.66, with 10.0 mg of the SMNPs and time of 30.0 min,
the maximum adsorption of MO was obtained. The
experimental adsorption data were analyzed by the Lang-
muir and Freundlich adsorption isotherms. Both models
were fitted to the equilibrium data and the maximum
monolayer capacity gmax 0f 53.19 mg g~' was obtained for
MO. Moreover, the sorption kinetics was fitted well to the
pseudo-second-order rate equation model. The results
showed that desorption efficiencies higher than 99 % can
be achieved in a short contact time and in one step elution
by 20mL of 0.1 mol L~' NaOH. The SMNPs were
washed with deionized water and reused for two successive
removal processes with removal efficiencies more than
90 %. The calibration curve was linear in the range of
10.0-120.0 ng mL~" for MO. A preconcentration factor of
about 45 % was achieved by the method.
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Introduction

In most cases, dyes are responsible for color in wastewaters
generated from textile and dye manufacturing industries
[1]. It should be noted that the contamination of drinking
water by dyes at even low concentrations can color it and
make it unsuitable for human consumption [1]. Therefore,
it is important in environmental science to determine and
remove dye from polluted waters.

Methyl orange (MO) is an anionic dye and belongs to
the azo dye group. The azo group of dyes contains nitro-
gen. MO has been widely used in industries such as textile,
printing, paper, pharmaceutical and food [2]. Since the azo
dyes are very stable, it is very difficult to remove them
from wastewater by chemical and biological degradation
methods. Moreover, although most of dyes are not highly
toxic, they should be detected and determined in different
water samples.

Adsorption has been found to be superior to the other
techniques for removal of colors, odors, oils and organic
pollutants from process or waste effluent treatments in
terms of initial cost, simplicity of design and ease of
operation [3]. MO adsorption on zeolites [4-9], mag-
netic materials [10—12] and other adsorbent [13-19] has
been studied. However, the most commonly used
adsorbent for color removal is activated carbon [20]
because of its capability for efficient adsorption of a
broad range of compounds. The main disadvantage of
the activated carbon is its high production and treatment
costs [20]. Deficiencies like relatively low adsorption
capacities or need for relatively long adsorption contact
times can also be mentioned for some of the other
adsorbents. Therefore, it is desired to develop effective
adsorbents for the removal of toxic species from aque-
ous solutions.
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Magnetic nanoparticles (MNPs) are known as efficient
adsorbents with large specific surface area and small dif-
fusion resistance [21, 22]. The magnetic separation pro-
vides a suitable route for online separation [23]. MNPs can
quickly be removed along with adsorbed compound from a
matrix using a magnetic field [24].

Numerous chemical methods can be used to synthesis
MNPs such as microemulsions [25], sol-gel [26], sono-
chemical reactions [27], hydrolysis and thermolysis of
precursors [28], flow injection [29] and electrospray [30].
Silica has been considered as one of the most ideal shell
materials for MNPs due to its chemical stability and ver-
satility in surface modification via Si—-OH groups [24].

In this study, SiO,-coated Fe;0, magnetic nanoparticles
(SMNPs) were synthesized and employed for preconcen-
tration of MO in water samples followed by its determi-
nation by spectrophotometric method. It is the first time
that magnetic nanoparticles coated with SiO, have been
used to adsorb MO. Moreover, experimental design was
used to obtain optimum conditions of adsorption. Analyt-
ical studies have also been performed. The method can be
viewed as a potential method for removal of MO in con-
taminated waters. The kinetics of the adsorption of MO
onto the SMNPs was investigated.

Experimental
Reagents and materials

All chemicals and reagents used in this work were of
analytical grade. Iron nitrate Fe(NO3)3-9H,0 (99 %), tetra
ethoxy silane (TEOS) (98 %) and oxalic acid H,C,0,4.
2H,0 were purchased from Merck (Darmstadt, Germany).
MO was prepared from Merck (Darmstadt, Germany).
Structural formula of MO has been shown in Scheme 1.
Double distilled water was used throughout the study. The
200.0 mg L' stock solution of MO was prepared in
double distilled water and experimental solutions of the
desired concentrations were obtained by successive dilu-
tions of the stock solution with double distilled water. The
initial pH was adjusted with 0.1 mol L™" solutions of HCI
or NaOH. All the adsorption experiments were carried out
at room temperature.
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Scheme 1 Structural formula of methyl orange
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Instrumentation

Recording spectra was performed by an Agilent model
8453 spectrophotometer with diode array detector. A Jen-
way 3345 ion-meter was used for pH measurements.

A Philips X’ Pert (40 kV, 30 mA) X-ray diffractometer,
using a Cu Ka radiation source (4 = 1.542 A) and a nickel
filter in the 20 range of 4°-~70° was used to record X-ray
diffractometer (XRD) pattern of the calcined sample.

The specific surface area (using BET and BJH methods),
the total pore volume and the mean pore diameter were
measured using a N, adsorption—desorption isotherm at
liquid nitrogen temperature (—196 °C) using a NOVA
2200 instrument (Quantachrome, USA). Prior to the
adsorption—desorption measurements, all the samples were
degassed at 110 °C in a N, flow for 3 h to remove the
moisture and other adsorbates.

The morphologies of the prepared nanoparticles and
their precursors were observed by means of an EM-3200
scanning electron microscope (KYKY CO., China).

For recording FTIR spectrum, an Alpha FTIR spec-
trometer (Bruker, Germany) was employed.

Dye adsorption experiments

Batch-mode adsorption studies were carried out by adding
10.0 mg adsorbent and 10.0 mL dye solution of known
concentration (1.0 mg L") to a beaker. Then, pH of the
solutions was adjusted to the desired value. The mixture
solutions were shacked for appropriate adsorption time at
25 °C. After dye adsorption, SMNPs were quickly sepa-
rated from the sample solution using a magnet. The fol-
lowing equation was used to calculate the dye adsorption
efficiency in the treatment experiments:

R% = (Ci — Cr)/Ci x 100 (1)

where Ci and Cr are the initial and residual concentrations
of the dye in the solution, respectively.

Synthesis of SiO,-coated Fe;O, magnetic nanoparticles

The SMNPs were prepared using sol-gel method [31-33].
For preparation, 5.252 g of Fe(NO3);-9H,0, 2.395 g of
H,C,04-2H,0 and 4.5 mL of TEOS were separately dis-
solved in ethanol. These solutions were heated up to 50 °C
and stirred for 20 min. TEOS was added to the iron nitrate
followed by addition of oxalic acid under strong stirring at
60 °C for 2 h. The precipitate composed of iron oxalate
and TEOS is progressively hydrolyzed by hydration water
of iron nitrate and mainly oxalic acid, according to the
following scheme:

Si(0C,Hs),+4H,0 — Si(OH),+4C,H;OH. (2)
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Fig. 1 XRD pattern of the
magnetic SiO,-coated Fe;04
nanoparticles
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In acidic conditions (pH =~ 1), Si(OH), is condensed
with other materials to a homogeneous gel. The monolithic
gel was dried at 110 °C in vacuum for 16 h. Finally, the
dried powder was calcined at 450 °C for 6 h to produce
solid magnetic nanoparticle.

Results and discussion

Characterization of the SiO,-coated Fe;04 magnetic
nanoparticles

We began characterization studies of the synthesized MNPs
with XRD technique. XRD pattern of the synthesized MNPs
have been shown in Fig. 1. The background of XRD pattern
was subtracted from 20 = of 4°-70° with smoothing of
50 %.Smoothing of 50 % means that the intensities of the all
peaks have been decreased by 50 % in comparison with the
original peaks. The peak positions and width were deter-
mined with Match 1.11b software. We assigned XRD pattern
according to the data of JCPDS for detection of the actual
phases and we added the label for all phases in the XRD
pattern. The phases identified based on the XRD studies for
this sample were cubic Fe,Si0,4. Widths of all major peaks in
XRD pattern were determined and the average was used for
calculation of the size of the crystallite of the synthesized
sample by Debye—Scherrer equation [34]:

D.=KJ./Bcosb (3)

where f is the breadth of the observed diffraction line at its
half intensity maximum, K is the so-called shape factor
which usually takes a value of about 0.9 and A is the
wavelength of the X-ray source used in the XRD. Using the
above equation, the mean crystallite size (D.) of the syn-
thesized MNPs was calculated to be 48 nm.

The FTIR spectrum of the synthesized MNPs was
recorded and shown in Fig. 2. The spectrum shows the core

B FeO;Si(orthorhombic)
20

#45i0; (trigonal)

shell of the particles with Si—O on the surface. The Broad
peak at 3,447 cm ™! could be correlated to the vibration of
structural OH [35]. The bands at 1,083, 800 and 452 cm™!
are attributed to the asymmetric Si—~O-Si stretching vibra-
tion, the symmetric Si—~O-Si stretching vibration and the
O-Si-O shearing vibration, respectively [36, 37]. The
bands around 1,000 cm™' were assigned to the asymmetric
Fe—O-Si stretching vibration [36, 38, 39]. These results
suggested that the Fe-SiO, interaction exists in the catalyst
in the form of Fe-O-Si structure. The band at 551 cm™'
can be assigned to the Fe—O stretching in Fe—O-Si bonds
[35].

To reveal the fine details of the structure of the syn-
thesized MNPs, SEM study of both precursor and calcined
SMNPs was performed. The SEM images recorded are
shown in Fig. 3. The image obtained from the precursor
depicts several larger agglomerations of particles (Fig. 3a)
and shows that this material has a less dense and homo-
geneous morphology. After calcination at 450 °C for 6 h
and heating rate of 3 °C min~', the morphological features
became different from the precursor sample and the
agglomerate size reduced greatly (Fig. 3b). It may be
attributed to the covering of calcined magnetic nanoparticle
surface by small crystallite of SiO,, in agreement with
XRD results.

Central composite design for optimization of the factors

In experimental design, the level of all factors is changed
from one experiment to the next, simultaneously. The
reason for this is that factors can interact with each other
and the ideal value for one of them can depend on the
values of the others. In this work, we used central com-
posite design (CCD). CCD as an experimental design
method is commonly used for process analysis and mod-
eling [40, 41]. It is assumed that the central point for each
factor is 0, and the design is symmetric around this [42].
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Fig. 2 The FTIR spectrum of
the synthesized magnetic 9
nanoparticles
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Fig. 3 The SEM image of
SMNPs a precursor and
b calcined sample

CCD including the factors, their levels and the result of
each experiment is shown in Table 1. Before performing
experimental design, preliminary tests showed that in
longer times, the adsorption of the dye is higher. Therefore,
20 min was used as the lower limit of the time for
designing experiments. Concentration of dye in these
experiments was 1.0 mg L™,

The experiments in Table 1 were performed and their
experimental responses were obtained. Here, the percent of
the adsorption of MO on the adsorbent was used as
experimental response. Analysis of variance for the results
has been collected in Table 2. It can be inferred from the
results of ANOVA in Table 2 that pH is significant factor
in the adsorption of MO at 95 % confidence level (its
p value is smaller than o = 0.05 for 95 % confidence level
and ¢_statistics = 4.38). Parameter “p” is the probability
(from 1) factor that affects the response by chance.
Therefore, the lower is p, the more significant is the factor.
This is compared with a critical value such as 0.05 (for

* @ Springer

95 % confidence level). The statistical parameter “f_sta-
tistics” for a factor is calculated by dividing its estimated
coefficient to its standard error. Therefore, a larger value of
t_statistics shows the significance of the corresponding
factor. Among the parameters studied, mgMNP has the
least influence in the adsorption of MO on the MNPs
(p > 0.05). Time (¢) is not also an important factor. This
was experimentally observed. Among the squared and
interaction terms, pH x pH is statistically important based
on the p values. The F' value of the regression is relatively
high (F =5.11, p =0.001). This indicates that the
regression is significant.

Three-dimensional graphs will give us a clear insight
about the effect of each factor. For this purpose, the
response was plotted based on the polynomial function
with the coefficients in Table 2 versus the factors based on
the ranges in Table 1. The resulted three-dimensional
response surfaces have been shown in Fig. 4. These figures
show the relationship between two factors and response
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Table 1 Central composite Factor Level
design and the results of
experiments 1 0 -1
¢ (min) 120 70 20
mgMNP 10 5.5 1
pH 5 3 1
Run order t (min) mgMNP pH % Removal
Central composite design
1 120 10 1 36.77
2 70 55 3 44.47
3 120 10 5 3.23
4 70 10 3 90.00
5 70 5.5 5 2.25
6 20 10 5 2.95
7 20 5.5 3 4322
8 70 5.5 3 4495
9 120 1 5 1.05
10 70 55 3 43.94
11 70 1 3 9.25
12 120 5.5 3 45.25
13 20 1 5 0.85
14 70 5.5 1 11.80
15 70 55 3 44.93
16 120 1 1 0.68
17 70 55 3 42.55
18 20 1 1 0.63
19 70 5.5 3 43.90
20 20 10 1 2.98

Table 2 Analysis of variance of the experiments in Table 1

Term Coefficient t_statistics )4
Constant —66.592 -2.79 0.019
t 0.220 0.41 0.693
mgMNP 1.145 0.21 0.838
pH 62.593 4.38 0.001
txt —0.0009 —-0.25 0.804
mgMNP x mgMNP 0.155 0.35 0.730
pH x pH —9.865 —4.46 0.001
t x mgMNP 0.018 0.82 0.433
t x pH —0.042 —0.80 0.439
mgMNP x pH —0.474 —0.82 0.429
Regression

R* (%) 82.14

F 5.11

p 0.009

Lack of fit 17.82 %

(adsorption %) at center level of the third factor. From the
Fig. 4, it is clear that at intermediate pHs and times and
with larger amounts of MNPs, the adsorption is higher.
Moreover, curvatures in the plots in Fig. 4a, ¢ show the
probable importance of the second-order effect of pH.
ANOVA table (Table 2) confirms this since the p value for
the term pH x pH is 0.001.

In the next step, response surface optimization was
used to explore the optimum values of the factors.
Response optimization showed that the adsorption % will
be maximum at t = 120 min, mgMNP = 10.0 mg and pH
2.66.

Mechanism of the interaction
Results of experimental design showed that in acidic
medium (pH 2.66) adsorption is higher. Si-OH groups

formed by interaction of SiO, with water are capable of
proton transfer. This results in the variation in the surface

N
ﬂ/ @ Springer



96

Int Nano Lett (2014) 4:91-101

~
&
~

%Removal

120 1

~_~
=2
~
~
o

[}
(=}

50

Y%Adsorption

~_
()
~

%Removal

w @ Springer

<«Fig. 4 Variation of response surfaces for MO with pH and 7 (a), f and

amount of magnetic nanoparticle (mgMNP) (b) and pH and amount
of mgMNP (c)

charge of the MNPs with pH. At lower pHs, surface sites
are protonated and the surface becomes positively charged.
However, at higher pHs, the surface of the MNPs is neg-
atively charged due to the partial ionization of Si—~OH.

At low pH

—SiOH + H" — SiOH; . (4)
At high pH
SiOH + OH™ — SiO™ + H,0. (5)

MO is an ionic dye with —SO3;Na group. At low pH, the
negative charge of the sulfonic group predominates and it
is responsible for the electrostatic interaction with the
adsorbent. At more acidic pHs, SO;~ groups can be pro-
tonated and the surface becomes positively charged.
Therefore, it is expected that the adsorption of MO on the
MNPs decreases. At higher pHs, both MO and the surface
of the MNPs are predominately negatively charged. This
will result in the decrease in adsorption in higher pHs.
These explanations are clearly confirmed by Fig. 4c.

Study of the kinetics of adsorption

Study of the kinetics of dye adsorption onto SMNPs is
required for selection of the optimum operating conditions
for the full-scale batch processes. The kinetic parameters
which are helpful for the prediction of the adsorption rate
give important information for designing and modeling of
the adsorption processes [43].

Kinetic studies were performed in a 15 mL glass beaker
where 10.0 mg of SMNPs was added to 10.0 mL of the dye
solution with concentrations between 10.0 and
30.0 mg L™" at room temperature and in pH 2.66. Then,
using the shaker the mixture was shaken at 250 rpm to
ensure equilibration between solution and adsorbent. At
time t = 0 and equilibrium, dye concentration was mea-
sured by UV-Vis spectrophotometry at 505 nm. The
amount of adsorption at equilibrium, gr (mg g~ '), was
calculated by:

g = (Ci—CyV/W (6)
where Ci and Ct (in mg L") are concentrations of dye in
solution at t = 0 and equilibrium after time ¢ of incubation,

respectively. V is the volume of the solution (in L) and W is
the mass of SMNPs (in g).

Pseudo-second-order model

The rate of removal of MO was very fast during the initial
stages of the adsorption process. The kinetic data for
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Fig. 5 Pseudo-second-order kinetic plot for the adsorption of MO

adsorption of the dye onto SMNPs were firstly analyzed
using pseudo-second-order model. The results showed that
the kinetics of adsorption obeys pseudo-second-order
model. The kinetics of the adsorption of dye with different
initial concentrations was treated by Ho’s pseudo-second-
order rate equation [44]:

1 1
S S 7
qa kg - (qe) @)

where ¢; and ¢, are the amount of adsorbed dye at time
t and at equilibrium, respectively. k, is the pseudo-second-
order rate constant. Plots of the kinetics data based on the
pseudo-second-order kinetic model are shown in Fig. 5.
The constants of the pseudo-second-order rate equation for
different initial concentrations are shown in Table 3.

Equilibrium isotherm models

Equilibrium isotherm models were used to describe the
experimental adsorption data. The parameters obtained
from different models provide important information about
the adsorption mechanism, the surface properties and
affinity of the adsorbent [45]. The common models for
investigation of the adsorption isotherm (Langmuir and
Freundlich) were also fitted to the experimental data [23].

Langmuir’s model does not take into account the vari-
ation in the adsorption energy, but it is the simplest
description of the adsorption process. It is based on the

physical hypotheses that the maximum adsorption capacity
consists of a monolayer adsorption, there are no interac-
tions between adsorbed molecules and adsorption energy is
distributed homogeneously over the entire coverage sur-
face [43]. The equilibrium adsorption isotherm was deter-
mined using batch studies with different initial
concentrations of MO (10-100 mg L") at 25 °C and in
pH 2.66.

The linearized form of the Langmuir isotherm is
expressed as [46]:

Ce 1 +< 1
qe KLQmax Gmax

where gnmax (in mg g_l) is the maximum amount of the
adsorbed dye which corresponds to the complete mono-
layer coverage and illustrates the maximum value of g, that
can be attained as Ce increases. K (in L mg_l) is the
Langmuir adsorption equilibrium constant which is related
to the energy of adsorption. Values of g.x and b (Ki/gmax)
are determined by the linear regression plot of (Ce/q.)
versus Ce. Adsorption data plotted based on the Langmuir
isotherm are shown in Fig. 6.

The Freundlich isotherm model is an empirical equation
that describes the surface heterogeneity of the adsorbent. It
considers multilayer adsorption with a heterogeneous
energetic distribution of active sites accompanied by
interactions between adsorbed molecules [47]. The linear
form of the Freundlich isotherm is:

)Ce (8)

Ln(g,) = LnK; + %Ln(Ce) 9)

Table 3 Values of the pseudo-

| Initial concentration  Equation Ge exp Ge.calc k(g mg~' min~") R?
second—orde.r raFe equatl.or}. (mg L™ mgg") (mgg™h)
parameters in different initial
concentration of dye 10 tlg, = 0.1222¢ + 02091  7.96 8.18 0.07 0.9999
20 tlq, = 0.0703r + 0.1213  13.88 14.22 0.04 0.9999
30 t/q, = 0.0570t 4+ 0.0799 17.09 17.54 0.04 0.9999

o
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4.06 1 Table 4 Parameters of the fitting of experimental data to the
Langmuir and Freundlich isotherms equations
®
3.56 - ar, . Ky . Gmax! :lKL/aLl Ry r
Lmg™) (Lg) (mg g77)
& 3.06 4 Langmuir isotherm
s ° 0.00082 0.04356 53.19 0.924 0.9219
2.56 - K¢ n r
Freundlich isotherm
2.06 @ i . . . : . ' 5.087 1.997 0.9896
0.76 1.26 1.76 2.26 2.76 3.26 3.76 4.26
Ln(Ce)

Fig. 7 Adsorption data in the Freundlich isotherm for MO

where C, is the equilibrium concentration (in mg LY, q.
is the amount of the adsorbed dye in equilibrium (mg g~ ")
and finally, K; [in (mg gfl) (mg L™ Y" and 1/n are Fre-
undlich constants which depend on the temperature and the
given adsorbent—adsorbate couple. Parameter # is related to
the adsorption energy distribution and K; indicates the
adsorption capacity. The values of K; and 1/n can be cal-
culated by the plotting Ln (g,) versus Ln (C,). The inter-
cept of the resulted line is Ln (K;) and its slope is
1/n. Value of 1/n indicates that the adsorption intensity of
dye onto the adsorbent (or surface heterogeneity) becomes
more heterogeneous as its value gets closer to zero. A value
for 1/n below 1 indicates a normal Freundlich isotherm
while 1/n above 1 is indicative of the cooperative adsorp-
tion [24]. Adsorption data plotted based on the Freundlich
isotherm are shown in Fig. 7.

It is generally accepted that under constant temperature,
n increases with decreasing adsorption energy. This implies
that the larger the n value, the stronger the adsorption
intensity [48]. Values of n > 1 represent favorable
adsorption conditions.

The essential feature of the Langmuir isotherm can be
expressed in terms of a dimensionless constant separation
factor (Ry) given by the following equation [43]:

1

R———
LT a6

(10)
where a; parameter is a coefficient related to the energy of
the adsorption which increases by increasing the strength
of the adsorption bond. The adsorption process can be
defined as irreversible (R; = 0), favorable (0 < Ry < 1),
linear (R;, = 1) or unfavorable (R; > 1) in terms of Ry,
[20].

The calculated parameters of Langmuir and Freundlich
isotherms and the corresponding correlation coefficients
(R) are listed in Table 4. These results show that

o
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experimental data follow the Freundlich model. Since the
Freundlich adsorption model is based on the assumptions
that all surface sites are different, the adsorption of MO
occurs through different adsorption sites. However, the
data fit the Langmuir isotherm, satisfactorily.

The calculated value of R; for adsorption of
100.0 mg L~ solution of MO is 0.924. Thus, the adsorp-
tion of dye onto SMNPs is favorable. The calculated
n parameter is about 2 (Table 4) which implies that
adsorption is favorable. In most cases, the exponent
between 1 < n < 10 shows beneficial adsorption [43].

In a work published by Deligeer et al. [12], y-Fe,O5/
SiO, nanocomposite was synthesized and used to adsorb
MO. Adsorption of MO onto this nanocomposite obeyed
Freundlich isotherm, too [12]. Calculated g,, based on the
Langmuir isotherm in that work was reported as
476 mg g~ ' which is higher than g,, obtained here. How-
ever, the range of the concentrations examined for
adsorption is much lower in this work. Other adsorbents
with active sites which are mostly SiO, can be found. For
example, g, values equivalent to 333.33 [17], 24 [5], 33.8
[8] and 66.09 mg gfl [10] have been reported. Therefore,
it is seen that the ¢, value obtained here is comparable with
most of the reported ones.

Analytical studies
Desorption and regeneration

Reversibility of the adsorption of MO onto the SMNPs
allows the regeneration or activation of the SMNPs for new
adsorption experiments. Desorption of the dye from the
SMNPs was studied using different solvents. Desorption
process was separately examined by adding 2.0 mL vol-
ume of ethanol, pure acetic acid, and HCl and NaOH
solutions with concentrations of 0.1 mol L™'-0.01 g of the
adsorbent loaded with MO. SMNPs were collected mag-
netically from the solution. Concentration of dye in the
desorbed solution was measured by spectrophotometric
method. Figure 8 shows the percentage of the recovered
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Fig. 9 Adsorption efficiency of reused magnetic nanoparticles for
MO

dye. It can be concluded from Fig. 8§ that a 2.0 mL volume
of 0.1 mol L' NaOH solution is the most effective eluent
for desorption of MO from SMNPs. The results showed
that desorption efficiencies higher than 99 % can be
achieved in a short time of 3 min and in a single-step
elution using 2.0 mL of 0.1 mol L™' NaOH. Therefore, the
dye could be desorbed from the loaded SMNPs by
changing the pH of the solution to alkaline range. The
SMNPs were washed with deionized water and reused for
two successive adsorption processes with adsorption effi-
ciencies higher than 90 % (Fig. 9). In higher removal
cycles, removal efficiency decreases. This may be due to
oxidation, losing and/or dissolving some amounts of the
adsorbent during the successive steps.

Analytical parameters and applications

Detection and determination of synthetic dyes like MO in
water samples are important. Therefore, an analytical study
based on the adsorption of MO on SMNPs was performed.

Different concentrations of dye were contacted with
SMNPs in optimum adsorption conditions and then, dye

Table 5 Statistical results of the preconcentration and calibration of
methyl orange by the proposed method

Parameter Characteristic
Number of samples 12

Linear range (ng mL™") 10.0-120.0
Slope 0.0056
Standard error of slope® 2 x 107
Intercept 0.1040
Standard error of intercept® 0.0176
Correlation coefficient 0.9966
Detection limit (ng mL~")?* 3.7
Preconcentration factor 45

4 Calculated based on definitions in [49]

Table 6 Results of the analysis of the water samples by the proposed
method

Sample Amount Amount RSD  Recovery
added detected %* %
(ng mLfl) (ng mLfl)
River water 0.0 n.d. - -
20.0 20.05 38 100.25
60.0 58.65 1.8 97.75
100.0 100.18 2.2 100.17
Laboratory 0.0 14.34 1.9 -
waste 20.0 37.18 39 114.20
water 60.0 78.76 34 10395

n.d. not detected

# Relative standard deviations were calculated based on three
determinations

was desorpted with optimum eluent. For constructing cal-
ibration curve, the spectrophotometric signal of the solu-
tion obtained by desorption process was plotted against the
initial concentration of dye before performing adsorption
process. Statistical parameters of the calibration curve have
been collected in Table 5. The statistics of the method in
preconcentration and determination of MO are good. Since
the amount of methyl orange in 100.0 mL of the solution
was concentrated to 2.0 mL and with considering extrac-
tion recovery of about 90 % (based on the maximum per-
cent recovery in Table 1) in optimum conditions, a
preconcentration factor of 45 was achieved in this method.

The suitability of the proposed method for the analysis
of different water samples was checked by spiking samples
of river water and laboratory waste water with different
concentrations of MO. The results have been given in
Table 6. The results in Table 6 show the good accuracy
(percent recoveries close to 100) and precision (RSD %
values below 4) of the method.
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Conclusions

SMNPs were utilized for dye preconcentration, determi-
nation and removal from aqueous solution. UV-Vis
absorption spectroscopy was used to record the adsorption
behavior of the solution after treatment. The prepared
magnetic adsorbent can be well dispersed in the water and
can be easily separated magnetically from the medium after
adsorption. Therefore, here is a novel and convenient
procedure that has been developed as a safe, rapid and
inexpensive methodology for preconcentration and deter-
mination of MO as a toxic compound from waste water.
The pseudo-second-order rate kinetic model fitted well
with the dye adsorption data. The dye adsorption obeyed
Freundlich isotherm. The studied adsorption process was
validated as a sensitive and accurate analytical method for
determination of MO in environmental waters.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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