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Abstract 

Stochastic Delay Differential Equations (SDDEs) provide a powerful framework for modeling systems with memory 

effects. The objective of this study is to provide a numerical solution for stochastic delay differential equations, with a 

particular focus on the delayed Black-Scholes model, using the spectral collocation technique that employs radial basis 

functions. In this method, M-panels and r-point Newton-Cotes integration are used to approximate the It𝑜̂ integral. The 

main advantage of the proposed method is that it is easy to apply and results in an algebraic equations system that is 

directly solved by numerical methods. Additionally, we analyze the stability and accuracy of the scheme through error 

estimation and comparisons with benchmark methods. To validate the approach, several numerical examples, including 

both linear and nonlinear SDDEs, are provided, demonstrating the method’s fast convergence and computational 

robustness. The results highlight the effectiveness of the spectral collocation approach in handling stochastic delays, 

offering a reliable framework for financial and engineering applications where randomness and delay play a critical role. 

Keywords: Delay Black-Scholes model; Spectral collocation technique; Radial basis functions, Newton-Cotes 

integration; It𝑜̂ integral. 

1. Introduction 

1.1.The Role of Stochastic Differential Equations in 

Financial Analysis 

The role of stochastic differential equations in financial 

analysis has grown significantly, making them 

indispensable for assessing asset valuation. Several 

mathematical models are used for pricing, including the  

Black-Scholes model [1]. Black-Scholes and Merton 

pioneered the use of SDEs to model stock price 

dynamics [2]. Although this model is used today, it has 

been severely criticized, primarily due to the 

assumptions on which it is based. One of the most 

significant criticisms concerns the assumption that 

volatility is constant [2], [3]. Since empirical evidence 

shows that volatility is actually time-dependent so that it 

is not predictable. Sometimes researchers refer to 

incorrect predictions made by Black-Scholes model as a 

major limitation in its practical application. Recent 

developments in numerical methods have expanded our 

toolkit for financial modeling. While approaches like the 

homotopy perturbation method [4] and Adomian 

decomposition [5] have shown effectiveness for certain 

classes of nonlinear equations, they remain limited in 

their application to delay stochastic systems. This 

highlights the need for more specialized techniques in 

financial mathematics. 

1.2. Challenges in Modeling Real-World Phenomena 

Accurately capturing real-world financial behavior is 

complicated by the influence of historical factors on 

systems. The fundamental principle of cause and effect, 

which ties the future of the system solely to its current 

conditions rather than its past, does not apply in this 

context. on the other hand, the presence of 

environmental noise that causes disturbances in the 

system leads to the emergence of stochastic delay 

differential equations (SDDEs). 

1.3. Incorporating Historical Market Memory 

The reason for using SDDEs is institutional and expert 

traders rely on historical data (e.g., past stock prices) to 

forecast market trends and direct their investments. 

However, traditional and standard stochastic ordinary 

differential models do not account for feedback from this 

behavior. By incorporating delay parameter (𝜏) into the 

standard model, we integrated historical data and its 

feedback effects into our analysis. The SDDE provides 

a real formula for asset price estimation in an inefficient 

financial market than geometric Brownian motion based 

model. Research on these topics are available at [6,7,8, 

9] and [10-13].  So it is necessary to develop a model 

that takes into account the impact of the past events on 

the current and future states of the system. Stochastic 

delay differential equations are considered as a powerful 
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model and simulation tool for these systems and 

processes. Therefore, the evolution model of stock 

dynamics is as follows in  SDDE form [14]: 

 

{
  
 

  
 

 

𝑑𝑆(𝑡)=𝑓(𝑆(𝑡). 𝑆(𝑡-𝜏). 𝑡)𝑑𝑡 

 +𝑔(𝑆(𝑡). 𝑆(𝑡-𝜏). 𝑡)𝑑𝐵(𝑡).  𝑡 ∈ [0, 𝑇]. 

𝑆(𝑡)=𝜙(𝑡). 𝑡 ∈ [-𝜏. 0].   (1) 

where, the delay 𝜏>0 is fixed. 𝑅+=[0,∞), 𝑔:𝑅 × 𝑅 ×
𝑅+ → 𝑅 and 𝑓: 𝑅 × 𝑅 × 𝑅+ → 𝑅. 𝐵 is the Wiener 

process. If 𝑓 and 𝑔 are drift and diffusion respectively, 

𝜙(𝑡) is called the primary stochastic process. If the 

diffusion coefficient is a function of the stochastic 

process, we have a multiplicative noise. But if the 

diffusion coefficient is independent of the Stochastic 

process, it is called an additive noise. And finally, if the 

functions 𝑓 and 𝑔 are independent of time, we have an 

autonomous equation: 

 

𝑑𝑆(𝑡)=𝑓(𝑆(𝑡). 𝑆(𝑡-𝜏). 𝑡)𝑑𝑡 

+𝑔(𝑆(𝑡). 𝑆(𝑡-𝜏). 𝑡)𝑑𝐵(𝑡). 𝑡 ∈ [0. 𝑇]. 

𝑆(𝑡)=𝜙(𝑡). 𝑡 ∈ [-𝜏. 0].          (2) 

We can also have equation Eq. (3) in the following form, 

 

𝑑𝑆(𝑡)=𝑆(0)+∫ 𝑓
𝑡

0

(𝑆(𝑢). 𝑆(𝑢-𝜏))𝑑𝑢 

+∫ 𝑔
𝑡

0
(𝑆(𝑢). 𝑆(𝑢-𝜏))𝑑𝐵(𝑢).  

(3) 

1.4. Stability Analysis of Stochastic Delay 

Differential Equations 

Currently, there exists no efficient analytical solution or 

comprehensive numerical method for studying the 

stability of stochastic delay differential equations 

(SDDEs).Recently,some numerical approaches 

including Euler-Maruyama method [14], [15]and Theta 

method [16] have been employed to generate 

approximate solution of for these equations. 

1.5. Numerical Approach Using RBFs 

This paper aims to develop a numerical approach for 

solving (SDDEs) employing the spectral collocation 

technique that utilizes Radial Basis Functions (RBFs). 

Previous studies have demonstrated the effectiveness of 

RBFs in related problems. Notably, [17] proposed a 

stable collocation approach for neutral delay stochastic 

differential equations of fractional order, while [18] 

investigated the collocation method specifically for 

stochastic delay differential equations. Ahmadi et al. 

(2017) applied RBFs-based collocation method to solve 

stochastic fractional differential equations (SFDEs) [19]. 

Kosec and Sarler (2008) investigated RBFs-based 

collocation model for Draw flow [20]. Recent advances 

in spectral methods have shown particular promise, with 

[21] developing a spectral collocation approach for 

SPDEs with fractional Brownian motion. In financial 

applications, U. Pettrsson et al. [22] developed a 

numerical method to price option based on radial basis 

functions, while [23]  introduced an innovative RBF-

LOD method for solving stochastic diffusion equations. 

Reference [24]  employed radial basis functions method 

to solve fractional Schrödinger Black-Scholes equation 

in option pricing of financial problems. Researchers [25] 

created a technique utilizing radial basis functions to 

solve the Black-Scholes equation for both European and 

American options, evaluating European option pricing 

for multiple assets. This method evaluates European 

purchase pricing based on several assets. In the above 

researches, radial basis functions were applied to solve 

various differential equations. 

1.6. Prior Work and Research Objectives 

Building upon these foundations, radial basis functions 

have emerged as an effective tool for solving stochastic 

delay differential equations. The literature documents 

several numerical and spectral methods previously 

applied to such equations: Akhtari et al (2014) 

developed a weak continuous adaptive Euler-Maruyama 

method for (SDDEs) [15]. Akhtari (2019) subsequently 

conducted comprehensive analyses of convergence, 

stability, and numerical solutions for delay-dependent 

SDEs [26]. Yin and Gan (2015) considered Chebyshev 

spectral collocation method for solving stochastic delay 

differential equations [27]. Maleknejad et al. [28] 

proposed a composite function approach for multi-delay 

dynamic systems. A thesis [14] applied the Euler-

Maruyama method to SDDEs-based asset pricing 

models. 

1.7. Research Contributions 

The purpose of the present research is to extend spectral 

collocation method for solving stochastic delay 

differential equation especially delay Black-Scholes 

model based on radial basis functions. The organization 

of this paper is outlined as follows: Section 2 provides a 

set of key definitions relevant to solving stochastic delay 

differential equations. In Section 3, we detail significant 

operations, including the numerical solution and 

convergence analysis. Section 4 validates the approach 

through: numerical experiments to demonstrate the 

method’s effectiveness, and Section 5 concludes the 

paper. 
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2. Definitions and requirements 

In this section, we present an overview of the essential 

definitions and prerequisites needed for a 

comprehensive understanding of the following content. 

 2.1. Stochastic Integrals  

Stochastic integral is defined as follows: 

𝐼=∫ 𝑓
𝑡

0

(𝑠)𝑑𝐵(𝑠), 

where {𝐵(𝑡), 𝑡 ≥ 0} is Brownian motion and {𝑓(𝑠)} is a 

one-dimensional process. Since the trajectory of 

Brownian motion is not differentiable at any point, the 

standard definition of a stochastic integral does not 

apply. However, by leveraging the properties of 

Brownian motion, we can establish an integral. Such 

integrals were first defined in 1949 by It𝑜 and since then 

they are called It𝑜 integral [29]. 

Definition 2.1 .  Suppose 0 ≤ 𝑎<𝑏<∞. Denote by 

𝑀2([𝑎, 𝑏]; 𝑅) the space of all real-valued measurable 

functions {𝐹𝑡}𝑡≥0-adapted processes 𝑓={𝑓(𝑡)}𝑎≤𝑡≤𝑏  [29], 

such that 

∥ 𝑓 ∥𝑎,𝑏
2 =𝐸(∫ |

𝑏

𝑎

𝑓(𝑡)|2𝑑𝑡)<∞. (4) 

Definition 2.2. A real-valued stochastic process 

𝑔={𝑔(𝑡)}𝑎≤𝑡≤𝑏 is called a simple process when there 

exists a partition 𝑃={𝑎=𝑡0<𝑡1<. . .<𝑡𝑘=𝑏} of [𝑎, 𝑏] 
interval, and bounded random variables 𝜉𝑖, 0 ≤ 𝑖 ≤ 𝑘-1 

[29]., such that 

𝑔(𝑡)=∑𝜉𝑖

𝑘-1

𝑖=0

𝐼(𝑡𝑖,𝑡𝑖+1](𝑡). (5) 

We represent the space of such functions as 

𝑀0([𝑎, 𝑏]; 𝑅) 

Definition 2.3.  For simple processes of 𝑔 that are in 

the form of (5) in 𝑀0([𝑎, 𝑏]; 𝑅) [29], define 

∫ 𝑔
𝑏

𝑎

(𝑡)𝑑𝐵(𝑡)=∑𝑔

𝑘-1

𝑖=0

(𝑡𝑖)(𝐵𝑡𝑖+1-𝐵𝑡𝑖). (6) 

The above integral is defined as stochastic or It𝑜 integral 

according to Brownian motion. 

Definition 2.4. Suppose 𝑓 ∈ 𝑀2([𝑎, 𝑏]; 𝑅). The It𝑜 

integral of 𝑓 corresponding to {𝐵(𝑡)} [29] is defined as 

below 

∫ f(t)dBt= lim
n→∞

∫ gn(t)dBt   in    l2(Ω;R),
b

a

b

a

 
(7) 

in which a sequence of simple processes like {𝑔𝑛} is 

presented so that 

 

𝑙𝑖𝑚
𝑛→∞

𝐸∫ |
𝑏

𝑎

𝑓(𝑡)-𝑔𝑛(𝑡)|
2𝑑𝑡=0. (8) 

LEMMA 2.5. If 𝑔 ∈ 𝑀0([𝑎, 𝑏]; 𝑅), then: 

 

𝐸∫ 𝑔
𝑏

𝑎

(𝑡)𝑑𝐵(𝑡)=0, (9) 

𝐸|∫ 𝑔
𝑏

𝑎

(𝑡)𝑑𝐵(𝑡)|2=𝐸∫ |
𝑏

𝑎

𝑔(𝑡)|2𝑑𝑡. 
(10) 

The proof can be found in ([29],p.19). 

Property 1.  Suppose 𝑔(𝑠, 𝑤)=𝑔(𝑠) only depends on 𝑠 
and 𝑔 is continuous and bounded on the interval [0, 𝑡] 
[30].Then: 

 

∫ 𝑔
𝑡

0

(𝑠)𝑑𝐵𝑠=𝑔(𝑡)𝐵𝑡-∫ 𝐵𝑠

𝑡

0

𝑑𝑔𝑠. (11) 

2.2.Radial basis functions  

2.2.1 Definition of RBFs 

In this section, radial basis function (RBF) is introduced. 

Suppose we want to approximate a function like 𝑠(𝑥) in 

𝛺 ⊂ 𝑅𝑑 range, so we require the scattered points of 

𝑥1, . . . , 𝑥𝑁 ∈ 𝛺. the function 𝑠(𝑥) is approximated 

using the radial basis function, with the values 

𝑠(𝑥1), . . . , 𝑠(𝑥𝑁) in nodal points, 

𝑠(𝑥)=∑𝜆𝑖

𝑁

𝑖=1

𝜙(∥ 𝑥-𝑥𝑖 ∥), 𝑥 ∈ 𝛺, (12) 

where 𝜆𝑖 is unknown cofficients. In mathematics, RBF 

has real values 𝜙 and its value only depends on the 

distance between the input and some fixed point. So, 

𝜙(∥ 𝑥-𝑥𝑖 ∥) is usually the Euclidean distance. 

Interpolation is performed to calculate the coefficients 

𝜆𝑖. 
 



Accepted manuscript (author version) 
 

5 

 

𝑠(𝑥𝑖)=𝑓𝑖 , 𝑖=1, . . . , 𝑁, (13) 

After interpolation, a linear combination is obtained as 

follows: 

𝐴𝜆=𝑓, (14) 

where, 𝐴𝑖𝑗 , 𝜆, 𝑓 are defined as follows, 

𝐴𝑖𝑗=𝜙(∥ 𝑥𝑖-𝑥𝑗 ∥), 

𝜆=[𝜆1, … , 𝜆𝑁]
𝑇 , 

𝑓=[𝑓(𝑥1), . . . , 𝑓(𝑥𝑁)]
𝑇 . 

Examples of radial basis functions (RBFs) employed in 

this study are listed in Table1 [31]. 

Table 1. Common types of radial basis functions. 

𝑅𝐵𝐹 𝜙(𝑟) 

Gaussian 𝜙(𝑟)=𝑒-(𝜖𝑟)
2
 

Multiquadric 𝜙(𝑟)=√1+(𝜖𝑟)2 

Inverse 

Multiqudric 

1

√𝑟2+𝑐2
 

Linear 𝑟 

Cubic 𝑟3 

Thin Plate 

Spline 
𝑟2𝑙𝑛(𝑟) 

In this paper, the use of radial basis functions (RBFs) 

is scientifically justified based on several key criteria, 

including their high flexibility and exceptional 

performance in handling scattered data that a 

significant advantage for scientific problems. These 

functions are well studied theoretically and guarantee 

properties such as the existence of a unique solution. 

They exhibit excellent compatibility with other 

numerical methods, reduce problem solving time, and  

  deliver more stable and reliable results. 

2.3 Numerical integration: Newton-Cotes 

quadrature rules 

2.3.1 integration methods 

Integration encompasses a wide range of topics. The 

term quadrature rule refers to any numerical technique 

used to compute an approximation of an integral 𝐼𝑓 of a 

function 𝑓(𝑠): 

𝐼𝑓:=∫ 𝑊
𝑏

𝑎

(𝑠)𝑓(𝑠)𝑑𝑠, (15) 

here 𝑤(𝑠) is the weight function that has a well-defined 

analytical expression. In principle, a technique can 

utilize any accessible information regarding the function 

𝑓(𝑠), including the values of its derivatives at one or 

several specified points. However, when limited to nodal 

points {𝑥𝑖, 𝑖=1, . . . , 𝑟}, the approximation 𝑄 has the 

form: 

𝑄𝑟𝑓:=∑𝑤𝑖

𝑟

𝑖=1

𝑓(𝑥𝑖)=𝐼𝑓-𝐸𝑓, (16) 

where 𝐸𝑓 is the error. 

2.3.2 Newton-Cotes Rules 

The Newton-Cotes rules (𝑄𝑟) of degree 𝑟-1 use equally 

spaced points in [𝑎, 𝑏] to generate approximations 𝑄𝑟𝑓 

to 𝐼𝑓. However, these rules often exhibit unsatisfactory 

convergence properties: the error |𝐼𝑓-𝑄𝑟𝑓| may not 

converge smoothly to zero, even for functions that 

appear to be well-behaved 𝑓. For the common case 

where 𝑤(𝑠)=1, the rule is translation invariant and 

scales linearly. Comparing two rules: 

𝑄𝑟(0,1): {𝑥𝑖=
(𝑖-1)

(𝑟-1)
;𝑤𝑖} 

and 

𝑄𝑟(𝑎. 𝑎+(𝑟-1)ℎ): {𝑥𝑖=𝑎+(𝑖-1)ℎ; 𝑤𝑖
′}, 

then 

𝑤𝑖
′=ℎ𝑤𝑖. 

The 𝑀 -panel 𝑟-point integration rule is obtained 

estimates ∫ 𝑓
𝑏

𝑎
(𝑠)𝑑𝑠 with ℎ=

𝑏-𝑎

𝑀
: 

𝐼𝑓=∫ 𝑓
𝑏

𝑎

(𝑠)𝑑𝑠=∑∫ 𝑓
𝑎+𝑗ℎ

𝑎+(𝑗-1)ℎ

𝑀

𝑗=1

(𝑠)𝑑𝑠 

=∑𝑄𝑟

𝑀

𝑗=1

(𝑎+(𝑗-1)ℎ, 𝑎+𝑗ℎ)𝑓+𝐸𝑟,𝑀 , 

(17) 
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when 𝑟 is fixed and 𝑀 is increased and a sequence of 

approximations to 𝑓 is obtained, [32]. 

Property 2.  For Riemann integrable functions 

[32].and fixed 𝑟 as in (17): 

𝑙𝑖𝑚
𝑀→∞

𝐸𝑟,𝑀 (𝑓)=0. (18) 

3. Solution procedure  

This section deals with the approximation of the solution 

of equation (3) using the collocation spectral method 

based on 𝑅𝐵𝐹𝑠. 

𝑑𝑠(𝑡)=𝑠0+∫ 𝑓
𝑡

0

(𝑠(𝑢). 𝑠(𝑢-𝜏))𝑑𝑢 

+∫ 𝑔
𝑡

0
(𝑠(𝑢). 𝑠(𝑢-𝜏))𝑑𝐵(𝑢),  

 (19) 

so that, the approximation 𝑠 is a linear combination of a 

set of basis functions {𝜙𝑖(𝑡)}𝑖=0
𝑁  with respect to the 

coefficient𝜆𝑖, where 𝜆𝑖 is an unknown coefficient. To 

find 𝜆𝑖 we use equation (20). So, we have: 

𝑠(𝑡) ≃ 𝑠𝑁(𝑡)=∑𝜆𝑖

𝑁

𝑖=0

𝜙𝑖(𝑡). (20 ) 

sN(t)=s0+∫ f
t

0

(sN(u),sN(u-τ))du 

+∫ g
t

0

(sN(u),sN(u-τ))dB(u)+ResN(t),  t∈[0,1]. 

(21) 

 

here, Re𝑠𝑁(𝑡) is the residual error when 𝑡 ∈ [0,1] . This 

error is considered when we replace the equation Eq. (20)  

in Eq. (19) . Using Property 1, results driven: 

𝑠𝑁(𝑡)=𝑠0+𝑡 ∫ 𝑓
1

0

(𝑠𝑁(𝑡𝜐). 𝑠𝑁(𝑡𝜐-𝜏))𝑑𝜐 

+𝑔(𝑠𝑁(𝑡). 𝑠𝑁(𝑡 − 𝜏))𝐵(𝑡)

−𝑡 ∫ 𝑔′
1

0

(𝑠𝑁(𝑡𝜐). 𝑠𝑁(𝑡𝜐 − 𝜏))𝐵(𝑡𝜐)𝑑𝜐

+𝑅𝑒𝑠𝑁(𝑡),

 

(22) 

To solve the It𝑜 integral in Eq. (21), the Newton-Cotes 

rule is used as follows. Therefore, the integration 

interval is transferred to the interval of [0, 𝑡] into interval 

[0,1] . 

𝑢=𝑡𝜐, 𝜐 ∈ [0,1], 𝑢 ∈ [0, 𝑡].  

𝑠𝑁(𝑡)=𝑠0+𝑡 ∫ 𝑓
1

0

(𝑠𝑁(𝑡𝜐), 𝑠𝑁(𝑡𝜐-𝜏)) 

𝑑𝜐+(𝑔(𝑠𝑁(𝑡), 𝑠𝑁(𝑡-𝜏))𝐵(𝑡) 

-𝑡 ∫ 𝑔′
1

0

(𝑠𝑁(𝑡𝜐), 𝑠𝑁(𝑡𝜐-𝜏))𝐵(𝑡𝜐))𝑑𝜐  +Re𝑠𝑁(𝑡). 

(23) 

So, Eq. (23)  is rewritten as follows, 

𝑠𝑁(𝑡)=𝑠0+𝑔(𝑠𝑁(𝑡), 𝑠𝑁(𝑡-𝜏))𝐵(𝑡) 

+𝑡∑∑𝑤𝑖
(𝑗)

𝑟

𝑖=1

𝑀

𝑗=1

[𝑓(𝑠𝑁(𝑡𝜐𝑖
(𝑗)
), 𝑠𝑁(𝑡𝜐𝑖

(𝑗)
-𝜏)) 

-𝑔′(𝑠𝑁(𝑡𝜐𝑖
(𝑗)
), 𝑠𝑁(𝑡𝜐𝑖

(𝑗)
-𝜏))𝐵(𝑡𝜐𝑖

(𝑗)
)] 

+𝐸𝑟,𝑀+Re𝑠𝑁(𝑡).   

(24) 

Where, {𝜐𝑖
𝑗
}𝑖=1
𝑟 , {𝑤𝑖

𝑗
}𝑖=1
𝑟 , 𝑗 = 1, . . . , 𝑀 are explained in 

[33]. 𝐸𝑟,𝑀 is the error between the the Newton-Cotes rule 

and the exact integral. Finally, by replacing the 

collocated points 𝑡𝑙 in Eq. (24), we have: 

𝑠𝑁(𝑡𝑙)=𝑠0+𝑔(𝑠𝑁(𝑡𝑙), 𝑠𝑁(𝑡𝑙-𝜏))𝐵(𝑡𝑙) 

+𝑡𝑙∑∑𝑤𝑖
(𝑗)

𝑟

𝑖=1

𝑀

𝑗=1

[𝑓(𝑠𝑁(𝑡𝑙𝜐𝑖
(𝑗)
), 𝑠𝑁(𝑡𝑙𝜐𝑖

(𝑗)
-𝜏)) 

-𝑔′(𝑠𝑁(𝑡𝑙𝜐𝑖
(𝑗)
), 𝑠𝑁(𝑡𝑙𝜐𝑖

(𝑗)
-𝜏))𝐵(𝑡𝑙𝜐𝑖

(𝑗)
)].  

 

(25) 

Now, a set of arbitrary points {𝑡0, . . . , 𝑡𝑙} from the 

interval [𝑎, 𝑏] is utilized, which are called collocated 

points. To find the unknown coefficients we cosider, 

𝑡𝑙=𝑎+𝑙ℎ,   𝑙=0,1, . . . , 𝑁. 

By applying the above conditions, a system of linear 

equations is obtained. To solve the system of linear 

equations, the unknown coefficients are found with one 

of the numerical methods such as Newton method. As a 

result, the approximate solution of the equation is 

obtained. 

3.1. Convergence of Numerical Approximation  

This section analyzes the convergence behavior of the 

proposed method in solving the SDDE (3) , particularly 

the delay Black-Scholes model, is examined. The 

following definitions are provided. 



Accepted manuscript (author version) 
 

7 

 

DEFINITION 3.1. Functions 𝑓 and 𝑔 satisfy the local 

Lipschitz condition [14]. in Eq. (3), if for every integer 

of 𝑛 ≥ 1, there is a positive constant 𝐾𝑛 , so, 

|𝑓(𝑥1, 𝑦1 , 𝑡) − 𝑓(𝑥2, 𝑦2, 𝑡)| ∨ |𝑔(𝑥1, 𝑦1, 𝑡)
− 𝑔(𝑥2, 𝑦2, 𝑡)|
≤ 𝐾𝑛(|(𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|), 

For every 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ ℝ with |𝑥1| ∨ |𝑦1| ∨ |𝑥2| ∨
|𝑦2| ≤ 𝑛 and for every 𝑡 ∈ ℝ+ , where |𝑥| ∨ |𝑦|=max 

(|𝑥| ∨ |𝑦|). 
 

DEFINITION 3.2. Functions 𝑓 and 𝑔 satisfy the linear 

growth condition [14]. in Eq. (3).  If there is a positive 

constant 𝐾, so, 

|𝑓(𝑥, 𝑦, 𝑡)| ∨ |𝑔(𝑥, 𝑦, 𝑡)| ≤ 𝐾(1+|𝑥|+|𝑦|). 

For every (𝑥, 𝑦, 𝑡) ∈ 𝑅 × 𝑅 × 𝑅+. 

 
THEOREM 3.3. (Convergence of Numerical  

Approximation) Let the following assumptions hold: 

• The exact solution 𝑠(𝑡) of the SDDE (3) satisfies: 

|𝑠|
𝐿2
2 :=𝐸[|𝑠(𝑡)|2]<∞,∀𝑡 ∈ [0, 𝑇]. 

• The delay 𝜏>0 is fixed and satisfies 𝜏<𝑇. 

• 𝑡 ∈ [0. 𝑇],          𝑇 ≥ 𝜏, 

• For any stochastic process 𝑠(𝑡) define the time 

interval [0, 𝑇], we define the 𝐿2 norm as: 

|𝑠|
𝐿2(𝛺)

:=(𝐸[|𝑠|2])
1
2. 

• The constants 𝐾1, 𝐾2 from definition (5) satisfy: 

𝐾1
2+𝐾2

2>0. 

Then, the numerical solution 𝑠𝑁(𝑡) converges to 𝑠(𝑡) 
in the 𝐿2-sense: 

𝑙𝑖𝑚
𝑁→∞

| 𝑠-𝑠𝑁 |
𝐿2

=0. 

Proof: Let 𝜀𝑁=𝑠(𝑡)-𝑠𝑁(𝑡) be the absolute error between 

the exact solution 𝑠(𝑡) and the numerical solution 𝑠𝑁(𝑡) 
obtained using the spectral collocation technique that 

utilizes (RBFs), the exact solution satifies the (SDDE): 

𝑠(𝑡)=𝑠0+∫ 𝑓
𝑡

0

(𝑠(𝜐), 𝑠(𝜐-𝜏))𝑑𝜐 (26) 

+∫ 𝑔
𝑡

0

(𝑠(𝜐), 𝑠(𝜐-𝜏))𝑑𝐵(𝜐), 

and the numerical solution 𝑠𝑁(𝑡) satisfies: 

𝑠𝑁(𝑡)=𝑠0+∫ 𝑓
𝑡

0

(𝑠𝑁(𝜐), 𝑠𝑁(𝜐-𝜏))𝑑𝜐 

+∫ 𝑔
𝑡

0

(𝑠𝑁(𝜐), 𝑠𝑁(𝜐-𝜏))𝑑𝐵(𝜐) 

+Re𝑠𝑁(𝑡). 

(27) 

Where Re𝑠𝑁(𝑡) is the residual term, the absolute error 

can be expressed as: 

εN(t)=∫ f
t

0

(s(υ),s(υ-τ))dυ+∫ g
t

0

(s(υ),s(υ-τ))dB(υ) 

−∫ 𝑓
𝑡

0
(𝑠𝑁(𝜐), 𝑠𝑁(𝜐 − 𝜏))𝑑𝜐 − ∫ 𝑔

𝑡

0
(𝑠𝑁(𝜐), 𝑠𝑁(𝜐 −

𝜏))𝑑𝐵(𝜐) + 𝐸𝑟,𝑀 + 𝑅𝑒𝑠𝑁(𝑡),                                      (28) 

In this method, 𝐸𝑟,𝑀 measures the error between the 

Newton-Cotes quadrature (with parameters 𝑀 and 𝑟, 

where 𝑀 is the number of subintervals and 𝑟 is the 

number of points) and the exact value of the integral. 

εN(t)=∫ f
t

0

(s(υ),s(υ-τ))-f(sN(υ),sN(υ-τ))dυ 

+∫ 𝑔
𝑡

0
(𝑠(𝜐), 𝑠(𝜐 − 𝜏)) − 𝑔(𝑠𝑁(𝜐), 𝑠𝑁(𝜐 − 𝜏))𝑑𝐵(𝜐) +

𝐸𝑟,𝑀 + 𝑅𝑒𝑠𝑁(𝑡),                                                                (29) 

it is concluded from Eq. (29) that 

𝜀𝑁(𝑡) = 𝜇1(𝑡) + 𝜇2(𝑡) + 𝜇3(𝑡). (30) 

where, 

 μ1(t)=∫ f
t

0

(s(υ),s(υ-τ))-f(sN(υ),sN(υ-τ))dυ, (31) 

μ2(t)=∫ g
t

0

(s(υ),s(υ-τ))-g(sN(υ), 

sN(υ − τ))dB(υ), 

(32) 

and 
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𝜇3(𝑡) = 𝐸𝑟,𝑀 + 𝑅𝑒𝑠𝑁(𝑡).   (33) 

We find upper bound for Eqs. (31), (32) and (33) 

|μ1(t)|≤∫ |
t

0

f(s(υ),s(υ-τ)) 

-f(sN(υ),sN(υ-τ))|dυ. 

(34) 

According to Lipschitz property in the definition 3.1, 

we have 

|μ1(t)|≤∫ k1

t

0

(|s(υ)-sN(υ)|+|s(υ-τ)-

sN(υ-τ)|)dυ, 

(35) 

|μ1(t)|≤k1(∫ |
t

0

s(υ)-sN(υ)|dυ+∫ |
t

0

s(υ-τ)-

sN(υ-τ)|dυ), 

(36) 

consequently, 

|μ1(t)|≤k1(∫ |
t

0

εN(υ)|dυ 

+∫ |
t

0

εN(υ-τ)|dυ).  

(37) 

Using the change of variable 𝑢 = 𝜐 − 𝜏, the second 

integral of Eq. (37) becomes: 

∫ |
𝑡

0

𝜀𝑁(𝜐 − 𝜏) |𝑑𝜐 = ∫ |
𝑡−𝜏

−𝜏

𝜖𝑁(𝑢)| 𝑑𝑢,          

for 𝑡 ≥ 𝜏, 

∫ |
t-τ

-τ

ϵN(u)|du=∫ |
0

-τ

ϵN(u)|du+∫ |
t-τ

0

ϵN(u)|du, 

we combine the integrals: 

|μ1(t)|≤k1(∫ |
t

0

εN(υ)|dυ (38) 

+∫ |
t-τ

0

εN(u)|du), 

and we can further bound: 

|𝜇1(𝑡)| ≤ 2𝑘1∫ |
𝑡

0

𝜀𝑁(𝑢)|𝑑𝑢,  (39) 

squaring both sides and according to the Cauchy-

Schwarz inequality, it is stated that: 

|𝜇1(𝑡)|
2 ≤ 4𝑘1

2(∫ |
𝑡

0

𝜀𝑁(𝑢)|𝑑𝑢)
2, (40) 

|𝜇1(𝑡)|
2 ≤ 4𝑘1

2𝑡 ∫ |
𝑡

0

𝜀𝑁(𝑢)|
2𝑑𝑢, (41) 

so, we have: 

∥ 𝜇1 ∥≤ 2𝑘1√𝑡 ∥ 𝜀𝑁 ∥𝐿2.  (42) 

We obtain an upper bound for equation Eq. (32) 

|μ2(t)|≤∫ |
t

0

g(s(υ),s(υ-τ))-g(sN(υ) 

,sN(υ-τ))|dB(υ),  

(43) 

according to the Lipschitz property in definition 3.1, 

the following holds: 

|μ2(t)|≤∫ k2

t

0

(|s(υ)-sN(υ)| 

+|s(υ-τ)-sN(υ-τ)|)dB(υ),  

(44) 

|μ2(t)|≤k2[ ∫ |
t

0

εN(υ)|dB(υ) 

+∫ |
t

0

εN(υ-τ)|dB(υ)],  

(45) 

using Lemma1(itô isometry) and squaring, it is 

concluded that: 
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E[|μ2(t)|
2]≤k2

2E[∫ (
t

0

|εN(υ)| 

+|ϵN(υ-τ)|)
2],  

(46) 

like 𝜇1 using the change of variable and interval, we 

have: 

𝔼[|𝜇2(𝑡)|
2] ≤ 4𝑘2

2∫ 𝔼
𝑡

0

[|𝜀𝑁(𝑢)|
2]𝑑𝑢,  (47) 

so, we have 

∥ 𝜇2 ∥≤ 2𝐾2 ∥ 𝜀𝑁 ∥𝐿2 .  (48) 

For 𝜇3, it is clear 

∥ 𝜇3 ∥≤∥ 𝑅𝑒𝑠𝑁 ∥ +∥ 𝐸𝑟,𝑀 ∥.  (49) 

According to Eq. (30) and the following inequality: 

(𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2),  (50) 

By combining the results of equations (42) 

(deterministic part), (48) (stochastic part), (49) (method 

error), and the fundamental inequality (50), we arrive at 

the following key: 

∥ 𝜀𝑁 ∥
2≤ 3(∥ 𝜇1 ∥

2 +∥ 𝜇2 ∥
2 +∥ 𝜇3 ∥

2),  (51) 

∥εN∥
2≤3(4K1

2(t)∥εN∥
2+4K2

2∥εN∥
2 

+∥ResN∥
2+∥Er,M∥

2), 

(52) 

consequently, 

∥εN∥
2≤3(4(K1

2(t)+K2
2))∥εN∥

2 

+∥ResN∥
2+∥Er,M∥

2),    

(53) 

and 

∥εN∥
2≤12(K1

2(t)+K2
2)∥εN∥

2 (54) 

+3∥ResN∥
2+3∥Er,M∥

2), 

from Eq. (54), we obtain the following equation: 

∥ 𝜀𝑁 ∥
2 (1 − 12(𝐾1

2(𝑡) + 𝐾2
2)) ≤ 3(

∥ 𝑅𝑒𝑠𝑁 ∥
2 +∥ 𝐸𝑟,𝑀 ∥

2),  
(55) 

finally, according to 12(𝐾1
2(𝑡) + 𝐾2

2) < 1,we have 

∥ 𝜀𝑁 ∥
2≤

3(∥ 𝑅𝑒𝑠𝑁 ∥
2 +∥ 𝐸𝑟,𝑀 ∥

2)

(1 − 12(𝐾1
2(𝑡) + 𝐾2

2))
. (56) 

because the spectral method converges as N increases 

and the Newton-Cotes method becomes more accurate 

as M  increases. 

• ‖𝑅𝐸𝑆𝑁‖ → 0 

• ‖𝐸𝑟,𝑀‖ → 0 

Consequently, ∥ 𝜀𝑁 ∥→ 0, and convergence is 

achieved.    

4.Numerical results  

In this section, we present various numerical examples 

of stochastic delay differential equations, highlighting 

the accuracy and effectiveness of our proposed method. 

All calculations were performed using Maple 2019 

software on a laptop with the following specifications: 

Intel ®Core i4 processor, 2 ⋅ 10. GHz, 8 GB RAM. In 

this paper, to evaluate the accuracy of the proposed 

method, the absolute error is calculated as follows: 

𝜀𝑁 = |𝑠(𝑡) − 𝑠𝑁(𝑡)|, 

This error has been computed for various examples and 

different radial basis functions such as multiquadric and 

Gaussian functions. The results demonstrate the rapid 

convergence and high accuracy of the proposed method. 

Here, 𝑠(𝑡) represents the solution of equation (3) for 

𝒯 = 500. Since equation (3) does not have an exact 

solution, we consider this numerical solution as the 

reference exact solution for the problem. Using the 

spectral collocation method with a sufficiently small 

step size Δ𝜁 =
1

𝒯
 we obtain the approximate solution 

𝑠𝑁(𝑡). 

Example 4.1 The linear SDDE is considered [15].: 

{
dS(t)=(aS(t)+bS(t-1))dt+(β1+β2S(t)+β3S(t-1))dW(t),t∈[0,2]

S(t)=1+t,  t∈[-1,0],                                                                    (57)
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where, 𝑎 and 𝑏 are real values, and {𝛽𝑖 = 0, 𝛽𝑗 = 0, 𝛽𝑘 =

1} in which 𝑖, 𝑗, 𝑘 ∈ {1,2,3} with 𝑖 ≠ 𝑗 ≠ 𝑘. We take 𝑎 =
−2 and 𝑏 = 0.1 . 𝑊(𝑡) is a m-dimensional standard 

wiener process(𝑚 = 1). For the case of SDDE (57) with 

additive noise (i.e., 𝛽2 = 𝛽3 = 0) the exact solution on 

[0,1] is given by 

S(t)=eat(1+
b

a2
)-(
b

a
)t-

b

a2
 

+β1e
at∫ e-as

t

0

dW(s), 

The numerical solution of the SDDE (57) was obtained 

by applying the method outlined in Section 3 . Keep in 

mind that, 𝑁 represents the total number of collocation 

points, while 𝑟 denotes the number of points and 𝑀 

signifies the number of panels used in the Newton-Cotes 

quadrature. So, we adjust 𝑟 = 8, 𝑀 = 10, delay 𝜏 = 1, 

𝑎 = −2 , 𝑏 = 0.1. In this example, multiquadric and 

Gaussian radial basis functions have been employed. 

The rationale for this selection is as follows: The 

multiquadric function have High accuracy in 

approximating smooth functions, Flexibility through 

shape parameter tuning to control accuracy and stability. 

The Gaussian function provides: Adaptability to random 

components, Rapid convergence when approximating 

functions with abrupt changes, Lower sensitivity to 

shape parameters compared to multiquadric functions. 

Numerical errors with different values of 𝑁 are 

presented in the following Tables 2 , 3 and 4 and CPU 

times show that the proposed method is fast and easy to 

implement. Additionally, Table 5 shows the 𝑙2 error for 

different 𝑁 values using radial basis function 

approximations. 

Example 4.2 Consider the following nonlinear SDDE 

[15].: 

{
𝑑𝑆(𝑡) = 𝑎𝑆(𝑡)(1 − 𝑆(𝑡 − 1))𝑑𝑡 + 𝑏𝑆2(𝑡)𝑑𝑊(𝑡),  𝑡 ∈ [0,10],  

𝑆(𝑡) = 1 + 𝑡,    𝑡 ∈ [−1,0].                                                  (58)
 

To address this example, we apply the proposed method 

with 𝜏 = 1, 𝑏 = 0.01 and 𝑎 = 1. Table 6 shows the 

absolute errors, mean errors and CPU times of the 

proposed method. To show that the proposed method is 

better, the results of Table 6 are compared with the 

results of adaptive algorithm method [15] in Table 7. 

Example 4.3 The SDDE is considered: 

{
dS(t)=[aS(t)+bS(t-1)]dt+[cS(t)+dS(t-1)]dW(t), t∈[0,2],

S(t)=1+t,  t∈[-1,0].                                                                    (59)
 

To solve this example, we implement the proposed 

method with two sets of parameters as follows: 𝑎 =
−2, 𝑏 = 0.1, 𝑐 = 0, 𝑑 = 0.5 and 𝑎 = −2, 𝑏 = 0.1, 𝑐 =
0.5 and 𝑑 = 0 with 𝜏 = 1. The following Tables 8 and 

9 show the absolute errors, mean errors and CPU times 

of the proposed method. 

Example 4.4 The linear SDDE is considered [14]: 

{
dS(t)=[-3S(t)+2e-1S(t-1)+3-2e-1]dt+[cS(t)+dS(t-1)]dW(t),t∈[0,2],

S(t)=1+e-t,  t∈[-1,0]                                                                     (60)
 

In this example, we examine the effect of different 

values of the delay: 𝜏 = 1, 𝜏 =
1

2
, 𝜏 =

1

16
 and no-delay 

𝜏 = 0. So, we set two groups of parameters: 𝑎 =
−3, 𝑏 = 2𝑒−1, 𝑐 = 0.1, 𝑑 = 0.1 and 𝑎 = −3, 𝑏 = 2𝑒−1, 
𝑐 = 0.1, 𝑑 = 0.01, In Fig.1, four colorful curves start 

from the point of (0,2). Our goal is to show the effect of 

different delays on the diffusion part. According to 

Fig.1, there is a significant change before and after the 

point of (0,2). The red curve is lower than other curves. 

A notable change is observed both before and after this 

point. The green curve is very close to red curve when 

the delay length of 
1

16
. Therefore, we can infer that a 

minor disturbance during the delay will not case in a 

substantial change; however, as the delay increases from 
1

16
 to 

1

2
 or 1, The curve shifts upward and diverges from 

both the green and red curve. The curve of 𝜏 = 1 is 

above the rest of curves, showing that the higher the 

delay value, the higher its effect. 
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Table2. Error of the proposed method in Example 4.1 various value of N with β₁=1, β₂=0, β₃=0. 

 
 𝜙(𝑟) = √(𝑟² + 𝑐²)  .  c = 0.1 𝜙(𝑟) = 𝑒−(𝑐𝑟)

2
 .  c = 1 

t N=2² N=2⁴ N=2⁵ N=2² N=2⁴ N=2⁵ 

0.0 7.25e-04 5.35e-04 3.14e-04 3.00e-03 2.90e-03 2.00e-03 

0.2 3.80e-03 2.14e-03 1.05e-03 1.16e-02 1.07e-02 1.00e-02 

0.4 8.95e-03 3.35e-03 2.21e-03 5.43e-02 3.02e-02 1.22e-02 

0.6 1.05e-02 1.79e-03 1.02e-03 7.20e-02 2.70e-02 1.04e-02 

0.8 8.95e-03 1.97e-03 1.75e-03 5.75e-02 3.00e-02 2.25e-02 

1.0 1.10e-02 1.09e-03 1.00e-03 2.99e-02 1.56e-02 1.45e-02 

1.2 2.25e-02 1.56e-03 1.01e-03 2.70e-02 1.98e-02 1.79e-02 

1.4 3.48e-02 4.36e-03 2.15e-03 5.22e-02 4.78e-02 2.59e-02 

1.6 2.99e-02 1.89e-03 1.00e-03 7.39e-02 1.47e-02 1.37e-02 

1.8 8.40e-03 2.45e-03 1.90e-03 5.70e-02 2.00e-02 2.96e-03 

2.0 3.35e-04 2.48e-04 1.33e-04 2.68e-02 1.88e-02 1.39e-02 

mean of error 4.32e-03 1.26e-03 1.10e-03 1.41e-02 1.26e-02 1.23e-02 

CPU time(s) 16.14 17.37 26.60 14.62 14.91 18.96 

 

Table 3. Error of the proposed method in Example 4.1 for various value of N with β₁=0, β₂=1, β₃=0. 

 𝜙(𝑟) = √(𝑟² + 𝑐²)  .  c = 0,1  𝜙(𝑟) = 𝑒−(𝑐𝑟)
2
  .    c = 0,123 

t N=2⁴ N=2⁵ N=2⁶ N=2⁴ N=2⁵ N=2⁶ 

0.0 6.78e-04 5.94e-04 4.04e-04 5.46e-02 2.34e-02 1.90e-02 

0.2 1.63e-02 1.01e-02 0.86e-02 1.95e-01 5.98e-02 3.40e-02 

0.4 5.10e-03 4.49e-03 1.55e-03 1.16e-01 2.40e-02 2.07e-02 

0.6 4.95e-03 2.98e-03 2.01e-03 1.10e-02 1.10e-02 1.00e-02 

0.8 3.02e-03 1.07e-03 0.65e-03 4.25e-02 3.11e-02 2.95e-02 

1.0 3.10e-03 2.56e-03 1.90e-03 4.87e-02 2.65e-02 1.18e-02 

1.2 2.44e-03 2.29e-03 1.31e-03 5.60e-03 3.46e-03 2.94e-02 

1.4 3.59e-03 3.39e-03 3.00e-03 1.46e-02 1.29e-02 1.19e-02 

1.6 4.00e-03 3.99e-03 2.27e-03 7.67e-02 5.27e-02 5.21e-02 

1.8 0.98e-03 0.76e-03 0.16e-03 5.59e-02 4.77e-02 4.00e-02 

2.0 4.37e-04 3.78e-04 1.33e-04 2.61e-01 6.10e-02 1.73e-02 

mean of error 1.81e-02 1.60e-02 1.30e-02 1.84e-02 1.76e-02 1.30e-02 

 

Table 4. Error of the proposed method in Example 4.1 for various N with β₁=0, β₂=0, β₃=1. 

 𝜙(𝑟) = √(𝑟² + 𝑐²)  .  c = 0,01 𝜙(𝑟) = 𝑒−(𝑐𝑟)
2
  .    c = 0,2 

t N=2² N=2⁴ N=2⁵ N=2² N=2⁴ N=2⁵ 

0.0 1.13e-03 1.05e-03 1.00e-03 3.10e-02 2.25e-03 1.12e-03 

0.2 3.52e-03 2.31e-03 1.70e-03 1.80e-02 6.18e-03 3.21e-03 

0.4 8.76e-03 6.12e-03 4.26e-03 3.00e-02 1.32e-02 1.04e-02 

0.6 1.17e-02 1.33e-03 1.25e-03 1.92e-02 6.00e-03 3.94e-03 

0.8 1.23e-02 3.62e-03 1.87e-03 2.03e-02 1.96e-02 1.44e-02 

1.0 1.34e-02 6.94e-03 3.19e-03 2.60e-02 1.56e-02 1.34e-02 

1.2 1.77e-02 4.27e-03 1.53e-03 3.84e-02 3.02e-03 1.23e-03 

1.4 2.20e-02 5.29e-03 1.68e-03 4.10e-02 2.05e-02 1.41e-02 

1.6 1.90e-02 4.70e-03 3.70e-03 4.50e-02 2.20e-02 1.06e-02 

1.8 8.75e-03 2.45e-03 2.32e-05 2.40e-02 1.22e-02 4.73e-03 

2.0 5.17e-04 2.11e-04 2.65e-05 1.25e-02 4.59e-03 6.48e-04 

mean of error 4.07e-03 2.79e-03 1.27e-03 1.64e-02 1.76e-03 1.10e-03 

 

Table 5.    𝒍𝟐  Error for different values of N with radial basis function with  𝜷𝟏 = 𝟎, 𝜷𝟐 = 𝟏, 𝜷𝟑 = 𝟎 of Example 4.1. 

N=2³ N=2⁴ N=2⁵ N=2⁶ 

1.92e-02 1.81e-02 1.60e-02 1.30e-02 
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Table 6. Error of proposed method with with 𝒂 = 𝟏 and 𝒃 = 𝟎. 𝟎𝟏 for example 4.2. 

 𝜙(𝑟) = √(𝑟² + 𝑐²)  .  c = 2,1 𝜙(𝑟) = 𝑒−(𝑐𝑟)
2
  .    c = 2,5 

t N=5 N=10 N=5 

0.0 7.25e-06 6.45e-06 7.24e-06 

0.2 1.56e-04 1.35e-04 6.17e-06 

0.4 2.74e-04 1.43e-04 3.76e-06 

0.6 3.48e-04 1.18e-04 1.05e-07 

0.8 3.81e-04 2.48e-04 4.72e-08 

1.0 3.74e-04 1.56e-04 4.72e-06 

1.2 3.31e-04 1.78e-04 1.30e-05 

1.4 2.53e-04 1.36e-04 3.97e-04 

1.6 1.41e-04 1.23e-04 8.83e-04 

1.8 6.34e-06 5.26e-04 1.43e-03 

2.0 1.91e-04 1.58e-04 1.68e-03 

mean of error 1.71e-04 1.47e-04 6.00e-06 

CPU time(s) 19.50 49.27 19.56 
 

 

Table 7. The results of adaptive algorithm [15] for example 4.2 with 𝒂 = 𝟏, 𝒃 = 𝟎. 𝟎𝟏 

k h M 𝐸𝑇 𝐸𝑠1 𝐸𝑇𝑠 𝐸𝑠2 𝜀𝑐 E 

1 0.3000 10 0.0603 0.0156 0.0036 - 0.1385 0.0795 

2 0.3000 116 0.0599 0.0045 0.0009 - 0.1213 0.0653 

3 0.0520 116 0.0013 0.0041 0.000 - 0.0047 0.0054 

1 0.0520 116 0.0013 - 0.000 0.0041 0.0047 0.0054 

 

Table 8. Error of proposed method with a=-2, b=0.1, c=0, d=0.5 for example 4.3. 

t ϕ(r)=√(r²+c²), c=1 (N=10) ϕ(r)=e⁻⁽ᶜʳ⁾², c=1.5 (N=10) 

0.0 6.68e-04 3.68e-05 

0.2 1.72e-03 7.98e-04 

0.4 3.96e-03 2.18e-03 

0.6 5.82e-03 3.98e-03 

0.8 7.12e-03 5.45e-03 

1.0 7.12e-03 5.45e-03 

1.2 7.66e-03 6.42e-03 

1.4 7.02e-03 6.58e-03 

1.6 6.06e-03 6.55e-03 

1.8 5.03e-03 6.44e-03 

2.0 4.19e-03 5.34e-03 

mean of error 5.83e-03 5.34e-03 

CPU time(s) 19.78 16.03 

 

Table 9.  Error of proposed method with a=-2, b=0.1, c=0.5, d=0 for example 4.3. 

t ϕ(r)=√(r²+c²), c=3.4 (N=10) ϕ(r)=e⁻⁽ᶜʳ⁾², c=1.4 (N=10) 

0.0 3.62e-04 3.62e-04 

0.2 3.38e-05 1.41e-04 

0.4 3.65e-04 2.45e-04 

0.6 5.70e-04 7.05e-04 

0.8 6.22e-04 7.65e-04 

1.0 5.20e-04 1.18e-04 

1.2 3.09e-04 9.63e-04 

1.4 7.37e-05 4.68e-04 

1.6 7.53e-05 1.19e-04 

1.8 3.72e-05 3.39e-04 

2.0 2.41e-04 6.95e-04 

mean of error 3.59e-04 7.05e-04 

CPU time(s) 18.26 17.73 
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Figure 1. The graph of delay effect SDDE with N=20, 𝑐 = 0.1 and 𝑑 = 0.01 (left) and the graph of delay effect SDDE N=20, c=0.1 and d=0.1 

(right). 

5. Conclusion 

Finding an exact solution for many SDDEs is difficult. Therefor, we used a spectral collocation method based on 

radial basis functions (RBFs). The radial basis functions in our approach include Multiquadric and Gaussian 

functions, among others. In this method, the 𝑀-panel and 𝑟-point Newton-Cotes integration were used to estimate 

the 𝐼𝑡𝑜̂ integral. We performed a convergence assessment of the proposed approach and provided multiple 

examples including both linear and nonlinear cases, to demonstrate the effectiveness and accuracy of the method. 
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