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Abstract

Introduction  Organic carbon (OC) fractions play impor-
tant roles in soil and many ecosystem processes. This study
focuses on changing of OC in density and soluble fractions
in a soil amended by nanozeolite and plant residues that
incubated in lab condition for 90 days.

Results The results showed that amounts of OC in light
fraction (LF) and heavy fraction (HF) increased with the
increasing percentage of nanozeolite and plant residues in
the soil. The highest amounts of LF (7.54 g LF. kg'l Soil)
and HF (11.10 g kg'ISOil) were found when 30 % nanoze-
olite and 5 % wheat and alfalfa straws were added to the
soil. Accordingly, wheat and alfalfa straws were effective
on increasing the LF and HF, respectively. However, they
decreased with declining the OC from the Ist day of
experiment until the 90th day of experiment. Soluble OC in
hot (2.22 g kg’ls(,il) and cool (1.54 g kg’ls(,ﬂ) water frac-
tions increased by addition of 30 % nanozeolite and 5 %
plant residues particularly alfalfa straw in comparison with
control. Although these soluble fractions increased after
initial 30 days of incubation, they decreased in the con-
tinuation of the experiment.

Conclusion 1In fact, OC contents in density and soluble
fractions increased by addition of 30 % nanozeolite and
5 % plant residues into the soil; however, they decreased in
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initial 30 days of incubation with declining the OC. The
findings of this research revealed the application of
nanozeolite and plant residues improved carbon pools in
density and soluble fractions and carbon sequestration
increased by increasing OC contents in soil.
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Introduction

It has been recognized in last decades that the amounts of
carbon stored in soils have important effects on a global
scale. Therefore, land management practices affecting soil
organic carbon (SOC) content may have a global impact, if
they are applied over large areas (Bronick and Lal 2005).
Therefore, the small fluctuations of SOC may potentially
alter the atmospheric carbon dioxide (CO,) concentration
and the global climate (Mahmoodabadi and Heydarpour
2014). The carbon storage and rate of CO, sequestration in
soils depend on climate, soil properties and management.
Soils as a sink for atmospheric CO, play a key role in the
global carbon budget as well as in the global carbon cycle
(Eshel et al. 2007). Soils are known as one of the largest
active carbon pools after the hydrosphere and the litho-
sphere. The role of soils as either a source or a sink for
greenhouse gases, in general, and that of CO,, in particular,
has been a focus of recent studies (Majumder et al. 2008;
Bhattacharyya et al. 2009).

Whereas the largest terrestrial pool of carbon is located
in the soils (Bhattacharyya et al. 2009), there are many
factors that influence on carbon retention and release in soil
and also carbon exchange between soil and atmosphere
(Majumder et al. 2008). Storage of organic carbon (OC) in
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agricultural systems is a balance between carbon additions
from non-harvested portions of crops (Wang et al. 2011),
organic sources (Thelen et al. 2010) and carbon losses,
primarily through organic matter decomposition and
release of respired CO, to the atmosphere (Bird et al.
2002). Last researches have shown that organic substances
improve soil aggregation and consequently soil structure
and also diminish soil compaction and surface crusting,
enlarge carbon sequestration and nutrient availability, and
increase infiltration and water-holding capacity (Balashov
et al. 2010; Aminiyan et al. 2015).

Density fractionation

Physical fractionation, in contrast to chemical fractiona-
tion, allows for isolation of fractions, can isolate as intact as
possible the SOC associated predominantly with soil min-
erals (primary organo-mineral complexes) and also the
SOC protected within aggregates (secondary organo-min-
eral complexes) due to their three-dimensional architecture
(Straathof et al. 2014). OC fractions exhibit different rates
of biochemical and microbial degradation (Stevenson
1994; Tan et al. 2007) as well as different accessibility and
interactions (Sollins et al. 1999). Very little is known of the
dynamics of soil organic matter (SOM) after agricultural
abandonment. SOC contains fractions with a rapid turnover
rate as well as fractions with a slower turnover rate (Ami-
niyan et al. 2015). The labile fractions of OC, such as
microbial biomass carbon (MBC) and dissolved organic
carbon (DOC), can respond rapidly to changes in C supply.
The dynamics of SOC are usually described by dividing
SOM into two or more fractions. Density fractionation, that
is a laboratory procedure, physically separates soil into
light (LF) and heavy fractions (HF) (Wander and Traina
1996; Sollins et al. 1999). The procedure is useful method
for studying labile pools of SOC that are more sensitive to
cropping practice than is the total SOC pool in temperate
soils (Janzen et al. 1992). Generally, sodium polytungstate
(SPT) (1.85 g mL™") and Nal (1.3 g cm ™) solutions are
often used for density fractionation (Golchin et al. 1994;
Magid et al. 1996; Six et al. 2002). Although LF is com-
monly referred to a plant-like and less stable fraction with
high OC concentration (Gregorich et al. 2003), HF is more
stable and high-density organo-mineral fractions having
lower C concentrations (Golchin et al. 1995a, b).

Light fraction of SOM not only is sensitive to changes in
management practices (Cambardella and Elliott 1992;
Bremer et al. 1994) but also correlates well with the rate of
nitrogen (N) mineralization (Hassink 1995; Barrios et al.
1996). The importance of LF (including free and occluded
organic C within aggregates) is widely recognized for its
role in formation and stability of soil structure, especially
in stabilization of soil macroaggregates (>250 mm) (Miller
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and Jastrow 1990; Kay 1998). Janzen et al. (1992) con-
cluded that LF in surface soil (0-7.5 cm) accounted for
2-17 % of SOC, depending principally on cropping sys-
tems. However, there are few studies about these two
fractions and their contributions to OC storage as related to
changes soil management systems.

Water-soluble organic carbon

Dissolved organic carbon (DOC) is defined as a mixture
of organic molecules produced by the decomposition of
SOM and plant material and by root exudation (Strobel
et al. 2001). Although it has been assumed that dissolved
organic matter (DOM) represents a labile part of SOM
and that total DOC concentration and especially its
easily degradable part resembles soil microbial activity,
it has been suggested that a great part of DOM in soil
represents a relatively stable by-product of microbial
activity (Zhao et al. 2008; Wang et al. 2013). The
movement of DOM is significant to the cycling and
distribution of nutrients and carbon within and between
ecosystems and contributes to soil forming processes
(Kalbitz et al. 2003). Plant residue and humus are the
most significant sources of soluble organic matter in soil.
Gregorich et al. (2000) hypothesized that, although the
water-soluble carbon pool was small, it had a high
turnover and was in equilibrium with soil humus. Liang
et al. (2012) suggested that the difference in water-sol-
uble and biodegradable C in agricultural soils was
greater than forest soils due to increases in soluble
humic materials in agricultural soils. Therefore, humus is
probably the main source of DOC because of the rela-
tively large amount of humus present in soil relative to
that contributed by the microbial biomass or recently
deposited plant residues. DOC inputs to soil solution
originate from biological decomposition, throughfall or
litter leaching, root exudates and from deposition of soot
and dust (Wang et al. 2013).

Laboratory studies (Smolander and Kitunen 2011;
Liang et al. 2012; Kiikkild et al. 2014) have shown that
microorganisms can decompose many amounts of water-
soluble organic matter fraction. These studies, which
ranged in duration from hours to months, indicated that
1040 % of the water-soluble OC was decomposable
under laboratory conditions. Liang et al. (2012) reported
that SOC had significantly positive correlations with
labile organic C fractions in the 0-20 cm depth.
Smolander and Kitunen (2011) observed positive corre-
lations between DOC concentration extracted from soil
and the rate of C and net N mineralization and amount
of C and N in microbial biomass, which were used to
assess soil microbial activity. High temperature is known
to hydrolyze organic structures, lyse cells and dissociate
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organic materials from inorganic colloids (Kiikkild et al.
2014). Kim et al. (2014) reported strong correlations
between organic C extracted with hot water and miner-
alizable carbon. This easily degradable DOM seemed to
decrease fairly consistently during the degradation of
organic matter as observed previously (Don and Kalbitz
2005; Sanderman et al. 2008).

During last years, great strides have been made in a
number of research topics including characterizing the
spatial and temporal variations in the concentration and
flux of DOC reviewed by Kalbitz et al. 2000 and Aitken-
head-Peterson et al. 2003, quantifying its role in soil
chemistry and pedogenesis (e.g., Kaiser and Zech 1998;
Jansen et al. 2003; Cances et al. 2003), describing the
chemical composition of DOC (Guggenberger and Zech
1994; Kaiser and Zech 1998; Strobel et al. 2001), and
quantifying the availability of DOC to soil microflora
(Zsolnay and Gorlitz 1994; Yano et al. 2000; Kalbitz et al.
2003; Marschner and Kalbitz 2003). There are few studies
about assaying of zeolitic materials effects on SOC. Zeo-
litic materials are extensively used to improve soil physical
environment, particularly, in sandy and clay poor soils
(Abdi et al. 2006). The assessment of nanozeolite effects
on SOC showed that the addition of higher percentage of
nanozeolite with alfalfa straw into the soil increased SOC
pools and improved soil aggregation stability (Aminiyan
et al. 2015). The main objectives of this study were to
determine water-soluble and density fractions of OC in
soils that treated by different percentage of nanozeolite and
some plant residues and incubation them in field capacity
for 90 days.

Materials and methods
Study area

This study was conducted on agricultural soil in Azan-
dariyan, Hamedan province, the west of Iran. This area was
located between longitudes 47°42" and 48°45’ E and lati-
tudes 33°28" and 34°29’ N. The climate of the region is
semiarid with a mean annual precipitation of 300 mm and a
mean annual temperature of 10 °C. The soil of the area is
mostly classified as Typic Haplocalcids (Aminiyan et al.
2015).

Table 1 Some of chemical and physical properties of applied soil

Sampling, treatment and analysis of soil

The methods used for soil sampling, treatment and analysis
were reported in Aminiyan et al. (2015). The treated and
moistened soils were incubated in laboratory condition
(20-25 °C) for 90 days. After 1, 5, 10, 20, 30, 45, 60, 75
and 90 days of incubation, a portion of each soil was taken
for the study of in density (light and heavy) and soluble
(hot water and cool water) OC fractions.

Density fractionation

About 10 g dried sample was transferred to a 20-ml graduated
centrifuge tube, and 50 ml of Nal solution (d = 1.3 g cm ™)
was added. Suspensions were immediately centrifuged at
3000 rpm for 10 min. The supernatant containing the LF was
decanted onto Whatman no. 50 filters (2.7-p.m. retention) and
vacuum-filtered. The HF residue was re-suspended twice in
fresh Nal solution, and the LFs were combined. LF and HF
were then washed four times into pre weighed tins with
deionized water, afterward dried at 55 °C for 24 hin the oven,
and weighed (Sollins etal. 1999). Then OC content in HF was
determined by Walkley and Black (1934) method.

Soluble water organic carbon fractions

The soluble water OC in the whole soil and the three
aggregate fractions were extracted using cold water followed
by hot water. Soluble organic matter in cold water was
extracted from soils by adding 150 ml of distilled/deionized
water to a tube containing 15 g of air-dried whole soil or
aggregate fraction. The soil water suspension was shaken for
30 min and centrifuged at 4500 rpm for 20 min. The
supernatant solutions were decanted and passed through a
0.45-um cellulose nitrate filter. The weight of extraction
tubes with remaining wet soil was recorded in order to cal-
culate the amount of cold water extract remaining. Hot
water-soluble organic matter was extracted from these soils
by adding water to the wet soil remaining in each tube to
return the water volume to 150 ml, then by placing the tubes
in a water bath at 80 °Cfor 16 h. After this period of time, the
samples were centrifuged, decanted and filtered as above.
Filtered solutions were stored in a refrigerator (4 °C) prior to
incubation (Gregorich et al. 2003). Then OC content in HF
was determined by Walkley and Black (1934) method.

EC (dS m™Y) pH CEC (Cmol™* kg™ soi)

Total organic C (g kg™")

CCE® (%) Sand (%) Clay (%) Silt (%)

1.1 72 4.80 3.41

1.79 69 12 19

* Carbonate calcium equivalent
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Table 2 Some properties of applied plant residues in this study

pH EC (dSm™") Total organic carbon (g kg~') Total nitrogen (g kg~') Total phosphorous (g kg=') C/N  C/P
Alfalfa straw 6 9.5 511 22 5.98 2330 85.20
Wheat straw  7.97 4.3 532 7 431 90.75 123.50

Table 3 Some properties of applied nanozeolite

EC@Sm™") pH Organic C (g kg~")  CEC (Cmol* kg™

0.98 7.17  1.03 400.39

Table 4 Nanozeolite e

compositions and their %wt Composition Jowt
SiO, 69.44
Al,O4 11.87
Fe,03 1.30
Ti,O 0.18
K,0 1.31
Na,O 0.68
CaO 3.28
MgO 0.99

Statistical data analysis

The experiment was a completely randomized factorial
design with three replicates. The factors applied were
alfalfa straw (0 and 5 %), wheat straw (0 and 5 %),
nanozeolite (0, 10 and 30 %) and incubation time (1, 5, 10,
20, 30, 45, 60, 75 and 90 days). All statistical analyses

were performed in the SAS ver.9.2 statistical framework;
to obtain the main differences between the treatments, the
Duncan’s (¢« = 0.01) test was applied.

Results and discussion

Table 1 shows some of chemical and physical properties of
applied soil. According to the sand, clay and silt contents,
the soil texture was loamy sand. Table 2 presents some
properties of applied plant residues. Alfalfa and wheat
straw had neutral pH, high OC values and C/N and C/P
ratios. Some of applied nanozeolite properties are given in
Table 3. Also nanozeolite compositions and their weight
percentage are shown in Table 4; according to this table,
SiO, and AlL,O5; (69.44 and 11.87 %), respectively, had
much higher portion than the other compositions.

The effect of nanozeolite and plant residues on OC
in density fractions

Table 5 shows the analysis of variance of the effects of
nanozeolite, plant residues application, incubation time and
their interaction on LF, HF, soluble OC in cool water and
hot water fractions in soil (p < 0.01). However, the

Table 5 Analysis of variance (mean square) of the effects of nanozeolite, plant residues application, incubation time and their interaction on LF

and HF, soluble OC in cool water and hot water fractions in soil

Source DF Organic carbon fractions

LF (g LF. kg"ISOil) OC in HF Soluble OC in cool water Soluble OC in hot water

(gkg'son) (kg soi) (g kg'soi)

Nanozeolite 643.18%* 1495.55%* 6.70%* 28.16%*
Plant residues 49.63%* 165.98%%* 0.14%* 1.48**
Time 134.34%* 354.49%%* 3.20%* 9.42%%*
Nanozeolite x time 16 42.76 ns 2.24 ns 1.53 ns 5.08 ns
Plant residues x time 24 34.96 ns 0.95 ns 0.74 ns 2.28 ns
Nanozeolite x plant residues 6 130.61%* 2.63%* 8.26%* 5.63%%*
Nanozeolite x plant residues x time 48 23.94 ns 0.59 ns 0.37 ns 1.28 ns
Error 216 8.02 0.6 0.3 0.1

** Mean square of the treatment is significant at the 0.01 level

ns Mean square of the treatment is not significant

)
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Table 6 Light fraction and HF content in all of treatment

Treatment LF (g LF. kg 'soi) OC in HF (g kg'son)
Control 1632 &+ 1.30% g 17.60 & 3.00 e
NOA5 17.08 &+ 1.27 fg 20.50 £ 3.01 d
NOWS5 18.04 & 1.28 ef 19.70 & 3.02 de
N10PRO 16.50 £ 2.15 ef 17.98 + 3.02 ¢
N10AS 19.20 £ 2.13 cd 25.70 & 3.01 ab
N10WS 19.52 + 2.14 de 24.60 + 3.02 be
N30PRO 16.63 & 2.10 be 18.10 = 3.00 be
N30A5 21.78 £2.12 ab 28.70 £ 3.02 a
N30WS5 2386 £2.11a 27.00 £ 3.01 b

NOAS (0 % nanozeolite + 5 % alfalfa straw), NOWS (0 % nanoze-
olite + 5 % wheat straw), N1OPRO (10 % nanozeolite + 0 % plant
residue), N10A5 (10 % nanozeolite + 5 % alfalfa straw), N10WS5
(10 % nanozeolite + 5 % wheat straw), N30PRO (30 % nanozeo-
lite + 0 % plant residue), N30A5 (30 % nanozeolite + 5 % alfalfa
straw), N30WS5 (30 % nanozeolite + 5 % wheat straw)

The same letters are not significantly different at p < 0.01 using
Duncan’s LSD test

* Mean =+ standard deviation

interactions between nanozeolite and incubation time, plant
residues and incubation time and nanozeolite, plant resi-
dues and incubation time did not have significant effects on
mentioned OC fractions in the soil.

Table 6 reveals the OC content in LF and HF increased
by the addition of nanozeolite and plant residues
(»p < 0.01). LF value in 30 % nanozeolite plus 5 % wheat
straw (N30W5) treatment was greater than the other
treatments; as its value 7.54 (g LF. kg'ISOil) was greater
than control, because C/N ratio in wheat straw was higher
than alfalfa straw, and thus subsequently wheat straw had

Fig. 1 Light fraction changes 25
with the passage of time
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lower stage of biodegradation by microorganisms in soil.
This fraction of OC decreased from the 1°* day (20.61 g
LF. kg™'soi) to the 90th day (16.99 g LF. kg™'s.;;) during
soil incubation (Fig. 1). The HF value in N30AS5 treatment
was significantly increased (11.1 g kg‘lsoﬂ) in comparison
with the control treatment (Table 6). Also this table inves-
tigates that N30AS treatment increased HF (3 g kg'ls(,i])
and (82 ¢g kg’lsml) in comparison with the N10AS5 and
NOAS treatments, respectively.

It is known that the alfalfa straw was more efficiency
due to increasing OC in HF than wheat straw in all of the
treatments with the similarity percentage of nanozeolite
(Table 6). SOC in the LF plays an important role in
retaining of cellulase molecule from washing out and
nutrition of soil microorganisms and subsequently humus
production. Thus SOM quality is an important factor in its
disintegration rate (Schmidt et al. 2002; Beheshti et al.
2012). According to Fig. 2, OC in HF had a distinct
downward trend from the 1st day (27 g kg’lsoﬂ) until the
90th day (184 g kg’lSOil). The recent research on OC decay
dynamics showed that LF and HF were decreased during
soil incubation (Hassink et al. 1995; Creamer et al. 2012;
Aminiyan et al. 2016). The results of Rovira and Vallejo’
studies (2003) were in line with those of the present study.

The effect of nanozeolite and plant residues
on water-soluble organic carbon fractions

As shown in Table 7, soluble OC contents in hot water and
cool water increased by the addition of nanozeolite and
plant residues especially alfalfa straw. The results showed
that soluble OC in hot water in N30AS treatment was
greater 2.22, 1.36 and 2.06 (g kg'ISOil) than control, N10AS
and NOAS treatments, respectively (Table 7). Working on

10 20 30 45 60 75 90
Time (day)
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Fig. 2 Organic carbon changes 30
in HF with the passage of time
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Time (day)

Table 7 Soluble OC in hot and
cool water content in all of
treatments

Treatment

Soluble OC in cool water

Soluble OC in hot water

(g kg'son)

(g kg'soin)

Control
NOAS5
NOW5
N10PRO
N10A5
N10W5
N30PRO
N30A5
N30W5

1.93 £ 0.358* ¢
2.01 £0.360 ¢
1.94 £ 0357 ¢
1.98 £0.255b
2.33 £ 0.251 ab
2.29 £ 0.248 ab
2.00 £ 0.255 ab
347 £0.251 a
2.51 £ 0.247 ab

234 £0552e

2.50 £ 0.546 de
2.42 £ 0.561 de
2.52 £ 0.454 cd
3.20 £ 0.461 ab
3.10 £ 0.477 be
2.63 £ 0.480 ab
4.56 £ 0.491 ab
344 £ 0473 a

NOAS5 (0 % nanozeolite + 5 % alfalfa straw), NOWS5 (0 % nanozeolite + 5 % wheat straw), N10PRO
(10 % nanozeolite + 0 % plant residue), N10OAS (10 % nanozeolite + 5 % alfalfa straw), NIOWS5 (10 %
nanozeolite + 5 % wheat straw), N30PRO (30 % nanozeolite + 0 % plant residue), N30AS5 (30 %
nanozeolite 4+ 5 % alfalfa straw), N30WS5 (30 % nanozeolite + 5 % wheat straw)

The same letters are not significantly different at p < 0.01 using Duncan’s LSD test

* Mean =+ standard deviation

the chemical composition of DOC suggested that most
DOC is an end product of microbial metabolism
(Guggenberger and Zech 1994); However, short-term
experimental manipulations of organic matter sources
showed that fresh litter also contributes significantly to the
production of DOC (Park et al. 2002). These two views are
not necessarily mutually exclusive, but they do point out
the considerable difficulty in determining the influence of
substrate (litter, SOM), microbial community composition
(Muller et al. 1999) and abiotic factors such as temperature
and water flux on DOC production and flux (Brooks et al.
1999). Aminiyan et al. (2015) reported that the addition of

’r @ Springer

30 % nanozeolite with 5 % alfalfa straw to the soil
redounded increasing OC in different aggregate particle
size classes.

Based on Table 7, the same results were achieved sim-
ilar to the results of hot water to cool water; accordingly,
soluble OC in cool water increased with the greater per-
centage of nanozeolite and plant residues particularly
alfalfa straw. Soluble OC in cool water value increased
1.54 and 0.58 (g kg'lSOil) into the control in N30A5 and
N30WS5 treatments, respectively. Thus N30AS treatment
more effective to increasing soluble OC in cool water than
N30WS5 treatment. Soluble OC content in hot water was
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greater than soluble OC content in cool water (Table 7),
because hot water had greater ability to extract of lysis
microbial cells and extractable soluble organic matter may
be adsorbed to clay or complexed with other organic
material produced by plants or decomposing organic matter
than cool water (Guggenberger and Zech 1994; Muller
et al. 1999). According to the Gregorich et al. (2003)
findings, high temperature is known to hydrolyze organic
structures, lyse cells and dissociate organic materials from
inorganic colloids. The plant residues with lower C/N ratio
are a readily decomposable substrate for microorganisms,
and they have additional soluble OC content than plant
residues with higher C/N ratio (Gregorich et al. 2003). Also
these researchers found that the quantity of biodegradable
soluble organic matter was related to the extraction pro-
cedure and the quantity of organic matter present in the
soil.

Figure 3 indicates that soluble OC in both hot water and
cool water increased with over time from 1Ist day until the
30th day of incubation period, but then decreased by the
end of the experiment. Accordingly, the soluble OC in cool
water increased from 2.17 (g kg'lsml) in the 1st day to 2.68
(g kg’lSOil) in the 30th day and then it decreased by the end
of experiment 1.92 (g kg'l soil)- As shown in Fig. 3, Soluble
OC in hot water value increased from 2.83 (g kg'lSOil) in
the 1st day to 3.69 (g kg’ls(,ﬂ) in the 30th day, and finally it
decreased by the 90th day 2.39 (g kg'lsml). Since soluble
OC was increased with the development and promoting
plant residues biodegradation in the initial 30 days and
when the growth and development of microbial commu-
nities were increased with the passage of time and subse-
quently soluble OC decreased with the passage of time.
Kalbitz et al. (2003) observed that soluble OC increased

10 20 30 45 60 75 90
Time (day)

with the passage of time, but in another study soluble OC
decreased by over the time (Gregorich et al. 2003). Alfalfa
straw had greater soluble OC than wheat straw, and thus its
degradation rate and OC content decreasing was done by
higher rate in this fraction (Swanston et al. 2002; Preston
and Schmidt 2006; Aminiyan et al. 2016). It is known in
recent reviews that the organic matter quality is particularly
important for SOC stabilization (Amelung et al. 2008;
Schmidt et al. 2011).

Conclusion

Organic carbon fractions in soils play important roles in
many ecosystem processes. OC fractions exhibit different
rates of biochemical and microbial degradation. Density
fractionation is a laboratory procedure that separates SOC
into LF and HF. Also DOC is affected by the extraction
procedure used. Extraction procedures involving higher
temperatures extract a greater amount of soluble organic
matter than extractions carried out at room temperature.
The results of this study showed that LF and HF and water-
soluble OC was increased by the addition of greater per-
centage of nanozeolite and plant residues into the soil. The
results of this study showed that LF was greater in N30W5
treatment than in the other treatments. But OC in HF and
soluble OC in hot and cool water had maximum amounts in
(N30AS) than in the other treatments. LF and HF decreased
with the passage of time from the 1st day until the 90th
day. Soluble OC in hot and cool water increased from 1st
day until the 30th day, and then they decreased by the end
of the experiment. In fact, OC content increased by
application and addition of nanozeolite and plant residues
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into the soil, but these pools decreased with the passage of
time. Finally, it can be said that the application of
nanozeolite and plant residues improve carbon sequestra-
tion process and increase carbon pools in soil.
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