Development and optimization of polymeric nanosponges for enhanced delivery of diflunisal in rheumatoid arthritis
- Department of Pharmaceutical Quality Assurance, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
Received: 2024-07-18
Revised: 2024-11-02
Accepted: 2024-11-09
Published 2025-04-01
Copyright (c) 2024 Kiran Balasaheb Aher, Shubham Bhosale, Girija Balasaheb Bhavar, Mohammad Habeeb, Huay Woon You (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 227
Abstract
Rheumatoid arthritis damages the synovial membrane, and diflunisal, a nonsteroidal anti-inflammatory drug (NSAID) with poor solubility, faces delivery challenges. Nanosponges enhance diflunisals solubility improving its bioavailability; in addition it improved its stability and controls its release. Current research focuses on developing polymeric nanosponges (DIF-NS) through emulsion solvent evaporation, optimized by central composite design. The optimized DIF-NS were further loaded into a carbopol 940 gel (DIF-NS-gel) and evaluated. The optimized BNS showed spherical morphology, % CDR (Percentage cumulative drug release) of 84.9 ± 1.6 within 12 hours and % entrapment efficiency of 82.45 % ± 1.2, a % practical yield of 75 % ± 2.2 with a particle size of 120.1 ± 8.5 nm, zeta potential -29 ± 3.2 mv, and a PDI of 0.348± 0.015. The drug excipient compatibility study was carried out by using FTIR. The sharp peak obtained in the DSC and XRD proves the drug's crystalline nature. The DIF-NS-gel exhibited sustained release and enhanced ex-vivo permeation compared to plain diflunisal gel. In a CFA-induced rheumatoid arthritis rabbit model, it significantly reduced inflammation for a prolonged duration. These findings highlight its potential for effective long-term rheumatoid arthritis management.
Keywords
- Diflunisal,
- Drug delivery,
- Nanosponges,
- Rheumatoid arthritis,
- Statistical optimization
References
- R. Khurana, S.M. Berney, Clinical aspects of rheumatoid arthritis, Pathophysiology 12 (2005) 153–165. https://doi.org/10.1016/J.PATHOPHYS.2005.07.009.
- R. Handa, U.R.K. Rao, J.F.M. Lewis, G. Rambhad, S. Shiff, C.J. Ghia, Literature review of rheumatoid arthritis in India, (2015). https://doi.org/10.1111/1756-185X.12621.
- F. Wang, J. Liu, Y. Fang, J. Wen, M. He, Q. Han, X. Li, Hypercoagulability in Rheumatoid Arthritis: A Bibliometric Analysis and Retrospective Data Mining Study, ACS Omega 8 (2023) 48522–48534. https://doi.org/10.1021/ACSOMEGA.3C08460/ASSET/IMAGES/LARGE/AO3C08460_0007.JPEG.
- D.M. Lee, M.E. Weinblatt, Rheumatoid arthritis, Lancet 358 (2001) 903–911. https://doi.org/10.1016/S0140-6736(01)06075-5.
- K. Almutairi, J. Nossent, D. Preen, H. Keen, C. Inderjeeth, The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review, Rheumatol Int 41 (2021) 863–877. https://doi.org/10.1007/S00296-020-04731-0.
- J.S. Smolen, D. Aletaha, I.B. McInnes, Rheumatoid arthritis, Lancet 388 (2016) 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8.
- B.M. Köhler, J. Günther, D. Kaudewitz, H.M. Lorenz, Current Therapeutic Options in the Treatment of Rheumatoid Arthritis, J Clin Med 8 (2019). https://doi.org/10.3390/JCM8070938.
- M.A. Sallam, A.M. Motawaa, S.M. Mortada, An insight on human skin penetration of diflunisal: lipogel versus hydrogel microemulsion, Drug Dev Ind Pharm 41 (2015) 141–147. https://doi.org/10.3109/03639045.2013.850711.
- S. Bindu, S. Mazumder, U. Bandyopadhyay, Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective, Biochem Pharmacol 180 (2020). https://doi.org/10.1016/J.BCP.2020.114147.
- M. Habeeb, H. Woon You, K. Balasaheb Aher, G. Balasaheb Bhavar, S. Suryabhan Pawar, S. Dnyaneshwar Gaikwad, Artificial neural networks for the prediction of mechanical properties of CGNP/PLGA nanocomposites, Mater Today Proc (2023). https://doi.org/10.1016/J.MATPR.2023.08.354.
- M. Habeeb, S. Arsey, H.W. You, S.T. Kumbhar, K.B. Aher, G.B. Bhavar, H.T. Vengateswaran, Targeted nanomedicine modulating intercellular communications to arrest renal cell carcinoma progression, J Drug Deliv Sci Technol 99 (2024) 105983. https://doi.org/10.1016/J.JDDST.2024.105983.
- H. Mohammad, H.W. You, M. Umapathi, K.K. Ravikumar, Hariyadi, S. Mishra, Strategies of Artificial intelligence tools in the domain of nanomedicine, J Drug Deliv Sci Technol (2023) 105157. https://doi.org/10.1016/J.JDDST.2023.105157.
- H.T. Vengateswaran, M. Habeeb, K.B. Aher, G.B. Bhavar, P. Suseela, I. Navabshan, Radiant Revolution with Carbon Dots Transforming Medicine, Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 5 (2024) 59–70. https://doi.org/10.58532/V3BECS5P1CH6.
- M.S. Sadjadi, B. Sadeghi, K. Zare, Natural bond orbital (NBO) population analysis of cyclic thionylphosphazenes, [NSOX (NPCl2)2]; X = F (1), X = Cl (2), Journal of Molecular Structure: THEOCHEM 817 (2007) 27–33. https://doi.org/10.1016/J.THEOCHEM.2007.04.015.
- M.A.S. Sadjadi, M. Meskinfam, B. Sadeghi, H. Jazdarreh, K. Zare, In Situ Biomimetic Synthesis and Characterization of Nano Hydroxyapatite in Gelatin Matrix, J Biomed Nanotechnol 7 (2011) 450–454. https://doi.org/10.1166/JBN.2011.1305.
- B. Sadeghi, S.H. Ghammamy, Z. Gholipour, M. Ghorchibeigy, A.A. Nia, Gold/hydroxypropyl cellulose hybrid nanocomposite constructed with more complete coverage of gold nano-shell, Micro Nano Lett 6 (2011) 209–213. https://doi.org/10.1049/MNL.2011.0036.
- A. Amininia, K. Pourshamsian, B. Sadeghi, Nano-ZnO Impregnated on Starch—A Highly Efficient Heterogeneous Bio-Based Catalyst for One-Pot Synthesis of Pyranopyrimidinone and Xanthene Derivatives as Potential Antibacterial Agents, Russian Journal of Organic Chemistry 56 (2020) 1279–1288. https://doi.org/10.1134/S1070428020070234/METRICS.
- B. Sadeghy, S. Ghammami, Oxidation of alcohols with tetramethylammonium fluorochromate in aceticoi acid, Russ J Gen Chem 75 (2005) 1886–1888. https://doi.org/10.1007/S11176-006-0008-0/METRICS.
- M. Habeeb, T.A. Kareem, K.L. Deepthi, V.S. Khot, Y.H. Woon, S.S. Pawar, Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways, J Drug Deliv Sci Technol 77 (2022) 103865. https://doi.org/10.1016/J.JDDST.2022.103865.
- K. Rodrigues, S. Nadaf, N. Rarokar, N. Gurav, P. Jagtap, P. Mali, M. Ayyanar, M. Kalaskar, S. Gurav, QBD approach for the development of hesperetin loaded colloidal nanosponges for sustained delivery: In-vitro, ex-vivo, and in-vivo assessment, OpenNano 7 (2022) 100045. https://doi.org/10.1016/J.ONANO.2022.100045.
- U.S. Bagul, M. V. Nazirkar, A.K. Mane, S. V. Khot, A.A. Tagalpallewar, C.R. Kokare, Fabrication of architectonic nanosponges for intraocular delivery of Brinzolamide: An insight into QbD driven optimization, in vitro characterization, and pharmacodynamics, Int J Pharm 650 (2024). https://doi.org/10.1016/J.IJPHARM.2023.123746.
- M. Habeeb, H.T. Vengateswaran, H.W. You, K.B. Aher, G.B. Bhavar, S.D. Gaikwad, Development and characterization of carboxylated copper oxide conjugated polymeric nanocomposites and correlating with computational techniques, Results in Surfaces and Interfaces 17 (2024) 100323. https://doi.org/10.1016/J.RSURFI.2024.100323.
- A. Salawi, M. Alam, M. Zaman, S. Qureshi, S.S. Shah, I. Majeed, U. Farooq, W. Mustafa, Q. ul A. Shamim, W. Siddique, Y. Almoshari, M. Alshamrani, Optimization and fabrication of the nanosponge carriers of on dansetron using one-factor design, Pak J Pharm Sci 35 (2022) 1135–1142. https://doi.org/10.36721/PJPS.2022.35.4.REG.1135-1142.1.
- B. Pyrak, K. Rogacka-Pyrak, T. Gubica, Ł. Szeleszczuk, Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics, Int J Mol Sci 25 (2024). https://doi.org/10.3390/IJMS25063527.
- A. Kanugo, A. Deshpande, R. Sharma, Formulation Optimization and Evaluation of Nanocochleate Gel of Famciclovir for the Treatment of Herpes Zoster, Recent Pat Nanotechnol 17 (2023) 259–269. https://doi.org/10.2174/1872210516666220622115553.
- S. Sharma, A. Kanugo, T. Kaur, D. Choudhary, Formulation and Characterization of Self-Microemulsifying Drug Delivery System (SMEDDS) of Sertraline Hydrochloride, Recent Pat Nanotechnol 18 (2022) 3–16. https://doi.org/10.2174/1872210516666220623152440.
- T. Dugad, A. Kanugo, Design Optimization and Evaluation of Solid Lipid Nanoparticles of Azelnidipine for the treatment of Hypertension, Recent Pat Nanotechnol 18 (2022) 22–32. https://doi.org/10.2174/1872210517666221019102543.
- G.A. El-Emam, G.N.S. Girgis, M.M.A. El Sokkary, O.A. El-Azeem Soliman, A.E.G.H. Abd El Gawad, Ocular Inserts of Voriconazole-Loaded Proniosomal Gels: Formulation, Evaluation and Microbiological Studies, Int J Nanomedicine 15 (2020) 7825–7840. https://doi.org/10.2147/IJN.S268208.
- A. Kaur, B.S. Bhoop, S. Chhibber, G. Sharma, V.S. Gondil, O.P. Katare, Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization and preclinical investigations for management of rheumatoid arthritis, Int J Pharm 533 (2017) 206–224. https://doi.org/10.1016/J.IJPHARM.2017.09.041.
- S.H. Abd El-Alim, A.A. Kassem, M. Basha, A. Salama, Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation, Int J Pharm 563 (2019) 293–303. https://doi.org/10.1016/J.IJPHARM.2019.04.001.
- S. Sharma, A. Kanugo, J. Gaikwad, Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: a quality by design approach, Materials Technology 37 (2022) 735–744. https://doi.org/10.1080/10667857.2021.1873637.
- J. Song, Z. Zhang, Brinzolamide loaded core-shell nanoparticles for enhanced coronial penetration in the treatment of glaucoma, J Appl Biomater Funct Mater 18 (2020). https://doi.org/10.1177/2280800020942712.
- M.M. Obiedallah, A.M. Abdel-Mageed, T.H. Elfaham, Ocular administration of acetazolamide microsponges in situ gel formulations, Saudi Pharm J 26 (2018) 909–920. https://doi.org/10.1016/J.JSPS.2018.01.005.
- S. Nurman, R. Yulia, Irmayanti, E. Noor, T.C. Sunarti, The Optimization of Gel Preparations Using the Active Compounds of Arabica Coffee Ground Nanoparticles, Scientia Pharmaceutica 2019, Vol. 87, Page 32 87 (2019) 32. https://doi.org/10.3390/SCIPHARM87040032.
- X. Cui, R. Wang, P. Bian, Q. Wu, V.D.D. Seshadri, L. Liu, Evaluation of antiarthritic activity of nimbolide against Freund’s adjuvant induced arthritis in rats, Artif Cells Nanomed Biotechnol 47 (2019) 3391–3398. https://doi.org/10.1080/21691401.2019.1649269.
- S.R. Jitta, P. Daram, K. Gourishetti, C.S. Misra, P.R. Polu, A. Shah, C.S. Shreedhara, M. Nampoothiri, R. Lobo, Terminalia tomentosa Bark Ameliorates Inflammation and Arthritis in Carrageenan Induced Inflammatory Model and Freund’s Adjuvant-Induced Arthritis Model in Rats, J Toxicol 2019 (2019). https://doi.org/10.1155/2019/7898914.
- H.J. Kassab, H.K. Alkufi, L.S. Hussein, Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan, J Adv Pharm Technol Res 14 (2023) 119. https://doi.org/10.4103/JAPTR.JAPTR_603_22.
- H. Elmotasem, G.E.A. Awad, A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery, Asian J Pharm Sci 15 (2020) 617–636. https://doi.org/10.1016/J.AJPS.2019.09.003.