10.57647/j.ijnd.2025.1602.16

Development and optimization of polymeric nanosponges for enhanced delivery of diflunisal in rheumatoid arthritis

  1. Department of Pharmaceutical Quality Assurance, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
  2. Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
  3. Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
  4. Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Development and optimization of polymeric nanosponges for enhanced delivery of diflunisal in rheumatoid arthritis

Received: 2024-07-18

Revised: 2024-11-02

Accepted: 2024-11-09

Published 2025-04-01

How to Cite

Aher, K. B., Bhosale, S., Bhavar, G. B., Habeeb, M., & You, H. W. (2025). Development and optimization of polymeric nanosponges for enhanced delivery of diflunisal in rheumatoid arthritis. International Journal of Nano Dimension, 16(2 (April 2025). https://doi.org/10.57647/j.ijnd.2025.1602.16

PDF views: 227

Abstract

Rheumatoid arthritis damages the synovial membrane, and diflunisal, a nonsteroidal anti-inflammatory drug (NSAID) with poor solubility, faces delivery challenges. Nanosponges enhance diflunisals solubility improving its bioavailability; in addition it improved its stability and controls its release. Current research focuses on developing polymeric nanosponges (DIF-NS) through emulsion solvent evaporation, optimized by central composite design. The optimized DIF-NS were further loaded into a carbopol 940 gel (DIF-NS-gel) and evaluated. The optimized BNS showed spherical morphology, % CDR (Percentage cumulative drug release) of 84.9 ± 1.6 within 12 hours and % entrapment efficiency of 82.45 % ± 1.2, a % practical yield of 75 % ± 2.2 with a particle size of 120.1 ± 8.5   nm, zeta potential -29 ± 3.2 mv, and a PDI of 0.348± 0.015. The drug excipient compatibility study was carried out by using FTIR. The sharp peak obtained in the DSC and XRD proves the drug's crystalline nature. The DIF-NS-gel exhibited sustained release and enhanced ex-vivo permeation compared to plain diflunisal gel. In a CFA-induced rheumatoid arthritis rabbit model, it significantly reduced inflammation for a prolonged duration. These findings highlight its potential for effective long-term rheumatoid arthritis management.

Keywords

  • Diflunisal,
  • Drug delivery,
  • Nanosponges,
  • Rheumatoid arthritis,
  • Statistical optimization

References

  1. R. Khurana, S.M. Berney, Clinical aspects of rheumatoid arthritis, Pathophysiology 12 (2005) 153–165. https://doi.org/10.1016/J.PATHOPHYS.2005.07.009.
  2. R. Handa, U.R.K. Rao, J.F.M. Lewis, G. Rambhad, S. Shiff, C.J. Ghia, Literature review of rheumatoid arthritis in India, (2015). https://doi.org/10.1111/1756-185X.12621.
  3. F. Wang, J. Liu, Y. Fang, J. Wen, M. He, Q. Han, X. Li, Hypercoagulability in Rheumatoid Arthritis: A Bibliometric Analysis and Retrospective Data Mining Study, ACS Omega 8 (2023) 48522–48534. https://doi.org/10.1021/ACSOMEGA.3C08460/ASSET/IMAGES/LARGE/AO3C08460_0007.JPEG.
  4. D.M. Lee, M.E. Weinblatt, Rheumatoid arthritis, Lancet 358 (2001) 903–911. https://doi.org/10.1016/S0140-6736(01)06075-5.
  5. K. Almutairi, J. Nossent, D. Preen, H. Keen, C. Inderjeeth, The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review, Rheumatol Int 41 (2021) 863–877. https://doi.org/10.1007/S00296-020-04731-0.
  6. J.S. Smolen, D. Aletaha, I.B. McInnes, Rheumatoid arthritis, Lancet 388 (2016) 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8.
  7. B.M. Köhler, J. Günther, D. Kaudewitz, H.M. Lorenz, Current Therapeutic Options in the Treatment of Rheumatoid Arthritis, J Clin Med 8 (2019). https://doi.org/10.3390/JCM8070938.
  8. M.A. Sallam, A.M. Motawaa, S.M. Mortada, An insight on human skin penetration of diflunisal: lipogel versus hydrogel microemulsion, Drug Dev Ind Pharm 41 (2015) 141–147. https://doi.org/10.3109/03639045.2013.850711.
  9. S. Bindu, S. Mazumder, U. Bandyopadhyay, Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective, Biochem Pharmacol 180 (2020). https://doi.org/10.1016/J.BCP.2020.114147.
  10. M. Habeeb, H. Woon You, K. Balasaheb Aher, G. Balasaheb Bhavar, S. Suryabhan Pawar, S. Dnyaneshwar Gaikwad, Artificial neural networks for the prediction of mechanical properties of CGNP/PLGA nanocomposites, Mater Today Proc (2023). https://doi.org/10.1016/J.MATPR.2023.08.354.
  11. M. Habeeb, S. Arsey, H.W. You, S.T. Kumbhar, K.B. Aher, G.B. Bhavar, H.T. Vengateswaran, Targeted nanomedicine modulating intercellular communications to arrest renal cell carcinoma progression, J Drug Deliv Sci Technol 99 (2024) 105983. https://doi.org/10.1016/J.JDDST.2024.105983.
  12. H. Mohammad, H.W. You, M. Umapathi, K.K. Ravikumar, Hariyadi, S. Mishra, Strategies of Artificial intelligence tools in the domain of nanomedicine, J Drug Deliv Sci Technol (2023) 105157. https://doi.org/10.1016/J.JDDST.2023.105157.
  13. H.T. Vengateswaran, M. Habeeb, K.B. Aher, G.B. Bhavar, P. Suseela, I. Navabshan, Radiant Revolution with Carbon Dots Transforming Medicine, Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 5 (2024) 59–70. https://doi.org/10.58532/V3BECS5P1CH6.
  14. M.S. Sadjadi, B. Sadeghi, K. Zare, Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X = F (1), X = Cl (2), Journal of Molecular Structure: THEOCHEM 817 (2007) 27–33. https://doi.org/10.1016/J.THEOCHEM.2007.04.015.
  15. M.A.S. Sadjadi, M. Meskinfam, B. Sadeghi, H. Jazdarreh, K. Zare, In Situ Biomimetic Synthesis and Characterization of Nano Hydroxyapatite in Gelatin Matrix, J Biomed Nanotechnol 7 (2011) 450–454. https://doi.org/10.1166/JBN.2011.1305.
  16. B. Sadeghi, S.H. Ghammamy, Z. Gholipour, M. Ghorchibeigy, A.A. Nia, Gold/hydroxypropyl cellulose hybrid nanocomposite constructed with more complete coverage of gold nano-shell, Micro Nano Lett 6 (2011) 209–213. https://doi.org/10.1049/MNL.2011.0036.
  17. A. Amininia, K. Pourshamsian, B. Sadeghi, Nano-ZnO Impregnated on Starch—A Highly Efficient Heterogeneous Bio-Based Catalyst for One-Pot Synthesis of Pyranopyrimidinone and Xanthene Derivatives as Potential Antibacterial Agents, Russian Journal of Organic Chemistry 56 (2020) 1279–1288. https://doi.org/10.1134/S1070428020070234/METRICS.
  18. B. Sadeghy, S. Ghammami, Oxidation of alcohols with tetramethylammonium fluorochromate in aceticoi acid, Russ J Gen Chem 75 (2005) 1886–1888. https://doi.org/10.1007/S11176-006-0008-0/METRICS.
  19. M. Habeeb, T.A. Kareem, K.L. Deepthi, V.S. Khot, Y.H. Woon, S.S. Pawar, Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways, J Drug Deliv Sci Technol 77 (2022) 103865. https://doi.org/10.1016/J.JDDST.2022.103865.
  20. K. Rodrigues, S. Nadaf, N. Rarokar, N. Gurav, P. Jagtap, P. Mali, M. Ayyanar, M. Kalaskar, S. Gurav, QBD approach for the development of hesperetin loaded colloidal nanosponges for sustained delivery: In-vitro, ex-vivo, and in-vivo assessment, OpenNano 7 (2022) 100045. https://doi.org/10.1016/J.ONANO.2022.100045.
  21. U.S. Bagul, M. V. Nazirkar, A.K. Mane, S. V. Khot, A.A. Tagalpallewar, C.R. Kokare, Fabrication of architectonic nanosponges for intraocular delivery of Brinzolamide: An insight into QbD driven optimization, in vitro characterization, and pharmacodynamics, Int J Pharm 650 (2024). https://doi.org/10.1016/J.IJPHARM.2023.123746.
  22. M. Habeeb, H.T. Vengateswaran, H.W. You, K.B. Aher, G.B. Bhavar, S.D. Gaikwad, Development and characterization of carboxylated copper oxide conjugated polymeric nanocomposites and correlating with computational techniques, Results in Surfaces and Interfaces 17 (2024) 100323. https://doi.org/10.1016/J.RSURFI.2024.100323.
  23. A. Salawi, M. Alam, M. Zaman, S. Qureshi, S.S. Shah, I. Majeed, U. Farooq, W. Mustafa, Q. ul A. Shamim, W. Siddique, Y. Almoshari, M. Alshamrani, Optimization and fabrication of the nanosponge carriers of on dansetron using one-factor design, Pak J Pharm Sci 35 (2022) 1135–1142. https://doi.org/10.36721/PJPS.2022.35.4.REG.1135-1142.1.
  24. B. Pyrak, K. Rogacka-Pyrak, T. Gubica, Ł. Szeleszczuk, Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics, Int J Mol Sci 25 (2024). https://doi.org/10.3390/IJMS25063527.
  25. A. Kanugo, A. Deshpande, R. Sharma, Formulation Optimization and Evaluation of Nanocochleate Gel of Famciclovir for the Treatment of Herpes Zoster, Recent Pat Nanotechnol 17 (2023) 259–269. https://doi.org/10.2174/1872210516666220622115553.
  26. S. Sharma, A. Kanugo, T. Kaur, D. Choudhary, Formulation and Characterization of Self-Microemulsifying Drug Delivery System (SMEDDS) of Sertraline Hydrochloride, Recent Pat Nanotechnol 18 (2022) 3–16. https://doi.org/10.2174/1872210516666220623152440.
  27. T. Dugad, A. Kanugo, Design Optimization and Evaluation of Solid Lipid Nanoparticles of Azelnidipine for the treatment of Hypertension, Recent Pat Nanotechnol 18 (2022) 22–32. https://doi.org/10.2174/1872210517666221019102543.
  28. G.A. El-Emam, G.N.S. Girgis, M.M.A. El Sokkary, O.A. El-Azeem Soliman, A.E.G.H. Abd El Gawad, Ocular Inserts of Voriconazole-Loaded Proniosomal Gels: Formulation, Evaluation and Microbiological Studies, Int J Nanomedicine 15 (2020) 7825–7840. https://doi.org/10.2147/IJN.S268208.
  29. A. Kaur, B.S. Bhoop, S. Chhibber, G. Sharma, V.S. Gondil, O.P. Katare, Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization and preclinical investigations for management of rheumatoid arthritis, Int J Pharm 533 (2017) 206–224. https://doi.org/10.1016/J.IJPHARM.2017.09.041.
  30. S.H. Abd El-Alim, A.A. Kassem, M. Basha, A. Salama, Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation, Int J Pharm 563 (2019) 293–303. https://doi.org/10.1016/J.IJPHARM.2019.04.001.
  31. S. Sharma, A. Kanugo, J. Gaikwad, Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: a quality by design approach, Materials Technology 37 (2022) 735–744. https://doi.org/10.1080/10667857.2021.1873637.
  32. J. Song, Z. Zhang, Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma, J Appl Biomater Funct Mater 18 (2020). https://doi.org/10.1177/2280800020942712.
  33. M.M. Obiedallah, A.M. Abdel-Mageed, T.H. Elfaham, Ocular administration of acetazolamide microsponges in situ gel formulations, Saudi Pharm J 26 (2018) 909–920. https://doi.org/10.1016/J.JSPS.2018.01.005.
  34. S. Nurman, R. Yulia, Irmayanti, E. Noor, T.C. Sunarti, The Optimization of Gel Preparations Using the Active Compounds of Arabica Coffee Ground Nanoparticles, Scientia Pharmaceutica 2019, Vol. 87, Page 32 87 (2019) 32. https://doi.org/10.3390/SCIPHARM87040032.
  35. X. Cui, R. Wang, P. Bian, Q. Wu, V.D.D. Seshadri, L. Liu, Evaluation of antiarthritic activity of nimbolide against Freund’s adjuvant induced arthritis in rats, Artif Cells Nanomed Biotechnol 47 (2019) 3391–3398. https://doi.org/10.1080/21691401.2019.1649269.
  36. S.R. Jitta, P. Daram, K. Gourishetti, C.S. Misra, P.R. Polu, A. Shah, C.S. Shreedhara, M. Nampoothiri, R. Lobo, Terminalia tomentosa Bark Ameliorates Inflammation and Arthritis in Carrageenan Induced Inflammatory Model and Freund’s Adjuvant-Induced Arthritis Model in Rats, J Toxicol 2019 (2019). https://doi.org/10.1155/2019/7898914.
  37. H.J. Kassab, H.K. Alkufi, L.S. Hussein, Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan, J Adv Pharm Technol Res 14 (2023) 119. https://doi.org/10.4103/JAPTR.JAPTR_603_22.
  38. H. Elmotasem, G.E.A. Awad, A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery, Asian J Pharm Sci 15 (2020) 617–636. https://doi.org/10.1016/J.AJPS.2019.09.003.