Nanostructured Carbon Dots as Ratiometric Fluorescent Rulers for Heavy Metal Detection
- Venkatakrishnan Kiran ORCID 1
- Karthick Harini ORCID 1
- Anbazhagan Thirumalai ORCID 1
- Koyeli Girigoswami ORCID 1
- Agnishwar Girigoswami * Email ORCID 1
Abstract
Carbon dots (CDs) have garnered significant attention in heavy metal (HM) sensing due to their exceptional optical properties and numerous advantages. Due to the rapid industrialization in the last couple of decades, the accumulation of HM in the environment poses a major threat to humans and marine and terrestrial organisms in the Indian subcontinent. Therefore, the detection of HM in the environment is of paramount importance. This review delineates the latest progress in employing CDs for heavy metal detection, specifically focusing on those with dual-emissive fluorescence characteristics, highlighting their superiority compared to traditional detection approaches. Additionally, eco-friendly synthesis methods and the mechanisms through which heavy metals are sensed by CDs are investigated, with emphasis placed on their benefits, such as high sensitivity and selectivity in metal detection applications. The review examines a variety of detection methods employing CDs, such as fluorescence, colorimetry, electrochemical techniques sensing, and ratiometric fluorescence methods, and elucidates their distinct applications. Furthermore, it focuses on approaches aimed at enhancing the sensing capabilities of CDs through surface functionalization, doping, and composite formation. By providing a comprehensive overview of detection methods and suggesting avenues for further research and development, it aims to contribute to the advancement of this field.
References
[1] Å afranko, S., Goman, D., StankoviÄ, A., MedvidoviÄ-KosanoviÄ, M., Moslavac, T., JerkoviÄ, I., JokiÄ, S., (2021). An overview of the recent developments in carbon quantum dotsâpromising nanomaterials for metal ion detection and (bio) molecule sensing. Chemosensors, 9(6): 138. https://doi.org/10.3390/chemosensors9060138
[2] Shah, S. B. (2021). Heavy metals in the marine environmentâan overview. Springer, Cham. https://doi.org/10.1007/978-3-030-73613-2_1
[3] Negahdari, S., Sabaghan, M., Pirhadi, M., Alikord, M., Sadighara, P., Darvishi, M., Nazer, M., (2021). Potential harmful effects of heavy metals as a toxic and carcinogenic agent in marine food-an overview. Egyptian Journal of Veterinary Sciences, 52(3): 379-385. https://doi.org/10.21608/ejvs.2021.83716.1245
[4] Vonnie, J. M., Ting, B. J., Rovina, K., Aqilah, N. M. N., Yin, K. W., Huda, N., (2022). Natural and Engineered Nanomaterials for the Identification of Heavy Metal IonsâA Review. Nanomaterials, 12(15): 2665. https://doi.org/10.3390/nano12152665
[5] Sobiech, M., LuliÅski, P., Wieczorek, P. P., MarÄ, M., (2021). Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. TrAC Trends in Analytical Chemistry, 142: 116306. https://doi.org/10.1016/j.trac.2021.116306
[6] Perumal, S., Atchudan, R., Jebakumar Immanuel Edison, T. N., Sangaraju, S., Sathyaraj, W. V., Lee, Y. R. (2023). Water Soluble PMPC-Derived Bright Fluorescent Nitrogen/Phosphorous-Doped Carbon Dots for Fluorescent Ink (Anti-Counterfeiting) and Cellular Multicolor Imaging. Polymers, 15(6), 1352.
[7] Hu, Y., Yang, Z., Lu, X., Guo, J., Cheng, R., Zhu, L., Wang, C.-F., Chen, S., (2020). Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 12(9): 5494-5500. https://doi.org/10.1039/D0NR00381F
[8] Gedda, G., Sankaranarayanan, S. A., Putta, C. L., Gudimella, K. K., Rengan, A. K., Girma, W. M., (2023). Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Scientific Reports, 13(1): 6371. https://doi.org/10.1038/s41598-023-33652-8
[9] Pudza, M. Y., Abidin, Z. Z., Abdul-Rashid, S., Yassin, F. M., Noor, A. S. M., Abdullah, M., (2019). Synthesis and Characterization of Fluorescent Carbon Dots from Tapioca. ChemistrySelect, 4(14): 4140-4146. https://doi.org/10.1002/slct.201900836
[10] Pudza, M. Y., Abidin, Z. Z., Abdul-Rashid, S., Yasin, F. M., Noor, A. S. M., Abdullah, J., (2020). Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dotâmodified electrode. Environmental Science and Pollution Research, 27(12): 13315-13324. https://doi.org/10.1007/s11356-020-07695-7
[11] Abdullah Issa, M., Z. Abidin, Z., Sobri, S., Rashid, S., Adzir Mahdi, M., Azowa Ibrahim, N., Y. Pudza, M. (2019). Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste. Nanomaterials, 9(10).
[12] Yahaya Pudza, M., Zainal Abidin, Z., Abdul Rashid, S., Md Yasin, F., Noor, A. S., Issa, M. A. (2019). Sustainable Synthesis Processes for Carbon Dots through Response Surface Methodology and Artificial Neural Network. Processes, 7(10).
[13] Sankhla, M. S., Kumar, R., Agrawal, P., (2018). Arsenic in water contamination & toxic effect on human health: Current scenario of India. J Forensic Sci & Criminal Inves, 10(2): 001-005. https://doi.org/10.19080/JFSCI.2018.10.555781
[14] Patel, A., Chaudhary, V. K., Singh, A., Rai, D., Patel, N., (2021). Pollution in river Ganga due to heavy metal toxicity and various mitigation plans-A Review. Ecology Environment & Conservation, 27(1): 382-393.
[15] Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., NikliÅski, J. (2023). Cadmium Toxicity and Health EffectsâA Brief Summary. Molecules, 28(18).
[16] Suhani, I., Sahab, S., Srivastava, V., Singh, R. P., (2021). Impact of cadmium pollution on food safety and human health. Current Opinion in Toxicology, 27: 1-7. https://doi.org/10.1016/j.cotox.2021.04.004
[17] Renu, K., Chakraborty, R., Myakala, H., Koti, R., Famurewa, A. C., Madhyastha, H., Vellingiri, B., George, A., Valsala Gopalakrishnan, A., (2021). Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity â A review. Chemosphere, 271: 129735. https://doi.org/10.1016/j.chemosphere.2021.129735
[18] Moitra, S., Blanc, P. D., Sahu, S., (2013). Adverse respiratory effects associated with cadmium exposure in small-scale jewellery workshops in India. Thorax, 68(6): 565. https://doi.org/10.1136/thoraxjnl-2012-203029
[19] Goyal, T., Mitra, P., Singh, P., Sharma, S., Sharma, P., (2021). Assessement of Blood Lead and Cadmium Levels in Occupationally Exposed Workers of Jodhpur, Rajasthan. Indian Journal of Clinical Biochemistry, 36(1): 100-107. https://doi.org/10.1007/s12291-020-00878-6
[20] Bhardwaj, V., Nurchi, V. M., Sahoo, S. K., (2021). Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors. Pharmaceuticals, 14(2): 123. https://doi.org/10.3390/ph14020123
[21] Wu, X., Li, Y., Yang, S., Tian, H., Sun, B., (2020). A multiple-detection-point fluorescent probe for the rapid detection of mercury (II), hydrazine and hydrogen sulphide. Dyes and Pigments, 174: 108056. https://doi.org/10.1016/j.dyepig.2019.108056
[22] Balali-Mood, M., Sadeghi, M., (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology, 12: 643972. https://doi.org/10.3389/fphar.2021.643972
[23] Murthy, M. K., Khandayataray, P., Mohanty, C. S., Pattanayak, R., (2022). A review on arsenic pollution, toxicity, health risks, and management strategies using nanoremediation approaches. Reviews on Environmental Health(0). https://doi.org/10.1515/reveh-2022-0103
[24] Sankhla, M. S., Kumari, M., Nandan, M., Kumar, R., Agrawal, P., (2016). Heavy metals contamination in water and their hazardous effect on human health-a review. Int. J. Curr. Microbiol. App. Sci (2016), 5(10): 759-766. http://dx.doi.org/10.2139/ssrn.3428216
[25] Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Efremova Aaron, S., Aaron, J.-J., (2020). Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research, 27: 29927-29942. https://doi.org/10.1007/s11356-020-09354-3
[26] Singh, A., Sharma, A., Verma, R. K., Chopade, R. L., Pandit, P. P., Nagar, V., Aseri, V., Choudhary, S. K., Awasthi, G., Awasthi, K. K. (2022). Heavy metal contamination of water and their toxic effect on living organisms. In The toxicity of environmental pollutants. IntechOpen. https://doi.org/10.5772/intechopen.105075
[27] Al Hamouz, O. C. S., Akintola, O. S., (2017). Removal of lead and arsenic ions by a new series of aniline based polyamines. Process Safety and Environmental Protection, 106: 180-190. https://doi.org/10.1016/j.psep.2017.01.014
[28] Khairul, I., Wang, Q. Q., Jiang, Y. H., Wang, C., Naranmandura, H., (2017). Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget, 8(14): 23905. https://doi.org/10.18632/oncotarget.14733
[29] Kumar, A., Kumar, A., M.M.S., C.-P., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S., A. Khan, S., Yadav, K. K., (2020). Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. International Journal of Environmental Research and Public Health, 17(7): 2179. https://doi.org/10.3390/ijerph17072179
[30] Collin, M. S., Venkatraman, S. K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. S., Anusha, J., Choudhary, R., Lvov, V., Tovar, G. I., (2022). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 7: 100094. https://doi.org/10.1016/j.hazadv.2022.100094
[31] Ortega, D. R., Esquivel, D. F. G., Ayala, T. B., Pineda, B., Manzo, S. G., Quino, J. M., Mora, P. C., de la Cruz, V. P., (2021). Cognitive impairment induced by lead exposure during lifespan: Mechanisms of lead neurotoxicity. Toxics, 9(2). https://doi.org/10.3390/toxics9020023
[32] Mabrouk, A., Cheikh, H. B., (2016). Thymoquinone ameliorates lead-induced suppression of the antioxidant system in rat kidneys. Libyan Journal of Medicine, 11(1): 31018. https://doi.org/10.3402/ljm.v11.31018
[33] Zhan, Y., He, S., Wan, X., Zhang, J., Liu, B., Wang, J., Li, Z., (2018). Easy-handling bamboo-like polypyrrole nanofibrous mats with high adsorption capacity for hexavalent chromium removal. Journal of colloid and interface science, 529: 385-395. https://doi.org/10.1016/j.jcis.2018.06.033
[34] Laxmi, V., Kaushik, G., (2020). Toxicity of hexavalent chromium in environment, health threats, and its bioremediation and detoxification from tannery wastewater for environmental safety. Bioremediation of industrial waste for environmental safety: volume I: industrial waste and its management: 223-243. https://doi.org/10.1007/978-981-13-1891-7_11
[35] Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., Â Wang, M.-Q., (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3): 42. https://doi.org/10.3390/toxics9030042
[36] Zhang, Q., Hou, Q., Huang, G., Fan, Q., (2020). Removal of heavy metals in aquatic environment by graphene oxide composites: A review. Environmental Science and Pollution Research, 27: 190-209. https://doi.org/10.1007/s11356-019-06683-w
[37] Khatua, S., Dey, S. K., (2023). The Chemistry and Toxicity of Chromium Pollution: An Overview. Asian J. Agric. Hortic. Res, 10(2): 1-14. https://doi.org/10.9734/AJAHR/2023/v10i2221
[38] Atiya Ali, G. A., Abbas, M. N., (2020). Atomic Spectroscopy Technique Employed to Detect the Heavy Metals from Iraqi Waterbodies Using Natural BioFilter (Eichhornia crassipes): Thera Dejla as a Case Study. Systematic Reviews in Pharmacy, 11(9).
[39] Sardans, J., Montes, F., Peñuelas, J., (2010). Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 65(2): 97-112. https://doi.org/10.1016/j.sab.2009.11.009
[40] Chen, W., Yang, Y., Fu, K., Zhang, D., Wang, Z., (2022). Progress in ICP-MS analysis of minerals and heavy metals in traditional medicine. Frontiers in pharmacology, 13: 891273. https://doi.org/10.3389/fphar.2022.891273
[41] Moldovan, M., Krupp, E. M., Holliday, A. E., Donard, O. F. X., (2004). High resolution sector field ICP-MS and multicollector ICP-MS as tools for trace metal speciation in environmental studies: a review [10.1039/B403128H]. Journal of Analytical Atomic Spectrometry, 19(7): 815-822. https://doi.org/10.1039/B403128H
[42] Adeniji, T. M., Stine, K. J., (2023). Nanostructure modified electrodes for electrochemical detection of contaminants of emerging concern. Coatings, 13(2): 381. https://doi.org/10.3390/coatings13020381
[43] Guo, C., Lv, L., Liu, Y., Ji, M., Zang, E., Liu, Q., Zhang, M., Li, M., (2023). Applied analytical methods for detecting heavy metals in medicinal plants. Critical Reviews in Analytical Chemistry, 53(2): 339-359. https://doi.org/10.1080/10408347.2021.1953371
[44] Sui, X., Downing, J. R., Hersam, M. C., Chen, J., (2021). Additive manufacturing and applications of nanomaterial-based sensors. Materials Today, 48: 135-154. https://doi.org/10.1016/j.mattod.2021.02.001
[45] Pavadai, R., Amalraj, A., Subramanian, S., Perumal, P., (2021). High Catalytic Activity of Fluorophore-Labeled Y-Shaped DNAzyme/3D MOF-MoS2NBs as a Versatile Biosensing Platform for the Simultaneous Detection of Hg2+, Ni2+, and Ag+ Ions. ACS Applied Materials & Interfaces, 13(27): 31710-31724. https://doi.org/10.1021/acsami.1c07086
[46] Amalraj, A., Pavadai, R., Perumal, P., (2021). Recyclable Target Metal-Enhanced Fluorometric Naked Eye Aptasensor for the Detection of Pb2+ and Ag+ Ions Based on the Structural Change of CaSnO3@PDANS-Constrained GC-Rich ssDNA. ACS Omega, 6(45): 30580-30597. https://doi.org/10.1021/acsomega.1c04319
[47] Amalraj, A., Narayanan, M., Perumal, P., (2022). Highly efficient peroxidase-like activity of a metalâoxide-incorporated CeO2âMIL(Fe) metalâorganic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds [10.1039/D2AN00864E]. Analyst, 147(14): 3234-3247. https://doi.org/10.1039/D2AN00864E
[48] Amalraj, A., Perumal, P., (2022). Dual fluorometric biosensor based on a nanoceria encapsulated metal organic framework and a signal amplification strategy of a hybridization chain reaction for the detection of melamine and Pb2+ ions in food samples [10.1039/D2NJ01089E]. New Journal of Chemistry, 46(27): 12952-12967. https://doi.org/10.1039/D2NJ01089E
[49] Shao, P., Liang, D., Yang, L., Shi, H., Xiong, Z., Ding, L., Yin, X., Zhang, K., Luo, X., (2020). Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: Quantitative comparison and mechanistic insight. Journal of hazardous materials, 387: 121676. https://doi.org/10.1016/j.jhazmat.2019.121676
[50] Pallavi, P., Harini, K., Alshehri, S., Ghoneim, M. M., Alshlowi, A., Gowtham, P., Girigoswami, K., Shakeel, F., Girigoswami, A., (2022). From synthetic route of silica nanoparticles to theranostic applications. Processes, 10(12): 2595.
[51] Laskowski, Å., Laskowska, M., Vila, N., Schabikowski, M., Walcarius, A., (2019). Mesoporous silica-based materials for electronics-oriented applications. Molecules, 24(13): 2395. https://doi.org/10.3390/molecules24132395
[52] Hasanpour, M., Hatami, M., (2020). Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Advances in Colloid and Interface Science, 284: 102247. https://doi.org/10.1016/j.cis.2020.102247
[53] Sharma, A., Majdinasab, M., Khan, R., Li, Z., Hayat, A., Marty, J. L., (2021). Nanomaterials in fluorescence-based biosensors: Defining key roles. Nano-Structures & Nano-Objects, 27: 100774. https://doi.org/10.1016/j.nanoso.2021.100774
[54] Kong, X.-P., Zhang, B.-H., Wang, J., (2021). Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. Journal of Agricultural and Food Chemistry, 69(24): 6735-6754. https://doi.org/10.1021/acs.jafc.1c01091
[55] Santhamoorthy, M., Mohan, A., Mani, K. S., Devendhiran, T., Periyasami, G., Kim, S.-C., Lin, M.-C., Kumarasamy, K., Huang, P.-J., Ali, A., (2024). Synthesis of functionalized mesoporous silica nanoparticles for colorimetric and fluorescence sensing of selective metal (Fe3+) ions in aqueous solution. Methods, 223: 26-34. https://doi.org/10.1016/j.ymeth.2024.01.010
[56] Stoian, M. C., Mihalache, I., Matache, M., Radoi, A., (2021). Terbium-functionalized silica nanoparticles for metal ion sensing by fluorescence quenching. Dyes and Pigments, 187: 109144. https://doi.org/10.1016/j.dyepig.2021.109144
[57] Srinivasan, K., Subramanian, K., Rajasekar, A., Murugan, K., Benelli, G., Dinakaran, K., (2017). A sensitive optical sensor based on DNA-labelled Si@ SiO2 coreâshell nanoparticle for the detection of Hg2+ ions in environmental water samples. Bulletin of Materials Science, 40: 1455-1462. https://doi.org/10.1007/s12034-017-1486-x
[58] Cetinkaya, Y. N., Bulut, O., Oktem, H. A., Yilmaz, M. D., (2023). Fluorescent silica nanoparticles as nano-chemosensors for the sequential detection of Pb2+ ions and bacterial-spore biomarker dipicolinic acid (DPA) in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 303: 123222. https://doi.org/10.1016/j.saa.2023.123222
[59] Fathima Fasna, P., Sasi, S., (2021). A comprehensive overview on advanced sensing applications of functional metal organic frameworks (MOFs). ChemistrySelect, 6(25): 6365-6379. https://doi.org/10.1002/slct.202101533
[60] Li, Y.-K., Yang, T., Chen, M.-L., Wang, J.-H., (2021). Recent advances in nanomaterials for analysis of trace heavy metals. Critical Reviews in Analytical Chemistry, 51(4): 353-372. https://doi.org/10.1080/10408347.2020.1736505
[61] Xu, G.-R., An, Z.-H., Xu, K., Liu, Q., Das, R., Zhao, H.-L., (2021). Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews, 427: 213554. https://doi.org/10.1016/j.ccr.2020.213554
[62] Nguyen, M. B., Nga, D. T. N., Thu, V. T., Piro, B., Truong, T. N. P., Yen, P. T. H., Le, G. H., Hung, L. Q., Vu, T. A., Ha, V. T. T., (2021). Novel nanoscale Yb-MOF used as highly efficient electrode for simultaneous detection of heavy metal ions. Journal of Materials Science, 56: 8172-8185. https://doi.org/10.1007/s10853-021-05815-3
[63] Hossain, S. S., Karthik, V., Dhakshinamoorthy, A., Biswas, S., (2024). A recyclable MOF@ polymer thin film composite for nanomolar on-site fluorometric detection of heavy metal ion and anti-histamine drug and efficient heterogeneous catalysis of FriedelâCrafts alkylation. Inorganic Chemistry Frontiers, 11(1): 142-155. https://doi.org/10.1039/D3QI01890C
[64] Ansari, A. A., Khan, A. M., Salem, M. A. S., Bhat, A. S., (2024). Synthesis and characterization of Ni@UiO-66 Metal-Organic Framework for fluorescence detection of heavy metal ions in the aqueous phase. Materials Chemistry and Physics, 318: 129245. https://doi.org/10.1016/j.matchemphys.2024.129245
[65] Harini, K., Girigoswami, K., Pallavi, P., Gowtham, P., Prabhu, A. D., Girigoswami, A., (2024). Advancement of magnetic particle imaging in diagnosis and therapy. Advances in Natural Sciences: Nanoscience and Nanotechnology, 15(2): 023002. https://doi.org/10.1088/2043-6262/ad3b7a
[66] Amsaveni, G., Farook, A. S., Haribabu, V., Murugesan, R., Girigoswami, A., (2013). Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Advanced Science, Engineering and Medicine, 5(12): 1340-1348. https://doi.org/10.1166/asem.2013.1425
[67] Haribabu, V., Farook, A. S., Goswami, N., Murugesan, R., Girigoswami, A., (2016). Optimized Mnâdoped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(4): 817-824.
[68] Zargoosh, K., Abedini, H., Abdolmaleki, A., Molavian, M. R., (2013). Effective Removal of Heavy Metal Ions from Industrial Wastes Using Thiosalicylhydrazide-Modified Magnetic Nanoparticles. Industrial & Engineering Chemistry Research, 52(42): 14944-14954. https://doi.org/10.1021/ie401971w
[69] Bilgic, A., Cimen, A., (2020). A highly sensitive and selective ON-OFF fluorescent sensor based on functionalized magnetite nanoparticles for detection of Cr(VI) metal ions in the aqueous medium. Journal of Molecular Liquids, 312: 113398.https://doi.org/10.1016/j.molliq.2020.113398
[70] Tejwan, N., Saha, S. K., Das, J., (2020). Multifaceted applications of green carbon dots synthesized from renewable sources. Advances in colloid and interface science, 275: 102046. https://doi.org/10.1016/j.cis.2019.102046
[71] Gowtham, P., Girigoswami, K., Prabhu, A. D., Pallavi, P., Thirumalai, A., Harini, K., Girigoswami, A., (2024). Hydrogels of Alginate DerivativeâEncased Nanodots Featuring CarbonâCoated Manganese Ferrite Cores with Gold Shells to Offer Antiangiogenesis with Multimodal ImagingâBased Theranostics. Advanced Therapeutics: 2400054. https://doi.org/10.1002/adtp.202400054
[72] Gowtham, P., Harini, K., Thirumalai, A., Pallavi, P., Girigoswami, K., Girigoswami, A., (2023). Synthetic routes to theranostic applications of carbon-based quantum dots. ADMET and DMPK, 11(4): 457â485. https://doi.org/10.5599/admet.1747
[73] González-González, R. B., Morales-Murillo, M. B., MartÃnez-Prado, M. A., Melchor-MartÃnez, E. M., Ahmed, I., Bilal, M., Parra-SaldÃvar, R., Iqbal, H. M., (2022). Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. Chemosphere, 300: 134515. https://doi.org/10.1016/j.chemosphere.2022.134515
[74] Li, P., Li, S. F., (2020). Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals. Nanophotonics, 10(2): 877-908. https://doi.org/10.1515/nanoph-2020-0507
[75] Landa, S. D. T., Bogireddy, N. K. R., Kaur, I., Batra, V., Agarwal, V., (2022). Heavy metal ion detection using green precursor derived carbon dots. Iscience, 25(2). https://doi.org/10.1016/j.isci.2022.103816
[76] Sharmiladevi, P., Akhtar, N., Haribabu, V., Girigoswami, K., Chattopadhyay, S., Girigoswami, A., (2019). Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Applied Bio Materials, 2(4): 1634-1642. https://doi.org/10.1021/acsabm.9b00039
[77] Tan, Q., Li, X., Wang, L., Zhao, J., Yang, Q., Sun, P., Deng, Y., Shen, G., (2022). One-step synthesis of highly fluorescent carbon dots as fluorescence sensors for the parallel detection of cadmium and mercury ions. Frontiers in Chemistry, 10: 1005231. https://doi.org/10.3389/fchem.2022.1005231
[78] Yoo, D., Park, Y., Cheon, B., Park, M.-H., (2019). Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale research letters, 14: 1-13. https://doi.org/10.1186/s11671-019-3088-6
[79] Jaiganesh, T., Daisy Vimala Rani, J., Â Girigoswami, A., (2012). Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92: 29-32. https://doi.org/10.1016/j.saa.2012.02.044
[80] Daulay, A., Nasution, L. H., Huda, M., Amin, M., Nikmatullah, M., (2024). Green sources for carbon dots synthesis in sensing for food applicationâA review. Biosensors and Bioelectronics: X: 100460. https://doi.org/10.1016/j.biosx.2024.100460
[81] Gowtham, P., Girigoswami, K., Pallavi, P., Harini, K., Gurubharath, I., Girigoswami, A., (2022). Alginate-Derivative Encapsulated Carbon Coated Manganese-Ferrite Nanodots for Multimodal Medical Imaging. Pharmaceutics, 14(12): 2550. https://doi.org/10.3390/pharmaceutics14122550
[82] Wang, Y., Zhu, Y., Yu, S., Jiang, C., (2017). Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC advances, 7(65): 40973-40989. https://doi.org/10.1039/C7RA07573A
[83] Crista, D. M. A., Esteves da Silva, J. C. G., Pinto da Silva, L., (2020). Evaluation of Different Bottom-up Routes for the Fabrication of Carbon Dots. Nanomaterials, 10(7): 1316. https://doi.org/10.3390/nano10071316
[84] Jiang, K., Gao, X., Feng, X., Wang, Y., Li, Z., Lin, H., (2020). Carbon dots with dualâemissive, robust, and aggregationâinduced roomâtemperature phosphorescence characteristics. Angewandte Chemie International Edition, 59(3): 1263-1269. https://doi.org/10.1002/anie.201911342
[85] Yiye, L., Li, F., Xu, H., Nie, G., (2021). Highly fluorescent chiral NS-doped carbon dots from cysteine: Affecting cellular energy metabolism. Free Radical Biology and Medicine, 165: 55. https://doi.org/10.1002/ange.201712453
[86] Bhoopathy, J., Sathyaraj, W. V., Prabakaran, L., Senthil, R., Mohammed, V., Dharmalingam, S., (2024). An Investigation on Bioderived Sponges with Hemostatic and Photoluminescent Properties for Accelerating Wound Healing. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-024-03245-1
[87] Girigoswami, A., Yassine, W., Sharmiladevi, P., Haribabu, V., Girigoswami, K., (2018). Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Scientific reports, 8(1): 1-7. https://doi.org/10.1038/s41598-018-34843-4
[88] Wang, F., Xie, Z., Zhang, H., Liu, C. y., Zhang, Y. g., (2011). Highly luminescent organosilane functionalized carbon dots. Advanced Functional Materials, 21(6): 1027-1031. https://doi.org/10.1002/adfm.201002279
[89] Liu, Z., Zou, H., Wang, N., Yang, T., Peng, Z., Wang, J., Li, N., Huang, C., (2018). Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states. Science China Chemistry, 61: 490-496. https://doi.org/10.1007/s11426-017-9172-0
[90] Yu, J., Liu, C., Yuan, K., Lu, Z., Cheng, Y., Li, L., Zhang, X., Jin, P., Meng, F., Liu, H., (2018). Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions. https://doi.org/10.3390/nano8040233Nanomaterials, 8(4): 233.
[91] Fang, Q., Dong, Y., Chen, Y., Lu, C.-H., Chi, Y., Yang, H.-H., Yu, T., (2017). Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon, 118: 319-326. https://doi.org/10.1016/j.carbon.2017.03.061
[92] Liu, M. L., Chen, B. B., Li, C. M., Huang, C. Z., (2019). Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green chemistry, 21(3): 449-471. https://doi.org/10.1039/C8GC02736F
[93] Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., Yang, B., (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano research, 8: 355-381. https://doi.org/https://doi.org/10.1007/s12274-014-0644-3
[94] Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., Lin, H., (2015). Red, green, and blue luminescence by carbon dots: full color emission tuning and multicolor cellular imaging. Angewandte chemie, 127(18): 5450-5453. https://doi.org/https://doi.org/10.1002/ange.201501193
[95] Liu, C., Wang, R., Wang, B., Deng, Z., Jin, Y., Kang, Y., Chen, J., (2018). Orange, yellow and blue luminescent carbon dots controlled by surface state for multicolor cellular imaging, light emission and illumination. Microchimica Acta, 185: 1-8. https://doi.org/10.1007/s00604-018-3072-3
[96] Yuan, B., Guan, S., Sun, X., Li, X., Zeng, H., Xie, Z., Chen, P., Zhou, S., (2018). Highly efficient carbon dots with reversibly switchable greenâred emissions for trichromatic white light-emitting diodes. ACS applied materials & interfaces, 10(18): 16005-16014. https://doi.org/https://doi.org/10.1021/acsami.8b02379
[97] Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., Bai, Z., (2019). The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchimica Acta, 186: 1-37. https://doi.org/10.1007/s00604-019-3688-y
[98] Chen, Y., Lian, H., Wei, Y., He, X., Chen, Y., Wang, B., Zeng, Q., Lin, J., (2018). Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale, 10(14): 6734-6743. https://doi.org/10.1039/C8NR00204E
[99] Yang, S., Sun, J., Li, X., Zhou, W., Wang, Z., He, P., Ding, G., Xie, X., Kang, Z., Jiang, M., (2014). Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. Journal of Materials Chemistry A, 2(23): 8660-8667. https://doi.org/10.1039/C4TA00860J
[100] Dong, X., Wei, L., Su, Y., Li, Z., Geng, H., Yang, C., Zhang, Y., (2015). Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. Journal of Materials Chemistry C, 3(12): 2798-2801. https://doi.org/10.1039/C5TC00126A
[101] Paynter, R. A., Wellons, S., Winefordner, J., (1974). New method of analysis based on room-temperature phosphorescence. Analytical Chemistry, 46(6): 736-738. https://doi.org/10.1021/ac60342a044
[102] Wei, X., Yang, J., Hu, L., Cao, Y., Lai, J., Cao, F., Gu, J., Cao, X., (2021). Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. Journal of Materials Chemistry C, 9(13): 4425-4443. https://doi.org/10.1039/D0TC06031C
[103] Li, Q., Zhou, M., Yang, M., Yang, Q., Zhang, Z., Shi, J., (2018). Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nature Communications, 9(1): 734. https://doi.org/10.1038/s41467-018-03144-9
[104] Tian, Z., Li, D., Ushakova, E. V., Maslov, V. G., Zhou, D., Jing, P., Shen, D., Qu, S., Rogach, A. L., (2018). Multilevel data encryption using thermalâtreatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites. Advanced Science, 5(9): 1800795. https://doi.org/10.1002/advs.201800795
[105] Li, Q., Zhou, M., Yang, Q., Wu, Q., Shi, J., Gong, A., Yang, M., (2016). Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chemistry of Materials, 28(22): 8221-8227. https://doi.org/10.1021/acs.chemmater.6b03049
[106] Wang, C., Chen, Y., Xu, Y., Ran, G., He, Y., Song, Q., (2020). Aggregation-induced room-temperature phosphorescence obtained from water-dispersible carbon dot-based composite materials. ACS applied materials & interfaces, 12(9): 10791-10800. https://doi.org/10.1021/acsami.9b20500
[107] Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., Wang, H., (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24): 7756-7757. https://doi.org/10.1021/ja062677d
[108] Dimos, K., (2016). Carbon quantum dots: surface passivation and functionalization. Current Organic Chemistry, 20(6): 682-695. https://doi.org/10.1002/smll.200700578
[109] Bourlinos, A. B., Stassinopoulos, A., Anglos, D., Zboril, R., Karakassides, M., Giannelis, E. P., (2008). Surface functionalized carbogenic quantum dots. small, 4(4): 455-458. https://doi.org/10.1039/C4NJ01235F
[110] Liu, T., Li, N., Dong, J. X., Luo, H. Q., Li, N. B., (2016). Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sensors and Actuators B: Chemical, 231: 147-153. https://doi.org/10.1016/j.snb.2016.02.141
[111] Xie, C., Xiao, L., Peng, S., Shi, X., (2014). Preparation of novel magnetic and fluorescent CSâFe3O4@ CdSeS nanoparticles for simultaneous removal and optical determination of trace copper ions. New Journal of Chemistry, 38(12): 6095-6102. https://doi.org/10.1039/C4RA13820A
[112] Sun, Y., Shen, C., Wang, J., Lu, Y., (2015). Facile synthesis of biocompatible N, S-doped carbon dots for cell imaging and ion detecting. RSC Advances, 5(21): 16368-16375. https://doi.org/10.1039/C4RA13820A
[113] Nong, S., Wang, M., Wang, X., Li, Y., Yu, S., Tang, C., Li, G., Xu, L., (2024). A multifunctional guanosine-based carbon dots for dead microbial imaging and synergistic broad-spectrum antimicrobial therapy. Chemical Engineering Journal: 150123. https://doi.org/10.1016/j.cej.2024.150123
[114] Zhang, W., Wang, R., Liu, W., Wang, X., Li, P., Zhang, W., Wang, H., Tang, B., (2018). Te-containing carbon dots for fluorescence imaging of superoxide anion in mice during acute strenuous exercise or emotional changes. Chemical Science, 9(3): 721-727. https://doi.org/10.1039/C7SC03878J
[115] Du, J., Zhou, S., Ma, Y., Wei, Y., Li, Q., Huang, H., Chen, L., Yang, Y., Yu, S., (2024). Folic acid functionalized gadolinium-doped carbon dots as fluorescence/magnetic resonance imaging contrast agent for targeted imaging of liver cancer. Colloids and Surfaces B: Biointerfaces, 234: 113721. https://doi.org/10.1016/j.colsurfb.2023.113721
[116] Jiang, Y., Tan, Z., Zhao, T., Wu, J., Li, Y., Jia, Y., Peng, Z., (2023). Indocyanine green derived carbon dots with significantly enhanced properties for efficient photothermal therapy. Nanoscale, 15(4): 1925-1936. https://doi.org/10.1039/D2NR06058B
[117] Shi, X., Wei, W., Fu, Z., Gao, W., Zhang, C., Zhao, Q., Deng, F., Lu, X., (2019). Review on carbon dots in food safety applications. Talanta, 194: 809-821. https://doi.org/10.1016/j.talanta.2018.11.005
[118] Radhakrishnan, K., Sivanesan, S., Panneerselvam, P., (2020). Turn-On fluorescence sensor based detection of heavy metal ion using carbon dots@graphitic-carbon nitride nanocomposite probe. Journal of Photochemistry and Photobiology A: Chemistry, 389: 112204. https://doi.org/10.1016/j.jphotochem.2019.112204
[119] Zhao, X., Zhang, X., Li, Q., Song, Y., Zhang, J., Yang, Y., Xia, X., Han, Q., (2022). Rapid determination of cadmium in Panax notoginseng using NCDs quantum carbon dots-aptamer fluorescence sensor. Journal of Food Measurement and Characterization, 16(4): 2459-2467. https://doi.org/10.1007/s11694-022-01356-8
[120] Wang, B., Lu, S., (2022). The light of carbon dots: From mechanism to applications. Matter, 5(1): 110-149. https://doi.org/10.1016/j.matt.2021.10.016
[121] Can, V., Onat, B., Cirit, E. S., Sahin, F., Canbek Ozdil, Z. C., (2023). Metal-Enhanced Fluorescent Carbon Quantum Dots via One-Pot Solid State Synthesis for Cell Imaging. ACS Applied Bio Materials, 6(5): 1798-1805. https://doi.org/10.1021/acsabm.3c00040
[122] Wang, H., Ai, L., Song, H., Song, Z., Yong, X., Qu, S., Lu, S., (2023). Innovations in the SolidâState Fluorescence of Carbon Dots: Strategies, Optical Manipulations, and Applications. Advanced Functional Materials, 33(41): 2303756. https://doi.org/10.1002/adfm.202303756
[123] Batool, M., Junaid, H. M., Tabassum, S., Kanwal, F., Abid, K., Fatima, Z., Shah, A. T., (2022). Metal ion detection by carbon dotsâa review. Critical Reviews in Analytical Chemistry, 52(4): 756-767. https://doi.org/10.1080/10408347.2020.1824117
[124] Bandi, R., Dadigala, R., Gangapuram, B. R., Sabir, F. K., Alle, M., Lee, S.-H., Guttena, V., (2019). N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron(III) and copper(II). Microchimica Acta, 187(1): 30. https://doi.org/10.1007/s00604-019-4017-1
[125] Panigrahi, S. K., Mishra, A. K., (2019). Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 41: 100318. https://doi.org/10.1016/j.jphotochemrev.2019.100318
[126] Shabbir, H., Csapó, E., Wojnicki, M., (2023). Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics, 11(6): 262. https://doi.org/10.3390/inorganics11060262
[127] Sakdaronnarong, C., Sangjan, A., Boonsith, S., Kim, D. C., Shin, H. S., (2020). Recent developments in synthesis and photocatalytic applications of carbon dots. Catalysts, 10(3): 320. https://doi.org/10.3390/catal10030320
[128] Fan, Y. Z., Zhang, Y., Li, N., Liu, S. G., Liu, T., Li, N. B., Luo, H. Q., (2017). A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors and Actuators B: Chemical, 240: 949-955. https://doi.org/10.1016/j.snb.2016.09.063
[129] Li, P., Li, S. F. Y., (2021). Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals. Nanophotonics, 10(2): 877-908. https://doi.org/doi:10.1515/nanoph-2020-0507
[130] Zhang, L. C., Yang, Y. M., Liang, L., Jiang, Y. J., Li, C. M., Li, Y. F., Zhan, L., Zou, H. Y., Huang, C. Z., (2022). Lighting up of carbon dots for copper(ii) detection using an aggregation-induced enhanced strategy [10.1039/D1AN02147H]. Analyst, 147(3): 417-422. https://doi.org/10.1039/D1AN02147H
[131] Carter, S., Clough, R., Fisher, A., Gibson, B., Russell, B., (2022). Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 37(11): 2207-2281. https://doi.org/10.1039/C3JA90051G
[132] Zhou, S.-l., Zhang, S.-m., Li, H.-g., (2021). Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors. New Carbon Materials, 36(3): 527-545. https://doi.org/10.1016/S1872-5805(21)60042-2
[133] Mohan, R., Drbohlavova, J., Hubalek, J., (2018). Dual band emission in carbon dots. Chemical Physics Letters, 692: 196-201. https://doi.org/10.1016/j.cplett.2017.12.029
[134] Alfè, M., Gargiulo, V., Amati, M., Maraloiu, V.-A., Maddalena, P., Lettieri, S., (2021). Mesoporous TiO2 from metal-organic frameworks for photoluminescence-based optical sensing of oxygen. Catalysts, 11(7): 795. https://doi.org/10.3390/catal11070795
[135] Li, L., Dong, T., (2018). Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C, 6(30): 7944-7970. https://doi.org/10.1039/C7TC05878K
[136] Pratap, R., Hassan, N., Yadav, M., Srivastava, S. K., Chaudhary, S., Verma, A. K., Lahiri, J., Parmar, A. S., (2024). Biogenic synthesis of dual-emission chlorophyll-rich carbon quantum dots for detection of toxic heavy metal ionsâHg (ii) and As (iii) in water and mouse fibroblast cell line NIH-3T3. Environmental Science: Nano. https://doi.org/10.1039/D3EN00789H
[137] Yuan, H., Yang, G., Luo, Q., Xiao, T., Zuo, Y., Guo, X., Xu, D., Wu, Y., (2020). A 3D net-like structured fluorescent aerogel based on carboxy-methylated cellulose nanofibrils and carbon dots as a highly effective adsorbent and sensitive optical sensor of Cr (VI). Environmental Science: Nano, 7(3): 773-781. https://doi.org/https://doi.org/10.1039/C9EN01394F
[138] Ahmadian-Fard-Fini, S., Ghanbari, D., Amiri, O., Salavati-Niasari, M., (2020). Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydrate Polymers, 229: 115428. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.115428
[139] Qu, C., Zhang, D., Yang, R., Hu, J., Qu, L., (2019). Nitrogen and sulfur co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ion in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206: 588-596. https://doi.org/https://doi.org/10.1016/j.saa.2018.07.097
[140] Lu, H., Xu, S., Liu, J., (2019). One pot generation of blue and red carbon dots in one binary solvent system for dual channel detection of Cr3+ and Pb2+ based on ion imprinted fluorescence polymers. ACS sensors, 4(7): 1917-1924. https://doi.org/https://doi.org/10.1021/acssensors.9b00886
[141] Pooja, D., Singh, L., Thakur, A., Kumar, P., (2019). Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-freechemo probe for chromium detection in water. Sensors and Actuators B: Chemical, 283: 363-372. https://doi.org/https://doi.org/10.1016/j.snb.2018.12.027
[142] Cai, J., Han, G., Ren, J., Liu, C., Wang, J., Wang, X., (2022). Single-layered graphene quantum dots with self-passivated layer from xylan for visual detection of trace chromium (Vl). Chemical Engineering Journal, 435: 131833. https://doi.org/https://doi.org/10.1016/j.cej.2021.131833
[143] Bhattacharyya, S. K., Jana, I. D., Pandey, N., Biswas, D., Girigoswami, A., Dey, T., Banerjee, S., Ray, S. K., Mondal, A., Mukherjee, G., (2022). Ho3+-Doped Carbon dot/gelatin nanoparticles for pH-responsive anticancer drug delivery and intracellular Cu2+ Ion sensing. ACS Applied Nano Materials, 5(8): 11809-11822. https://doi.org/https://doi.org/10.1021/acsanm.2c02841
[144] Bardhan, S., Roy, S., Chanda, D. K., Ghosh, S., Mondal, D., Das, S., Das, S., (2020). Nitrogenous carbon dot decorated natural microcline: an ameliorative dual fluorometric probe for Fe3+ and Cr6+ detection. Dalton Transactions, 49(30): 10554-10566. https://doi.org/https://doi.org/10.1039/D0DT02166K
[145] Roy, S., Bardhan, S., Mondal, D., Saha, I., Roy, J., Das, S., Chanda, D. K., Karmakar, P., Das, S., (2021). Polymeric carbon dot/boehmite nanocomposite made portable sensing device (Kavach) for non-invasive and selective detection of Cr (VI) in wastewater and living cells. Sensors and Actuators B: Chemical, 348: 130662. https://doi.org/https://doi.org/10.1016/j.snb.2021.130662
[146] Christopher Leslee, D. B., Madheswaran, B., Gunasekaran, J., Karuppannan, S., Kuppannan, S. B., (2023). Iminobenzophenone-thiophen hydrazide schiff base: a selective turn on sensor for paramagnetic Fe3+ ion and application in real sample analysis. Photochemical & Photobiological Sciences, 22(8): 1933-1943. https://doi.org/10.1007/s43630-023-00422-4
[147] Gebremedhin, K. H., Kahsay, M. H., Wegahita, N. K., Teklu, T., Berhe, B. A., Gebru, A. G., Tesfay, A. H., Asgedom, A. G., (2024). Nanomaterial-based optical colorimetric sensors for rapid monitoring of inorganic arsenic species: a review. Discover Nano, 19(1): 38. https://doi.org/https://doi.org/10.1186/s11671-024-03981-2
[148] Aygun, A., Cobas, I., Tiri, R. N. E., Sen, F., (2024). Hydrothermal synthesis of B, S, and N-doped carbon quantum dots for colorimetric sensing of heavy metal ions. RSC advances, 14(16): 10814-10825. https://doi.org/https://doi.org/10.1039/D4RA00397G
[149] Bisauriya, R., Antonaroli, S., Ardini, M., Angelucci, F., Ricci, A., Pizzoferrato, R., (2022). Tuning the sensing properties of N and S co-doped carbon dots for colorimetric detection of copper and cobalt in water. Sensors, 22(7): 2487. https://doi.org/https://doi.org/10.3390/s22072487
[150] Sun, X., Zhang, J., Wang, X., Zhao, J., Pan, W., Yu, G., Qu, Y., Wang, J., (2020). Colorimetric and fluorimetric dual mode detection of Fe2+ in aqueous solution based on a carbon dots/phenanthroline system. Arabian journal of chemistry, 13(4): 5075-5083. https://doi.org/https://doi.org/10.1016/j.arabjc.2020.02.007
[151] Bhamore, J. R., Park, T. J., Kailasa, S. K., (2020). Glutathione-capped Syzygium cumini carbon dot-amalgamated agarose hydrogel film for naked-eye detection of heavy metal ions. Journal of Analytical Science and Technology, 11: 1-9. https://doi.org/https://doi.org/10.1186/s40543-020-00208-8
[152] Liu, W., Tian, L., Du, J., Wu, J., Liu, Y., Wu, G., Lu, X., (2020). Triggered peroxidase-like activity of Au decorated carbon dots for colorimetric monitoring of Hg2+ enrichment in Chlorella vulgaris. Analyst, 145(16): 5500-5507. https://doi.org/https://doi.org/10.1039/D0AN00930J
[153] Pu, J., Liu, C., Wang, B., Liu, P., Jin, Y., Chen, J., (2021). Orange red-emitting carbon dots for enhanced colorimetric detection of Fe3+. Analyst, 146(3): 1032-1039. https://doi.org/https://doi.org/10.1039/D0AN02075C
[154] Lu, C., Ding, H., Wang, Y., Xiong, C., Wang, X., (2021). Colorimetric and turn-on fluorescence determination of mercury (II) by using carbon dots and gold nanoparticles. Nanotechnology, 32(15): 155501. https://doi.org/10.1088/1361-6528/abd977
[155] Singh, N., Kumari, S., Khan, S., (2021). Naked eye colorimetric detection of fluoride through TiO2 NPs/CQDs based detector. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 254: 119637. https://doi.org/https://doi.org/10.1016/j.saa.2021.119637
[156] An, J., Chen, R., Chen, M., Hu, Y., Lyu, Y., Liu, Y., (2021). An ultrasensitive turn-on ratiometric fluorescent probes for detection of Ag+ based on carbon dots/SiO2 and gold nanoclusters. Sensors and Actuators B: Chemical, 329: 129097. https://doi.org/https://doi.org/10.1016/j.snb.2020.129097
[157] Gogoi, N., Barooah, M., Majumdar, G., Chowdhury, D., (2015). Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS applied materials & interfaces, 7(5): 3058-3067. https://doi.org/https://doi.org/10.1021/am506558d
[158] Adam, H., Gopinath, S. C., Arshad, M. M., Adam, T., Hashim, U., Sauli, Z., Fakhri, M. A., Subramaniam, S., Chen, Y., Sasidharan, S., (2023). Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: an overview. Journal of the Taiwan Institute of Chemical Engineers, 146: 104814. https://doi.org/https://doi.org/10.1016/j.jtice.2023.104814
[159] Xiao, D., Zhai, J., Shen, Z., Wang, Q., Wei, S., Li, Y., Bian, C., (2024). A Novel Thin-Layer Flow Cell Sensor System Based on BDD Electrode for Heavy Metal Ion Detection. Micromachines, 15(3): 363. https://doi.org/https://doi.org/10.3390/mi15030363
[160] Song, H., Huo, M., Zhou, M., Chang, H., Li, J., Zhang, Q., Fang, Y., Wang, H., Zhang, D., (2022). Carbon nanomaterials-based electrochemical sensors for heavy metal detection. Critical Reviews in Analytical Chemistry: 1-20. https://doi.org/https://doi.org/10.1080/10408347.2022.2151832
[161] Zhang, Y., Hou, D., Wang, Z., Cai, N., Au, C., (2021). Nanomaterial-based dual-emission ratiometric fluorescent sensors for biosensing and cell imaging. Polymers, 13(15): 2540. https://doi.org/https://doi.org/10.3390/polym13152540
[162] Bigdeli, A., Ghasemi, F., Abbasi-Moayed, S., Shahrajabian, M., Fahimi-Kashani, N., Jafarinejad, S., Nejad, M. A. F., Hormozi-Nezhad, M. R., (2019). Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances-A review. Analytica chimica acta, 1079: 30-58. https://doi.org/https://doi.org/10.1016/j.aca.2019.06.035
[163] Liu, J., Xue, H., Liu, Y., Bu, T., Jia, P., Shui, Y., Wang, L., (2019). Visual and fluorescent detection of mercury ions using a dual-emission ratiometric fluorescence nanomixture of carbon dots cooperating with gold nanoclusters. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 223: 117364. https://doi.org/https://doi.org/10.1016/j.saa.2019.117364
[164] Yarur, F., Macairan, J.-R., Naccache, R., (2019). Ratiometric detection of heavy metal ions using fluorescent carbon dots. Environmental Science: Nano, 6(4): 1121-1130. https://doi.org/https://doi.org/10.1039/C8EN01418C
[165] Wang, L., Cao, H.-X., He, Y.-S., Pan, C.-G., Sun, T.-K., Zhang, X.-Y., Wang, C.-Y., Liang, G.-X., (2019). Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+. Sensors and Actuators B: Chemical, 282: 78-84. https://doi.org/https://doi.org/10.1016/j.snb.2018.11.058
[166] Huang, G., Luo, X., He, X., Han, Y., Zhao, H., Tang, W., Yue, T., Li, Z., (2021). Dual-emission carbon dots based ratiometric fluorescent sensor with opposite response for detecting copper (II). Dyes and Pigments, 196: 109803. https://doi.org/https://doi.org/10.1016/j.dyepig.2021.109803
[167] Li, H., Huang, X., Zhang, F., Luo, X., Yu, W., Li, C., Jiang, B., Qiu, Z., Xu, Z., (2023). Specific discrimination of zinc and manganese ions by label free dual emissive carbon dots by ratio-metric mode. Talanta, 260: 124627. https://doi.org/https://doi.org/10.1016/j.talanta.2023.124627
[168] Bai, H., Tu, Z., Liu, Y., Tai, Q., Guo, Z., Liu, S., (2020). Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr2O72- ions and Cd2+ ions. Journal of Hazardous Materials, 386: 121654. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.121654
[169] Li, Z., Pang, S., Wang, M., Wu, M., Li, P., Bai, J., Yang, X., (2021). Dual-emission carbon dots-copper nanoclusters ratiometric photoluminescent nano-composites for highly sensitive and selective detection of Hg2+. Ceramics International, 47(13): 18238-18245. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.03.143
[170] Peng, B., Fan, M., Xu, J., Guo, Y., Ma, Y., Zhou, M., Bai, J., Wang, J., Fang, Y., (2020). Dual-emission ratio fluorescent probes based on carbon dots and gold nanoclusters for visual and fluorescent detection of copper ions. Microchimica Acta, 187: 1-9. https://doi.org/https://doi.org/10.1007/s00604-020-04641-9
[171] Guo, H., Wang, X., Wu, N., Xu, M., Wang, M., Zhang, L., Yang, W., (2021). In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Analytica Chimica Acta, 1141: 13-20. https://doi.org/https://doi.org/10.1016/j.aca.2020.10.028
[172] Guo, X., Pan, Q., Song, X., Guo, Q., Zhou, S., Qiu, J., Dong, G., (2021). Embedding carbon dots in Eu3+âdoped metalâorganic framework for labelâfree ratiometric fluorescence detection of Fe3+ ions. Journal of the American Ceramic Society, 104(2): 886-895. https://doi.org/https://doi.org/10.1111/jace.17477
[173] Yang, J., Ruan, B., Ye, Q., Tsai, L.-C., Ma, N., Jiang, T., Tsai, F.-C., (2022). Carbon dots-embedded zinc-based metal-organic framework as a dual-emitting platform for metal cation detection. Microporous and Mesoporous Materials, 331: 111630. https://doi.org/https://doi.org/10.1016/j.micromeso.2021.111630
[174] Long, R., Tang, C., Li, T., Tong, X., Tong, C., Guo, Y., Gao, Q., Wu, L., Shi, S., (2020). Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging. Microchimica Acta, 187: 1-8. https://doi.org/https://doi.org/10.1007/s00604-020-04287-7
[175] Chen, Z., Xu, X., Meng, D., Jiang, H., Zhou, Y., Feng, S., Mu, Z., Yang, Y., (2020). Dual-emitting N/S-doped carbon dots-based ratiometric fluorescent and light scattering sensor for high precision detection of Fe (III) ions. Journal of Fluorescence, 30: 1007-1013. https://doi.org/https://doi.org/10.1007/s10895-020-02571-6
[176] Jia, M., Peng, L., Yang, M., Wei, H., Zhang, M., Wang, Y., (2021). Carbon dots with dual emission: A versatile sensing platform for rapid assay of Cr (VI). Carbon, 182: 42-50. https://doi.org/https://doi.org/10.1016/j.carbon.2021.05.050
[177] Chu, H., Yao, D., Chen, J., Yu, M., Su, L., (2021). Detection of Hg2+ by a dual-fluorescence ratio probe constructed with rare-earth-element-doped cadmium telluride quantum dots and fluorescent carbon dots. ACS omega, 6(16): 10735-10744. https://doi.org/https://doi.org/10.1021/acsomega.1c00263
[178] Jia, K., Yi, K., Zhang, W., Yan, P., Zhang, S., Liu, X., (2022). Carbon nanodots calibrated fluorescent probe of QD@amphiphilic polyurethane for ratiometric detection of Hg (II). Sensors and Actuators B: Chemical, 370: 132443. https://doi.org/https://doi.org/10.1016/j.snb.2022.132443
[179] Gan, Z., Hu, X., Huang, X., Li, Z., Zou, X., Shi, J., Zhang, W., Li, Y., Xu, Y., (2021). A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with europium (III) complexes. Sensors and Actuators B: Chemical, 328: 128997. https://doi.org/https://doi.org/10.1016/j.snb.2020.128997
[180] Lv, P., Xu, Y., Liu, Z., Li, G., Ye, B., (2020). Carbon dots doped lanthanide coordination polymers as dual-function fluorescent probe for ratio sensing Fe2+/3+ and ascorbic acid. Microchemical Journal, 152: 104255. https://doi.org/https://doi.org/10.1016/j.microc.2019.104255
[181] Yadav, S., Daniel, S., (2024). Green synthesis of zeroâdimensional carbon nanostructures in energy storage applicationsâa review. Energy Storage, 6(1): e500. https://doi.org/https://doi.org/10.1002/est2.500
[182] Lin, X., Xiong, M., Zhang, J., He, C., Ma, X., Zhang, H., Kuang, Y., Yang, M., Huang, Q., (2021). Carbon dots based on natural resources: Synthesis and applications in sensors. Microchemical Journal, 160: 105604. https://doi.org/https://doi.org/10.1016/j.microc.2020.105604
[183] Mercy, D. J., Kiran, V., Thirumalai, A., Harini, K., Girigoswami, K., Girigoswami, A., (2023). Rice husk assisted carbon quantum dots synthesis for amoxicillin sensing. Results in Chemistry, 6: 101219. https://doi.org/https://doi.org/10.1016/j.rechem.2023.101219
[184] Watcharamongkol, T., Khaopueak, P., Seesuea, C., Wechakorn, K., (2024). Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants. Carbon Resources Conversion, 7(2): 100206. https://doi.org/https://doi.org/10.1016/j.crcon.2023.100206
[185] Krishnaiah, P., Atchudan, R., Perumal, S., Salama, E.-S., Lee, Y. R., Jeon, B.-H., (2022). Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere, 286: 131764. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131764
[186] Achadu, O. J., Elizur, G. L., Boye, T. E., Park, E. Y., (2022). Green synthesis of carbon dots using expired agar for a label-free fluorescence signal-amplified detection of ferric ion utilizing oxalate functionalization. Materials Advances, 3(15): 6307-6315. https://doi.org/https://doi.org/10.1039/D2MA00567K
[187] Singh, J., Kaur, S., Lee, J., Mehta, A., Kumar, S., Kim, K.-H., Basu, S., Rawat, M., (2020). Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Science of the total environment, 720: 137604. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137604
[188] Senol, A. M., Bozkurt, E., (2020). Facile green and one-pot synthesis of seville orange derived carbon dots as a fluorescent sensor for Fe3+ ions. Microchemical Journal, 159: 105357. https://doi.org/https://doi.org/10.1016/j.microc.2020.105357
[189] Tadesse, A., Hagos, M., RamaDevi, D., Basavaiah, K., Belachew, N., (2020). Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: green synthesis, mercury (II) ion sensing, and live cell imaging. ACS omega, 5(8): 3889-3898. https://doi.org/https://doi.org/10.1021/acsomega.9b03175
[190] Wang, M., Shi, R., Gao, M., Zhang, K., Deng, L., Fu, Q., Wang, L., Gao, D., (2020). Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on orange peels-derived carbon dots modified with EDTA. Food chemistry, 318: 126506. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.126506
[191] Chellasamy, G., Arumugasamy, S. K., Govindaraju, S., Yun, K., (2022). Green synthesized carbon quantum dots from maple tree leaves for biosensing of Cesium and electrocatalytic oxidation of glycerol. Chemosphere, 287: 131915. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131915
[192] Zulfajri, M., Liu, K.-C., Pu, Y.-H., Rasool, A., Dayalan, S., Huang, G. G., (2020). Utilization of carbon dots derived from Volvariella volvacea mushroom for a highly sensitive detection of Fe3+ and Pb2+ ions in aqueous solutions. Chemosensors, 8(3): 47. https://doi.org/https://doi.org/10.3390/chemosensors8030047
[193] Arumugham, T., Alagumuthu, M., Amimodu, R. G., Munusamy, S., Iyer, S. K., (2020). A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustainable materials and technologies, 23: e00138. https://doi.org/https://doi.org/10.1016/j.susmat.2019.e00138
[194] Chaudhary, N., Gupta, P. K., Eremin, S., Solanki, P. R., (2020). One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. Journal of environmental chemical engineering, 8(3): 103720. https://doi.org/https://doi.org/10.1016/j.jece.2020.103720
[195] Atchudan, R., Edison, T. N. J. I., Perumal, S., Muthuchamy, N., Lee, Y. R., (2020). Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel, 275: 117821. https://doi.org/https://doi.org/10.1016/j.fuel.2020.117821
[196] Zhao, S., Song, X., Chai, X., Zhao, P., He, H., Liu, Z., (2020). Green production of fluorescent carbon quantum dots based on pine wood and its application in the detection of Fe3+. Journal of cleaner production, 263: 121561. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121561
[197] Hu, G., Ge, L., Li, Y., Mukhtar, M., Shen, B., Yang, D., Li, J., (2020). Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. Journal of Colloid and Interface Science, 579: 96-108. https://doi.org/https://doi.org/10.1016/j.jcis.2020.06.034
[198] Sahoo, N. K., Jana, G. C., Aktara, M. N., Das, S., Nayim, S., Patra, A., Bhattacharjee, P., Bhadra, K., Hossain, M., (2020). Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Materials Science and Engineering: C, 108: 110429. https://doi.org/https://doi.org/10.1016/j.msec.2019.110429
[199] Zhao, C., Li, X., Cheng, C., Yang, Y., (2019). Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt (II) ions and pH sensing. Microchemical Journal, 147: 183-190. https://doi.org/https://doi.org/10.1016/j.microc.2019.03.029
[200] Singh, A. K., Singh, V. K., Singh, M., Singh, P., Khadim, S. R., Singh, U., Koch, B., Hasan, S., Asthana, R., (2019). One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. Journal of Photochemistry and Photobiology A: Chemistry, 376: 63-72. https://doi.org/https://doi.org/10.1016/j.jphotochem.2019.02.023
[201] Zulfajri, M., Gedda, G., Chang, C.-J., Chang, Y.-P., Huang, G. G., (2019). Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS omega, 4(13): 15382-15392. https://doi.org/https://doi.org/10.1021/acsomega.9b01333
[202] Plácido, J., Bustamante-López, S., Meissner, K., Kelly, D., Kelly, S., (2019). Microalgae biochar-derived carbon dots and their application in heavy metal sensing in aqueous systems. Science of the total environment, 656: 531-539. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.393
[203] Pourreza, N., Ghomi, M., (2019). Green synthesized carbon quantum dots from Prosopis juliflora leaves as a dual off-on fluorescence probe for sensing mercury (II) and chemet drug. Materials Science and Engineering: C, 98: 887-896. https://doi.org/https://doi.org/10.1016/j.msec.2018.12.141