Synthesis of Copper and Cobalt Oxide nanoparticles for enhanced Supercapacitor applications

Abstract

This research paper presents a comprehensive study on the synthesis of copper oxide (CuO), cobalt oxide (Co3O4), and their hybrid nanoparticles via the sol-gel method for enhanced supercapacitor applications. The resulting materials were characterized using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis, Dynamic Light Scattering (DLS) and electrochemical measurements. The average particle size of CuO, Co3O4 nanoparticles and CuO/Co3O4 nanocomposite is found from XRD as 18.5 nm, 18.1 nm, and 17.5 nm respectively. The electrochemical performance of the synthesized nanoparticles was evaluated using cyclic voltammetry (CV). The CuO nanoparticles exhibited a specific capacitance of 204 F/g, while Co3O4 showed a specific capacitance of 252 F/g at a scan rate of 5 mV/s. The CuO-Co3O4 hybrid nanoparticles demonstrated a synergistic effect, with a specific capacitance of 384 F/g, outperforming the individual oxide counterparts.

References

[1]. Olabi A. G., Abdelkareem M. A., Wilberforce T., Alkhalidi A., Salameh T., Abo-Khalil A. G., Mutasim Hassan M., Taha Sayed E., (2022), Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T). Int. J. Thermofl. 16: 100212. https://doi.org/10.1016/j.ijft.2022.100212

[2]. Feng J., Yuan X., Hu L., Xie G., Zhang Z., Li X., Hu J., Wang Ch., Wang H., (2024), A comprehensive review of energy storage technology development and application for pure electric vehicles. J. Energy Stor. 86: 111159. https://doi.org/10.1016/j.est.2024.111159

[3]. Swagatika K., Kumar Jena B., Basu S., (2021), Advances in electrochemical energy storage device: Supercapacitor. Energy Stor. 119-147. https://doi.org/10.1002/9781119555599.ch4

[4]. Oyedotun K. O., Ighalo J. O., Amaku J. F., Olisah C., Adeola A. O., Iwuozor K. O., Akpomie K. G., Conradie J., Adegoke K. A., (2023), Advances in supercapacitor development: Materials, processes, and applications. J. Elect. Mater. 52: 96-129. https://doi.org/10.1007/s11664-022-09987-9

[5]. Delbari S. A., Saleh Ghadimi L., Hadi R., Farhoudian S., Nedaei M., Babapoor A., Sabahi Namini A., (2021), Transition metal oxide-based electrode materials for flexible supercapacitors: A review. J. Alloys and Comp. 857: 158281. https://doi.org/10.1016/j.jallcom.2020.158281

[6]. Naik L., Bala Narsaiah R. T., Ravikumar C. R., Naveen Kumar A., Vinutha K., Jahagirdar A. A., Ananda Murthy H. C., (2021), Synthesis and characterization of nickel cobalt vanadate (NiCo2V2O8) nanostructures: photocatalytic and supercapacitor applications. Asian J. Chem. 33: 2831-2838. https://doi.org/10.14233/ajchem.2021.23416

[7]. Yu X., Wang Y., Zhang J., Liu J., Wang A., Ding L., (2024), Recent development of copper based nanozymes for biomedical applications. Adv. Healthcare Mater. 13: 2302023.  https://doi.org/10.1002/adhm.202302023

[8]. Kang W., Wei R., Yin H., Li D., Chen Z., Huang Q., Zhang P., Jing H., Wang X., Li C., (2023), Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation. J. Am. Chem. Soc. 145: 3470-3477. https://doi.org/10.1021/jacs.2c11508

[9]. Sajid M., Qayyum W., Farhan A., Qamar M. A., Nawaz H., (2024), Progress in the development of copper oxide-based materials for electrochemical water splitting. Int. J. Hydrogen Energy. 62: 209-227. https://doi.org/10.1016/j.ijhydene.2024.02.377

[10].                     Rezaei B., Yari P., Sanders S. M., Wang H., Chugh V. K., Liang S., Mostufa S., Xu K., Wang J. P., Gómez Pastora J., Wu K., (2024), Magnetic nanoparticles: A review on synthesis, characterization, functionalization, and biomedical applications. Small. 20: 2304848.  https://doi.org/10.1002/smll.202304848

[11].                     Khalaj M., Zarabi Golkhatmi Z., Sedghi A., (2021), High-performance supercapacitor electrode materials based on chemical co-precipitation synthesis of nickel oxide (NiO)/cobalt oxide (Co3O4)-intercalated graphene nanosheets binary nanocomposites. Diamond and Related Mater. 114: 108313. https://doi.org/10.1016/j.diamond.2021.108313

[12].                     Bahari A., Ahmady-Asbchin S., Naeij M., Farhadikoutenaei A., Al-Jilef A., (2023), Green synthesis and study of structural properties of copper nanocrystallites from hawthorn plant extract and study of its antibacterial activities. Int. J. Nano Dimens. 14: 138-144. 10.22034/IJND.2023.1977078.2199

[13].                     Xu J. M., Yan A. L., Wang X. C., Wang B. Q., Cheng J. P., (2021), A review of cobalt monoxide and its composites for supercapacitors. Ceram. Int. 47: 22229-22239. https://doi.org/10.1016/j.ceramint.2021.04.262

[14].                     Zhang Chi., Jialian Chen., Weixi Chen., Jinling Liu., Denglong Chen., (2023), Hydrothermal synthesis of Cu2O/CuO/hierarchical porous N-doped activated carbon with exceptional electrochemical performance. J. Energy Stor. 60: 106600. https://doi.org/10.1016/j.est.2022.106600

[15].                     Naik R., Lakshmana T., Narsaiah B., Justin P., Naveen Kumar A., Somashekar M. N., Raghavendra N., Ravikumar C. R., Ahmad Khan A., Santosh M. S., (2023), Hydrothermally synthesized cobalt vanadate nanoparticles for photocatalytic degradation of fast orange red dye and supercapacitor applications. Mater. Sci. Eng. B. 298: 116861. https://doi.org/10.1016/j.mseb.2023.116861

[16].                     Low W. H., Poi S. K., Siew Sh. L., Chiu W. S., Ejikeme R. E., (2019), Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. J. Alloys Comp. 775: 1324-1356. https://doi.org/10.1016/j.jallcom.2018.10.102

[17].                     Deka S., (2023), Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Dalton Transac. 52: 839-856.  10.1039/D2DT02733J

[18].                     Athira K., Dhanapandian S., Suthakaran S., Manikandan A., (2024), Facile hydrothermally grown CuO/Co3O4 nanocomposite as an effective electrode material for enhanced supercapacitor applications. J. Mater. Sci: Mater. Elect. 35: 268-275. https://doi.org/10.1007/s10854-024-12022-8

[19].                     Congcong L., Lingran L., Yang Y., Ma Y., Qiao L., Zhu M., (2023), Recent progress in Co3O4 based nanomaterials for supercapacitors. Chem. Nano Mat. 9: e202200537.  https://doi.org/10.1002/cnma.202200537

[20].                     Parveen N., Ansari S. A., Al-Abawi B. T., Ansari M. O., (2022), Fabrication of binder-free hierarchical three dimensional NiO nanoflakes@carbon nanofibers for superior symmetric supercapacitor application. J. Energy Stor. 55: 105619. https://doi.org/10.1016/j.est.2022.105619

[21].                     Ansari M. Z., Ansari S. A., Kim S. H., (2022), Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review. J. Energy Stor. 53: 105187. https://doi.org/10.1016/j.est.2022.105187

[22].                     Ansari S. A., Parveen N., Alsulaim G. M., Ansari A. A., Alsharif S. A., Alnahdi K. M., Reddy V. R. M., (2023), Emerging NiO–rGO nanohybrids for antibiotic pollutant degradation under visible-light irradiation. Surf. Interf. 40: 103078. https://doi.org/10.1016/j.surfin.2023.103078

[23].                     Syed Shaheen Shah., Niaz F., Ehsan M. A., Tanaya Das H., Younas M., Sohail Khan A., Ur Rahman H., Nayem S. M. A., Oyama M., Abdul Aziz M. D., (2024), Advanced strategies in electrode engineering and nanomaterial modifications for supercapacitor performance enhancement: A comprehensive review. J. Energy Stor. 79: 110152. https://doi.org/10.1016/j.est.2023.110152

[24].                     Parveen N., Alsulaim G. M., Alsharif S. A., Almutairi H. H., Alali H. A., Ansari S. A., Ahmad M. M., (2023), Renewable biopolymer-derived carbon–nickel oxide nanocomposite as an emerging electrode material for energy storage applications. J. Sci: Adv. Mater. Dev. 8: 100591. https://doi.org/10.1016/j.jsamd.2023.100591

[25].                     Alrayzan H. I., Ansari S. A., Parveen N., (2022), Fabrication of asymmetric supercapacitor device based on nickel hydroxide electrode-graphene assembly. J. Nanoelect. Optoelect. 17: 536-543. https://doi.org/10.1166/jno.2022.3246

[26].                     Lijing X., Su F., Xie L., Guo X., Wang Z., Kong Q., Sun G., (2020) ,Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Mater. Chem. Front. 9: 2610-2634.  10.1039/D0QM00180E

[27].                     Nilimapriyadarsini S., Saravanakumar B., Kundu M., Schmidt-Mende L., Ramadoss A., (2021), Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. J. Mater. Chem. A. 9: 25286-25324.  10.1039/D1TA06122D

[28].                     Schoetz T., Gordon L. W., Ivanov S., Bund A., Mandler D., Messinger R. J., (2022), Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems. Electrochem. Acta. 412: 140072. https://doi.org/10.1016/j.electacta.2022.140072

[29].                     Dai M., Liu H., Zhao D., Zhu X., Umar A., Algarni H., Wu X., (2021), Ni foam substrates modified with a ZnCo2O4 nanowire-coated Ni(OH)2 nanosheet electrode for hybrid capacitors and electrocatalysts. ACS Appl. Nano Mater. 4: 5461-5468. https://doi.org/10.1021/acsanm.1c00825

[30].                     Xia T., Zhao D., Xia Q., Umar A., Wu X., (2021), Realizing high performance flexible supercapacitors by electrode modification. RSC Adv. 11: 39045-39050. http://doi.org/10.1039/D1RA07880A

[31].                     Lee H. R., Akhtar M. S., Umar A., Ibrahim A. A., Baskoutas S., Yang O. B., (2024), 2D NiMoO4 nanowalls directly grown on Ni foam for the asymmetric electrochemical supercapacitors. Chem. Phys. Impact. 8: 100406. https://doi.org/10.1016/j.chphi.2023.100406

[32].                     Yared W., Palaniyandy N., Srinivasu Vallabhapurapu V., Mamba B. B., (2023), Nanotechnology in advanced 2D and 3D nanostructured transition metal oxide based flexible supercapacitors: A Review. Chem. Electro. Chem. 10: e202300463.  https://doi.org/10.1002/celc.202300463

[33].                     Jude N. U., Obodo R. M., Agnes C. N., Assumpta C. N., Paul M. E., Fabian I. E., (2021), Recent advances in usage of cobalt oxide nanomaterials as electrode material for supercapacitors. Electrode Materials for Energy Storage and Conversion. 141-170. eBook ISBN: 9781003145585

[34].                     Umar A., Jung I., Ibrahim A. A., Akhtar M. S., Kumar S. A., Alhamami M. A., Baskoutas S., (2024), Porous Mn2O3 nanorods-based electrode for high-performance electrochemical supercapacitor. J. Energy Storage. 81: 110305. https://doi.org/10.1016/j.est.2023.110305

[35].                     Ansari S. A., Parveen N., Al-Othoum M. A. S., Ansari M. O., (2021), Development of binder free interconnected 3D flower of NiZn2O4 as an advanced electrode materials for supercapacitor applications. Crystals. 12: 14-19. https://doi.org/10.3390/cryst12010014

[36].                     Parveen N., Ansari M. O., Ansari S. A., Kumar P., (2022), Nanostructured titanium nitride and its composites as high-performance supercapacitor electrode material. Nanomater. 13: 105-109. https://doi.org/10.3390/nano13010105

[37].                     Tatiana N. M., Kalusulingam R., Tatiana S., Mikhailova A., (2022), Sol-gel materials for electrochemical applications: Recent advances. Coatings. 12: 1625-1629.  https://doi.org/10.3390/coatings12111625

[38].                     Sapan Kumar S., Barman U. C., Manir M. S., Mondal P., Dutta S., Paul M., Chowdhury M. A. M., Hakim M. A., (2020), X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv. Natural Sci: Nanosc. Nanotechnol. 11: 025004. 10.1088/2043-6254/ab8732

[39].                     Nasrallah M., Saleh H. A., Abdel-Karim A. M., (2022), Exploring the optical and electrical characteristics of CuO/CuCo2O4 composites. Sci. Sinter. 54: 3-7. https://doi.org/10.2298/SOS2203265D

[40].                     Monu V., Mitan M., Kim H., Vaya D., (2021), Efficient photocatalytic degradation of Malachite green dye using facilely synthesized cobalt oxide nanomaterials using citric acid and oleic acid. J. Phys. Chem. Solids. 155: 110125. https://doi.org/10.1016/j.jpcs.2021.110125

[41].                     El-Sayed S., El Sayed A. M., (2021), Preparation and characterization of CuO/Co3O4/poly (methyl methacrylate) nanocomposites for optical and dielectric applications. J. Mater. Sci: Mater. Electron. 32: 13719-13737. https://doi.org/10.1007/s10854-021-05949-9

[42].                     Niraj K., Gajraj V., Rameshbabu R., Mangalaraja R. V., Joshi N. C.,  Priyadarshi N., (2022), Redox additive electrolyte assisted promising pseudocapacitance from strictly 1D and 2D blended structures of MnO2/rGO. Mater. Character. 189: 111991. https://doi.org/10.1016/j.matchar.2022.111991

[43].                     Lakshmana Naik R., Harapanahalli S. R., Pernapati N., Tumma B., (2021), Synthesis and characterization of Nickel Metavanadate. Int. J. Nano Dimens. 12: 411-421. 10.22034/IJND.2021.682472