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Abstract

Stochastic Delay Differential Equations (SDDEs) provide a powerful framework for modeling systems with memory
effects. The objective of this study is to provide a numerical solution for stochastic delay differential equations, with a
particular focus on the delayed Black-Scholes model, using the spectral collocation technique that employs radial basis

functions. In this method, M-panels and r-point Newton-Cotes integration are used to approximate the It integral. The
main advantage of the proposed method is that it is easy to apply and results in an algebraic equations system that is
directly solved by numerical methods. Additionally, we analyze the stability and accuracy of the scheme through error
estimation and comparisons with benchmark methods. To validate the approach, several numerical examples, including
both linear and nonlinear SDDEs, are provided, demonstrating the method’s fast convergence and computational
robustness. The results highlight the effectiveness of the spectral collocation approach in handling stochastic delays,
offering a reliable framework for financial and engineering applications where randomness and delay play a critical role.

Keywords: Delay Black-Scholes model; Spectral collocation technique; Radial basis functions, Newton-Cotes
integration; It0 integral.

1. Introduction 1.2. Challenges in Modeling Real-World Phenomena

Accurately capturing real-world financial behavior is
complicated by the influence of historical factors on
systems. The fundamental principle of cause and effect,
which ties the future of the system solely to its current

1.1.The Role of Stochastic Differential Equations in
Financial Analysis

The role of stochastic differential equations in financial
analysis has grown significantly, making them
indispensable for assessing asset valuation. Several
mathematical models are used for pricing, including the
Black-Scholes model [1]. Black-Scholes and Merton
pioneered the use of SDEs to model stock price
dynamics [2]. Although this model is used today, it has
been severely criticized, primarily due to the
assumptions on which it is based. One of the most
significant criticisms concerns the assumption that
volatility is constant [2], [3]. Since empirical evidence
shows that volatility is actually time-dependent so that it
is not predictable. Sometimes researchers refer to
incorrect predictions made by Black-Scholes model as a
major limitation in its practical application. Recent
developments in numerical methods have expanded our
toolkit for financial modeling. While approaches like the
homotopy perturbation method [4] and Adomian
decomposition [5] have shown effectiveness for certain
classes of nonlinear equations, they remain limited in
their application to delay stochastic systems. This
highlights the need for more specialized techniques in
financial mathematics.

conditions rather than its past, does not apply in this
context. on the other hand, the presence of
environmental noise that causes disturbances in the
system leads to the emergence of stochastic delay
differential equations (SDDEs).

1.3. Incorporating Historical Market Memory

The reason for using SDDE:s is institutional and expert
traders rely on historical data (e.g., past stock prices) to
forecast market trends and direct their investments.
However, traditional and standard stochastic ordinary
differential models do not account for feedback from this
behavior. By incorporating delay parameter (T) into the
standard model, we integrated historical data and its
feedback effects into our analysis. The SDDE provides
a real formula for asset price estimation in an inefficient
financial market than geometric Brownian motion based
model. Research on these topics are available at [6,7,8,
9] and [10-13]. So it is necessary to develop a model
that takes into account the impact of the past events on
the current and future states of the system. Stochastic
delay differential equations are considered as a powerful
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model and simulation tool for these systems and
processes. Therefore, the evolution model of stock
dynamics is as follows in SDDE form [14]:

dS(t)=f(S(t).S(t-1).t)dt

+g(S(t).S(t-t).t)dB(t). t € [0,T].

S(®)=¢ (). t €[-7.0]. (1

where, the delay >0 is fixed. R,=[0, ), g:R X R X
R.—>R and ftRXRXR,—>R. B is the Wiener
process. If f and g are drift and diffusion respectively,
¢(t) is called the primary stochastic process. If the
diffusion coefficient is a function of the stochastic
process, we have a multiplicative noise. But if the
diffusion coefficient is independent of the Stochastic
process, it is called an additive noise. And finally, if the
functions f and g are independent of time, we have an
autonomous equation:

dS(t)=f(S(t).S(t-7).t)dt

+g(S(t).S(t-1).t)dB(t). t € [0.T].

S(O)=¢(0). t € [-7.0]. )

We can also have equation Eq. (3) in the following form,

dS(6)=S(0)+ f ' (5. S (D)) du
0 (3)

+ [ g (Sw).S(u-1))dB ().

1.4. Stability Analysis of Stochastic Delay
Differential Equations

Currently, there exists no efficient analytical solution or
comprehensive numerical method for studying the
stability of stochastic delay differential equations
(SDDEs).Recently,some numerical approaches
including Euler-Maruyama method [14], [15]and Theta
method [16] have been employed to generate
approximate solution of for these equations.

1.5. Numerical Approach Using RBFs

This paper aims to develop a numerical approach for
solving (SDDEs) employing the spectral collocation
technique that utilizes Radial Basis Functions (RBFs).

Previous studies have demonstrated the effectiveness of
RBFs in related problems. Notably, [17] proposed a
stable collocation approach for neutral delay stochastic
differential equations of fractional order, while [18]
investigated the collocation method specifically for
stochastic delay differential equations. Ahmadi et al.
(2017) applied RBFs-based collocation method to solve
stochastic fractional differential equations (SFDEs) [19].
Kosec and Sarler (2008) investigated RBFs-based
collocation model for Draw flow [20]. Recent advances
in spectral methods have shown particular promise, with
[21] developing a spectral collocation approach for
SPDEs with fractional Brownian motion. In financial
applications, U. Pettrsson et al. [22] developed a
numerical method to price option based on radial basis
functions, while [23] introduced an innovative RBF-
LOD method for solving stochastic diffusion equations.
Reference [24] employed radial basis functions method
to solve fractional Schrodinger Black-Scholes equation
in option pricing of financial problems. Researchers [25]
created a technique utilizing radial basis functions to
solve the Black-Scholes equation for both European and
American options, evaluating European option pricing
for multiple assets. This method evaluates European
purchase pricing based on several assets. In the above
researches, radial basis functions were applied to solve
various differential equations.

1.6. Prior Work and Research Objectives

Building upon these foundations, radial basis functions
have emerged as an effective tool for solving stochastic
delay differential equations. The literature documents
several numerical and spectral methods previously
applied to such equations: Akhtari et al (2014)
developed a weak continuous adaptive Euler-Maruyama
method for (SDDEs) [15]. Akhtari (2019) subsequently
conducted comprehensive analyses of convergence,
stability, and numerical solutions for delay-dependent
SDEs [26]. Yin and Gan (2015) considered Chebyshev
spectral collocation method for solving stochastic delay
differential equations [27]. Maleknejad et al. [28]
proposed a composite function approach for multi-delay
dynamic systems. A thesis [14] applied the Euler-
Maruyama method to SDDEs-based asset pricing
models.

1.7. Research Contributions

The purpose of the present research is to extend spectral
collocation method for solving stochastic delay
differential equation especially delay Black-Scholes
model based on radial basis functions. The organization
of this paper is outlined as follows: Section 2 provides a
set of key definitions relevant to solving stochastic delay
differential equations. In Section 3, we detail significant
operations, including the numerical solution and
convergence analysis. Section 4 validates the approach
through: numerical experiments to demonstrate the
method’s effectiveness, and Section 5 concludes the

paper.
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2. Definitions and requirements

In this section, we present an overview of the essential
definitions and  prerequisites needed for a
comprehensive understanding of the following content.

2.1. Stochastic Integrals

Stochastic integral is defined as follows:

[ )

where {B(t),t = 0} is Brownian motion and {f (s)} is a
one-dimensional process. Since the trajectory of
Brownian motion is not differentiable at any point, the
standard definition of a stochastic integral does not
apply. However, by leveraging the properties of
Brownian motion, we can establish an integral. Such
integrals were first defined in 1949 by It6 and since then
they are called Ité integral [29].

Definition 2.1 . Suppose 0 < a<b<oco. Denote by
M?2([a, b]; R) the space of all real-valued measurable
functions {F; };»¢-adapted processes f={f (t)}o<¢<p [29],
such that

b
I f Nz, =E(f | £ ()P dt)<co. @)

Definition 2.2. A real-valued stochastic process
9={g () }a<t<p 1s called a simple process when there
exists a partition P={a=t,<t;<...<t=b} of [a,b]
interval, and bounded random variables &;, 0 < i < k-1
[29]., such that

k-1
9O= &l (O ®)
=0

We represent the space of such functions as
M ([a, b]; R)

Definition 2.3. For simple processes of g that are in
the form of (5) in My([a, b]; R) [29], define

b k-1
[[9@dr©-) g (B, By ©

The above integral is defined as stochastic or It integral
according to Brownian motion.

Definition 2.4. Suppose f € M?([a,b];R). The Ito
integral of f corresponding to {B(t)} [29] is defined as
below

b b
f f(t)dB,= lim f g,(0dB, in 12(Q;R), o

in which a sequence of simple processes like {g,} is
presented so that

b
tim & [ 1£@-ga (0 deco. ®

LEMMA 2.5.If g € My([a, b]; R), then:

b

E f g (£)dB(t)=0, ©)

b b
EL g ()dB(t)| =Efa | g(t)|?dt. (10)

The proof can be found in ([29],p.19).

Property 1. Suppose g(s, w)=g(s) only depends on s
and g is continuous and bounded on the interval [0, t]
[30].Then:

t

t
j 9 (8)dBs—g(t)B,- ] B, dgs. (11)
0 0

2.2.Radial basis functions
2.2.1 Definition of RBFs

In this section, radial basis function (RBF) is introduced.
Suppose we want to approximate a function like s(x) in
N c R4 range, so we require the scattered points of
X1,..., Xy € 2. the function s(x) is approximated
using the radial basis function, with the values
s(x1),...,5(xy) in nodal points,

S(x)=z Aol x-x; ), x € 0, (12)

i=1

where A; is unknown cofficients. In mathematics, RBF
has real values ¢ and its value only depends on the
distance between the input and some fixed point. So,
¢(ll x-x; II) is wusually the Euclidean distance.
Interpolation is performed to calculate the coefficients

;.
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s(x)=f;, i=1,...,N, (13)

After interpolation, a linear combination is obtained as
follows:

AN=f, (14)

where, A;;, A, f are defined as follows,

jr

Ai=d Ul x-x; 1),

A=[Aq, o, AW]T,

f=If Ceadeen fGeDIT

Examples of radial basis functions (RBFs) employed in
this study are listed in Tablel [31].

Table 1. Common types of radial basis functions.

RBF o(r)
Gaussian P (r)=e €’
Multiquadric d(r)= [1+ (er)?
Inverse 1
Multiqudric Vr2+c?
Linear T
Cubic r3
Thin Plate r2ln(r)
Spline

In this paper, the use of radial basis functions (RBFs)
is scientifically justified based on several key criteria,
including their high flexibility and exceptional
performance in handling scattered data that a
significant advantage for scientific problems. These
functions are well studied theoretically and guarantee
properties such as the existence of a unique solution.
They exhibit excellent compatibility with other
numerical methods, reduce problem solving time, and
deliver more stable and reliable results.

2.3 Numerical integration: Newton-Cotes
quadrature rules

2.3.1 integration methods

Integration encompasses a wide range of topics. The
term quadrature rule refers to any numerical technique

used to compute an approximation of an integral If of a
function f(s):

b
If::f W (s)f(s)ds, (15)

here w(s) is the weight function that has a well-defined
analytical expression. In principle, a technique can
utilize any accessible information regarding the function
f(s), including the values of its derivatives at one or
several specified points. However, when limited to nodal
points {x;,i=1,...,7}, the approximation Q has the
form:

Ofi= ) wi fCx)=If-Ef, (16)
-1

where Ef is the error.

2.3.2 Newton-Cotes Rules

The Newton-Cotes rules (@Q,-) of degree r-1 use equally
spaced points in [a, b] to generate approximations Q, f
to Ir. However, these rules often exhibit unsatisfactory
convergence properties: the error |[f-Q,f| may not
converge smoothly to zero, even for functions that
appear to be well-behaved f. For the common case
where w(s)=1, the rule is translation invariant and
scales linearly. Comparing two rules:

0,1): (r= 3,
Q: (0, )-{xi_ﬁ'wi}
and
Qr(a.at(r-1)h): {x;=a+(i-)h; w;3},
then

I _
w;=hw;.

The M -panel r-point integration rule is obtained
estimates fab f (s)ds with h= bMi:

b M atjh
[ r (S)ds=; J s
(17)
M
= Z Qr (a+(j-1)h, a+jh—)f+Er,Ml

Jj=1
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when r is fixed and M is increased and a sequence of
approximations to f is obtained, [32].

Property 2. For Riemann integrable functions
[32].and fixed r as in (17):

Lim Ey, y (£)=0. (18)

3. Solution procedure
This section deals with the approximation of the solution
of equation (3) using the collocation spectral method
based on RBFs.

ds(t)=so+ftf (s().s(u-1))du
0

19

+ [ g (s(w).s(u-1))dB (W),

so that, the approximation s is a linear combination of a
set of basis functions {¢;(t)}Y, with respect to the
coefficientd;, where A; is an unknown coefficient. To
find A; we use equation (20). So, we have:

N
S0 = sy(©= ) L (0 (20)
=0

sy(O=sp+ J;] f (SN(u),sN (u-r))du
(21)

+ ]tg (SN(u),sN(u-‘t))dB(u)+ResN(t), tel0,1].
0

here, Resy (t) is the residual error when t € [0,1] . This
error is considered when we replace the equation Eq. (20)
in Eq. (19) . Using Property 1, results driven:

SN(t)=so+tf f (sy(tv). sy(tv-1))dv

+9(sn (). sy (t — 1))B(t) (22)
—tf g (SN(tv).sN(tv — T))B(tv)dv
+Resy (1),

To solve the Ité integral in Eq. (21), the Newton-Cotes
rule is used as follows. Therefore, the integration

interval is transferred to the interval of [0, ] into interval
[0,1].

u=tv, v € [0,1], u € [0,t].

sN(t)=so+tJ. f(sN(tv),sN(tv-r))
0
dv+(g(sy(t), sy (t-1))B(t) (23)

1
-t f g’ (sy(tv), sy (tv-1))B(tv))dv +Resy(t).
0
So, Eq. (23)_1is rewritten as follows,
sy (£)=so*g(sn (), sy (t-1))B(t)

M r
+t w [f (s (v ), sy (tv-1))
,ZZ ) %)

-g' (sn (), sy (tvP-1)B(tv )]

+E, y+Resy (t).

Where, {Ul] le,{wl-j _uj=1,...,M are explained in
[33]. E, y is the error between the the Newton-Cotes rule
and the exact integral. Finally, by replacing the
collocated points ¢t; in Eq. (24), we have:

sn(t)=sotg (sn(t), sy (t;-1))B(t)

M r
) Y wl Fentn s o

j=1 =1

-g' sy ), sy (Ev-0) Bt ).

Now, a set of arbitrary points {ty,...,t;} from the

interval [a, b] is utilized, which are called collocated

points. To find the unknown coefficients we cosider,
t;=atlh, =0,1,...,N.

By applying the above conditions, a system of linear
equations is obtained. To solve the system of linear
equations, the unknown coefficients are found with one
of the numerical methods such as Newton method. As a
result, the approximate solution of the equation is
obtained.

3.1. Convergence of Numerical Approximation

This section analyzes the convergence behavior of the
proposed method in solving the SDDE (3) , particularly
the delay Black-Scholes model, is examined. The
following definitions are provided.
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DEFINITION 3.1. Functions f and g satisfy the local ¢
Lipschitz condition [14]. in Eq. (3), if for every integer + J; g (s(), s(v-1))dB(v),
of n = 1, there is a positive constant K,,, so,

If G, y1,8) = f (2, 2, )1V |G (X1, ¥4, ) and the numerical solution sy (t) satisfies:
— 9(x2,y2, )|
< Kn(1(xg — x2| + [y1 — ¥20),

t
sw(@ =0 | f (4@, 54000
For every xi,vy1,%2,V, € R with |x{|V |yi| V |x,| V 0
|y,| < n and for every t € R, , where |x| V |y|=max

(xl v IyD. +[9 (50050 00)B) @7
0

DEFINITION 3.2. Functions f and g satisty the linear +Resy (t).
growth condition [14]. in Eq. (3). If there is a positive

constant K, so,
Where Resy (t) is the residual term, the absolute error

F @y, 0 V1g(x,y,0)] < K(1+x|+y]). can be expressed as:

For every (x,y,t) ER X R X R,. t t
ev)= [ Fsisor0)dvt | gG@is@-)dBw)
THEOREM 3.3. (Convergence of Numerical 0 0

Approximation) Let the following assumptions hold: [ F (o) Su(v — NdY — [Fa (se(V). Se (v —
e The exact solution s(t) of the SDDE (3) satisfies: Jo £ (o @, 5w € ) Jy 9 (on @), su(

7))dB(v) + E; yy + Resy(), (28)
|5|52::E[|5(5)|2]<°°v vt € [0,T]. In this method, E, ) measures the error between the
Newton-Cotes quadrature (with parameters M and 7,
e The delay >0 is fixed and satisfies t<T. where M is the number of subintervals and r is the

number of points) and the exact value of the integral.
e te][0.7], T=>=rt,

e For any stochastic process s(t) define the time t
interval [0, T], we define the L? norm as: en()= f f(s(v),s(v-1))-f(sn (V)8 (0-T))dV
0
1
Slyz oy =(ETIs1)2: +J3.9 (@), 50 =) = g(sy@), 5w = D)dBQ) +
E, y + Resy(t), (29)

e The constants K;, K, from definition (5) satisfy:

it is concluded from Eq. (29) that
K2+K2>0.

Then, the numerical solution sy (t) converges to s(t) en(t) = pa(6) + up(8) + us(8). (30)
in the L2-sense:

where,

Alll_TLlo | s-sn|,2=0.

t
O J- f(s(v),s(L-0)-f(sy(L),sn(v-1))dv, (1)
Proof: Let ey=s(t)-sy(t) be the absolute error between 0
the exact solution s(t) and the numerical solution sy (t)
obtained using the spectral collocation technique that ¢
utilizes (RBFs), the exact solution satifies the (SDDE): Hy ()= J- g (s(v),s(v-1))-g(sn (L),

0 (32)

s(t)=so+ f ff (s(v), s(v-1))dv (26) sn(v — 1))dB(v),
0

and
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p3(t) = Ery + Resy (1) (33)

We find upper bound for Egs. (31), (32) and (33)

(1< f | £(s(0),s(0-D)
0 (34)

-f(sy(v),sy(v-1))|dv.

According to Lipschitz property in the definition 3.1,
we have

|u1(t)|Sf0k1(IS(U)'SN(U)|+|S(U'T)'

35)
sy-D)dv,
1 (©)]<k € f | 5(0)-sy (W) v+ j |5(0-1)-
0 0 (36)
sy (U-D)dv),
consequently,
t
|u1(t)|s1<1(f | e (@)]dv
0
(37)

+ Lt| ey(v-1)|dv).

Using the change of variable u = v — 1, the second
integral of Eq. (37) becomes:

av=[ T ev)

t
0

fort =,

t-t

t-T 0
f |eN(u)|du=f|eN(u)|olu+f0 | en@]du,

we combine the integrals:

Iul(t)ISkl(fo | en(v)[dv (38)

+ fo " exldu),

and we can further bound:

t
(O] < 2k, f | e ()] du, (39)
0

squaring both sides and according to the Cauchy-
Schwarz inequality, it is stated that:

(D)% < 4k2( j e (), (40)
0
(O < 4k12tjt| ex(W)|?du, (41)
0
so, we have:
Iy IS 2k VE Nl ey Il 2. (42)

We obtain an upper bound for equation Eq. (32)

qu(t)ISJO | g(s(v),s(L-1))-g(sn (V)
(43)

sn(v-1))[dB(V),

according to the Lipschitz property in definition 3.1,
the following holds:

s (O]< jo ks (Is(v)-sx (V)] ”
44

+|s(-1)-sy(v-1))dB(V),

Iz (©<ky fo | en(v)|dB()
(45)

+ [ le@olds@)]
0

using Lemmal(itd isometry) and squaring, it is
concluded that:
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E[qu(t)IZ]SkgE[f (len)I
0 (46)
+Hen (01N,

like 1, using the change of variable and interval, we
have:

t

Ellt(0)?] < 4K2 f Eflen@)Pldu,  (47)
0

so, we have
Il py 1< 2K 1 ey Nl 2. (48)
For ps, it is clear
I us I<Il Resy Il +1I Ey 5 1l (49)
According to Eq. (30) and the following inequality:
(a+b+c)? <3(a®+ b+ c?), (50)

By combining the results of equations (42)
(deterministic part), (48) (stochastic part), (49) (method
error), and the fundamental inequality (50), we arrive at
the following key:

I ey 12< 3C0 g 12 41y 12 +11 ps 12), (51)

len2<3(4K3(0)llenll? +4K3 ey I

(52)
+lIResylI2+IE p1I?),
consequently,
len <3 (4 (K3 (t)+K5) eyl
(53)
+lIResylI2+1E mlI?),
and
ey I2<12(K2(t)+K2)lleyll? (54)

+3lIResyI2+31IE, %),
from Eq. (54), we obtain the following equation:

Il ey 17 (1 —12(KZ(t) + K3)) < 3(
Il Resy 12+l Eyrpp 1),

(55)
finally, according to 12(KZ(t) + K#) < 1,we have

3(Il Resy II> +1l Eyp 11?)
(1-12(K2@) +K2))

Il ey I17< (56)

because the spectral method converges as N increases
and the Newton-Cotes method becomes more accurate
as M increases.

e |IRESyll =0

* |Emll-0

Consequently, || ey Il 0, and convergence is
achieved.

4.Numerical results

In this section, we present various numerical examples
of stochastic delay differential equations, highlighting
the accuracy and effectiveness of our proposed method.
All calculations were performed using Maple 2019
software on a laptop with the following specifications:
Intel ®Core 14 processor, 2 - 10. GHz, 8 GB RAM. In
this paper, to evaluate the accuracy of the proposed
method, the absolute error is calculated as follows:

ey = |s() —sy(®)],

This error has been computed for various examples and
different radial basis functions such as multiquadric and
Gaussian functions. The results demonstrate the rapid
convergence and high accuracy of the proposed method.
Here, s(t) represents the solution of equation (3) for
T = 500. Since equation (3) does not have an exact
solution, we consider this numerical solution as the
reference exact solution for the problem. Using the
spectral collocation method with a sufficiently small

step size A{ =% we obtain the approximate solution
sy (t).
Example 4.1 The linear SDDE is considered [15].:

dS(t)=(aS(t)+bS(t-1))dt+(B1+B,S(t)+B3S(t-1))dW(t),t€[0,2]
{S(t)=1+t, te[-1,0],
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where, a and b are real values, and {f; = 0,8; = 0, B =
1}inwhichi,j, k € {1,2,3} withi # j # k. Wetakea =
—2 and b =0.1 . W(t) is a m-dimensional standard
wiener process(m = 1). For the case of SDDE (57) with
additive noise (i.e., f, = B3 = 0) the exact solution on
[0,1] is given by

NN
(B)=e"( +a—2)'(5)t';

t

+[31eatf e dW(s),
0

The numerical solution of the SDDE (57) was obtained
by applying the method outlined in Section 3 . Keep in
mind that, N represents the total number of collocation
points, while r denotes the number of points and M
signifies the number of panels used in the Newton-Cotes
quadrature. So, we adjust r = 8, M = 10, delay 7 = 1,
a=-2,b=0.1. In this example, multiquadric and
Gaussian radial basis functions have been employed.
The rationale for this selection is as follows: The
multiquadric  function have High accuracy in
approximating smooth functions, Flexibility through
shape parameter tuning to control accuracy and stability.
The Gaussian function provides: Adaptability to random
components, Rapid convergence when approximating
functions with abrupt changes, Lower sensitivity to
shape parameters compared to multiquadric functions.
Numerical errors with different values of N are
presented in the following Tables 2 , 3 and 4 and CPU
times show that the proposed method is fast and easy to
implement. Additionally, Table 5 shows the [, error for
different N wvalues using radial basis function
approximations.

Example 4.2 Consider the following nonlinear SDDE
[15].:
{dS(t) =aS(t)(1 — S(t — 1))dt + bS?(£)dW (¢),
St)y=1+t¢, t € [—-1,0].

t €[0,10],
(58)

To address this example, we apply the proposed method
with T=1,b =0.01 and a = 1. Table 6 shows the
absolute errors, mean errors and CPU times of the
proposed method. To show that the proposed method is
better, the results of Table 6 are compared with the
results of adaptive algorithm method [15] in Table 7.

Example 4.3 The SDDE is considered:

t€[0,2],

{dS(t)z[aS(t)+bS(t-1)]dt+ [cS()+dS(t-1)]dW(E),
(59)

S(H)=1+t¢, te[-1,0].

To solve this example, we implement the proposed
method with two sets of parameters as follows: a =
-2,b=01,c=0,d=05anda=-2,b=0.1,c =
0.5 and d = 0 with 7 = 1. The following Tables 8 and
9 show the absolute errors, mean errors and CPU times
of the proposed method.

Example 4.4 The linear SDDE is considered [14]:
10

{dS(t)=[—BS(t)+2e'1S(t—1)+3—2e'1]dt+[cS(t)+dS(t—1)]dW(t),tE[O,Z],
S()=1+e", te[-1,0] (60)

In this example, we examine the effect of different
values of the delay: t = 1,7 = i,‘r = i and no-delay
T=0. So, we set two groups of parameters: a =
—-3,b=2e1,c=0.1d=01anda=-3b=2e7},
¢ =0.1,d =0.01, In Fig.1, four colorful curves start
from the point of (0,2). Our goal is to show the effect of
different delays on the diffusion part. According to
Fig.1, there is a significant change before and after the
point of (0,2). The red curve is lower than other curves.
A notable change is observed both before and after this
point. The green curve is very close to red curve when

the delay length of i. Therefore, we can infer that a

minor disturbance during the delay will not case in a
substantial change; however, as the delay increases from
1—16 to % or 1, The curve shifts upward and diverges from
both the green and red curve. The curve of T =1 is

above the rest of curves, showing that the higher the
delay value, the higher its effect.
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Table2. Error of the proposed method in Example 4.1 various value of N with p.=1, p.=0, :=0.

) =V@*+c?) . c=0.1 p(r)=e € c=1
t N=22 N=2* N=2° N=22 N=2* N=2°
0.0 7.25e-04 5.35e-04 3.14e-04 3.00e-03 2.90e-03 2.00e-03
0.2 3.80e-03 2.14e-03 1.05¢-03 1.16e-02 1.07e-02 1.00e-02
0.4 8.95¢-03 3.35e-03 2.21e-03 5.43e-02 3.02e-02 1.22e-02
0.6 1.05e-02 1.79¢-03 1.02e-03 7.20e-02 2.70e-02 1.04e-02
0.8 8.95¢-03 1.97e-03 1.75e-03 5.75e-02 3.00e-02 2.25e-02
1.0 1.10e-02 1.09¢-03 1.00e-03 2.99¢-02 1.56e-02 1.45e-02
1.2 2.25e-02 1.56e-03 1.01e-03 2.70e-02 1.98e-02 1.79e-02
1.4 3.48e-02 4.36e-03 2.15e-03 5.22e-02 4.78e-02 2.59e-02
1.6 2.99e-02 1.89¢-03 1.00e-03 7.39e-02 1.47e-02 1.37e-02
1.8 8.40e-03 2.45e-03 1.90e-03 5.70e-02 2.00e-02 2.96e-03
2.0 3.35e-04 2.48e-04 1.33e-04 2.68e-02 1.88e-02 1.39¢-02
mean of error 4.32¢-03 1.26e-03 1.10e-03 1.41e-02 1.26e-02 1.23e-02
CPU time(s) 16.14 17.37 26.60 14.62 14.91 18.96
Table 3. Error of the proposed method in Example 4.1 for various value of N with p:=0, p.=1, ps=0.
| dr) =V +c®) . c=01 d(r) = e’ | c=0,123
t N=2* N=2° N=2¢ N=2* N=2° N=2¢
0.0 6.78e-04 5.94¢e-04 4.04e-04 5.46e-02 2.34e-02 1.90e-02
0.2 1.63e-02 1.01e-02 0.86e-02 1.95e-01 5.98e-02 3.40e-02
0.4 5.10e-03 4.49¢-03 1.55e-03 1.16e-01 2.40e-02 2.07e-02
0.6 4.95e-03 2.98e-03 2.01e-03 1.10e-02 1.10e-02 1.00e-02
0.8 3.02¢-03 1.07e-03 0.65e-03 4.25e-02 3.11e-02 2.95e-02
1.0 3.10e-03 2.56e-03 1.90e-03 4.87e-02 2.65e-02 1.18e-02
1.2 2.44e-03 2.29e-03 1.31e-03 5.60e-03 3.46e-03 2.94e-02
1.4 3.59¢-03 3.39¢-03 3.00e-03 1.46e-02 1.29e-02 1.19e-02
1.6 4.00e-03 3.99¢-03 2.27e-03 7.67e-02 5.27e-02 5.21e-02
1.8 0.98e-03 0.76e-03 0.16e-03 5.59¢-02 4.77e-02 4.00e-02
2.0 4.37e-04 3.78e-04 1.33e-04 2.61e-01 6.10e-02 1.73e-02
mean of error 1.81e-02 1.60e-02 1.30e-02 1.84e-02 1.76e-02 1.30e-02
Table 4. Error of the proposed method in Example 4.1 for various N with $.=0, p.=0, ps=1.
() =V(E*+c*) . c=0,01 p(r)=e "’ c=0.2
t N=22 N=2* N=2° N=22 N=24 N=2°
0.0 1.13e-03 1.05e-03 1.00e-03 3.10e-02 2.25e-03 1.12e-03
0.2 3.52¢-03 2.31e-03 1.70e-03 1.80e-02 6.18e-03 3.21e-03
0.4 8.76e-03 6.12e-03 4.26e-03 3.00e-02 1.32e-02 1.04e-02
0.6 1.17e-02 1.33e-03 1.25e-03 1.92e-02 6.00e-03 3.94¢-03
0.8 1.23e-02 3.62¢-03 1.87e-03 2.03e-02 1.96e-02 1.44e-02
1.0 1.34e-02 6.94e-03 3.19¢-03 2.60e-02 1.56e-02 1.34e-02
1.2 1.77e-02 4.27e-03 1.53e-03 3.84e-02 3.02e-03 1.23e-03
1.4 2.20e-02 5.29¢-03 1.68e-03 4.10e-02 2.05e-02 1.41e-02
1.6 1.90e-02 4.70e-03 3.70e-03 4.50e-02 2.20e-02 1.06e-02
1.8 8.75e-03 2.45e-03 2.32e-05 2.40e-02 1.22e-02 4.73e-03
2.0 5.17e-04 2.11e-04 2.65e-05 1.25e-02 4.59¢-03 6.48e-04
mean of error 4.07e-03 2.79e-03 1.27e-03 1.64e-02 1.76e-03 1.10e-03
Table 5. [, Error for different values of N with radial basis function with 8, = 0,8, = 1, 3 = 0 of Example 4.1.
N=23 N=2* N=2° N=2¢
1.92e-02 1.81e-02 1.60e-02 1.30e-02
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Table 6. Error of proposed method with with a = 1 and b = 0. 01 for example 4.2.

d(r) =V +c») . c=21

o) = e~ =25

t N=5 N=10 N=5
0.0 7.25e-06 6.45e-06 7.24e-06
0.2 1.56e-04 1.35e-04 6.17e-06
0.4 2.74e-04 1.43e-04 3.76e-06
0.6 3.48e-04 1.18e-04 1.05e-07
0.8 3.81e-04 2.48e-04 4.72e-08
1.0 3.74e-04 1.56e-04 4.72e-06
1.2 3.31e-04 1.78e-04 1.30e-05
1.4 2.53e-04 1.36e-04 3.97e-04
1.6 1.41e-04 1.23e-04 8.83e-04
1.8 6.34e-06 5.26e-04 1.43e-03
2.0 1.91e-04 1.58e-04 1.68e-03
mean of error 1.71e-04 1.47¢-04 6.00e-06
CPU time(s) 19.50 49.27 19.56
Table 7. The results of adaptive algorithm [15] for example 4.2 witha = 1,b = 0.01
k h M Er Es, Eqg Es, & E
1 0.3000 10 0.0603 0.0156 0.0036 - 0.1385 0.0795
2 0.3000 116 0.0599 0.0045 0.0009 - 0.1213 0.0653
3 0.0520 116 0.0013 0.0041 0.000 - 0.0047 0.0054
1 0.0520 116 0.0013 - 0.000 0.0041 0.0047 0.0054

Table 8. Error of proposed method with a=-2, b=0.1, c=0, d=0.5 for example 4.3.

t

d(r)=V(c?), =1 (N=10)

d(r)=e 2, c=1.5 (N=10)

0.0 6.68¢-04 3.68e-05
0.2 1.72e-03 7.98¢-04
0.4 3.96e-03 2.18e-03
0.6 5.82¢-03 3.98¢-03
0.8 7.12e-03 5.45¢-03
1.0 7.12e-03 5.45¢-03
1.2 7.66e-03 6.42¢-03
1.4 7.02¢-03 6.58¢-03
1.6 6.06e-03 6.55e-03
1.8 5.03e-03 6.44¢-03
2.0 4.19¢-03 5.34e-03
mean of error 5.83e-03 5.34e-03
CPU time(s) 19.78 16.03

Table 9. Error of proposed method with a=-2, b=0.1, c=0.5, d=0 for example 4.3.

t

)=V +c?), c=3.4 (N=10)

o(r)=e 2 c=1.4 (N=10)

0.0 3.62¢-04 3.62e-04
0.2 3.38¢-05 1.41e-04
0.4 3.65¢-04 2.45¢-04
0.6 5.70e-04 7.05e-04
0.8 6.22e-04 7.65e-04
1.0 5.20e-04 1.18e-04
1.2 3.09e-04 9.63e-04
14 7.37e-05 4.68e-04
1.6 7.53e-05 1.19¢-04
1.8 3.72¢-05 3.39¢-04
2.0 2.41e-04 6.95¢-04
mean of error 3.59¢-04 7.05e-04
CPU time(s) 18.26 17.73
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Figure 1. The graph of delay effect SDDE with N=20, ¢ = 0.1 and d = 0.01 (left) and the graph of delay effect SDDE N=20, ¢=0.1 and d=0.1
(right).

5. Conclusion

Finding an exact solution for many SDDE:s is difficult. Therefor, we used a spectral collocation method based on
radial basis functions (RBFs). The radial basis functions in our approach include Multiquadric and Gaussian
functions, among others. In this method, the M-panel and r-point Newton-Cotes integration were used to estimate
the It6 integral. We performed a convergence assessment of the proposed approach and provided multiple
examples including both linear and nonlinear cases, to demonstrate the effectiveness and accuracy of the method.
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