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Abstract 

In today’s world, where the volume of generated data is rapidly increasing, anomaly detection 

in high-dimensional datasets remains a significant challenge in data mining and artificial 

intelligence.   With the rapid expansion of the Internet of Things (IoT) and the increasing number 

of connected devices, security threats in this domain have significantly intensified. Detecting 

anomalies in IoT network traffic has become a critical component in combating cyber-attacks 

and maintaining system integrity. This study aims to develop a deep learning-based approach 

for anomaly detection in network traffic using the Variational Autoencoder (VAE), a 

probabilistic generative model capable of learning hidden structures in complex data. The 

UNSW-NB15 benchmark dataset, which includes a wide range of normal and malicious traffic 

samples, was utilized. After data preprocessing—comprising cleaning, normalization, and 

feature selection—the VAE model was trained solely on normal data to learn the typical patterns 

of network behavior. Anomalies were identified by analyzing the reconstruction error between 

the original and generated data, where instances with high error values were flagged as 

anomalous. The model was optimized using a loss function combining reconstruction loss and 

Kullback-Leibler divergence. Experimental results showed that the proposed VAE model 

achieved an accuracy of 93.8%, a recall of 89.2%, and an AUC score of 0.94, demonstrating its 

effectiveness in detecting various types of attacks, including DoS, Fuzzing, and Exploit. This 

research confirms that probabilistic deep learning models, particularly VAEs, offer a robust and 

scalable solution for anomaly detection in IoT environments and can be instrumental in 

developing intelligent intrusion detection systems for modern cyber-physical infrastructures. 

This work advances the state-of-the-art by integrating sparsity constraints and mutual 

information filtering in an unsupervised setting, offering a scalable solution to anomaly detection 

in high-dimensional spaces. 
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1. Introduction 
 

In recent years, the Internet of Things (IoT) has emerged 

as one of the most transformative and innovative 

technologies across various industries, including 

healthcare, transportation, energy, agriculture, and urban 

security. According to statistics provided by Statista [1], it 

is projected that the number of connected devices will 

exceed 25 billion by 2030. This dramatic increase in 

connectivity and data exchange has brought forth 
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numerous challenges, notably in security, privacy 

preservation, and reliability. In particular, the inherent 

vulnerabilities of many IoT nodes—attributable to 

hardware, software, and communication constraints—have 

led to a rise in targeted cyberattacks in this domain [2]. 

   One of the fundamental security challenges in IoT 

infrastructures is the timely detection of anomalies or 

emerging cyberattacks within network data. Such 

anomalies often manifest as abnormal traffic, packet 

tampering, or suspicious behaviors that, in their early 

stages, closely resemble normal activity. This resemblance 

renders their detection via traditional rule-based or 

signature-based methods highly challenging [3]. 

Consequently, recent research efforts have shifted towards 

leveraging machine learning techniques, particularly deep 

learning, which excel at modeling complex relationships in 

large-scale data[4]. 

   Among deep learning approaches, generative models 

such as Variational Autoencoders (VAEs) have garnered 

considerable attention due to their probabilistic framework 

and capability to extract latent features. These models not 

only facilitate data compression and dimensionality 

reduction but also enable anomaly detection by 

reconstructing input data and measuring reconstruction 

errors [5]. Specifically, normal data samples tend to 

produce low reconstruction errors, whereas anomalous 

data result in significantly higher errors. This methodology 

has been successfully applied in multiple studies for 

intrusion and anomaly detection in conventional networks, 

though its application to complex and heterogeneous IoT 

data remains relatively underexplored [20]. 

   On the other hand, a primary obstacle in designing 

effective learning models is the presence of redundant and 

irrelevant features in raw datasets, which can lead to 

increased computational overhead, model overfitting, and 

reduced predictive accuracy. Hence, optimal feature 

selection plays a crucial role in enhancing learning model 

performance. Recently, evolutionary intelligence 

algorithms such as Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO) have gained traction for 

effective feature selection [7]. These algorithms mimic 

natural processes to explore the feature space and identify 

optimal feature subsets based on criteria such as accuracy 

or model discriminative power. 

   This study proposes a hybrid approach for anomaly 

detection in IoT networks that employs VAE models to 

capture latent patterns in network data alongside 

evolutionary algorithms for selecting effective features. 

The UNSW-NB15 benchmark dataset, developed by 

Moustafa and Slay [3], is utilized to evaluate the model’s 

performance. This dataset, encompassing diverse samples 

of normal and attack traffic in a simulated environment, is 

recognized as a reliable resource in network security 

research due to its feature diversity and balanced 

distribution of normal and anomalous data. 

   The primary innovation of this research lies in integrating 

the probabilistic structure of the VAE with the intelligent 

search capabilities of evolutionary feature selection 

algorithms. This approach is expected to significantly 

improve anomaly detection performance, enabling more 

accurate threat identification in real-world IoT 

environments. Additionally, the proposed model 

incorporates adaptive thresholds based on reconstruction 

error analysis for detecting suspicious samples, which 

constitutes another key feature. 

Accordingly, the research aims to design, implement, and 

evaluate an effective, accurate, and generalizable anomaly 

detection model for IoT network environments that 

achieves high performance in practical conditions through 

the combination of VAE architecture and intelligent 

feature selection. The primary innovation of this study lies 

in the integration of a Sparse Variational Autoencoder 

(SVAE) with a dual-stage feature selection process 

combining Mutual Information (MI) filtering and Genetic 

Algorithm (GA) optimization. Unlike prior works that 

typically rely on standard autoencoders or use a single-

stage feature selection strategy, our model enforces 

sparsity in the latent space to enhance anomaly 

discrimination and leverages an intelligent hybrid feature 

selection pipeline to reduce dimensionality and improve 

generalization. Furthermore, the introduction of a 

statistically adaptive anomaly detection threshold based on 

reconstruction error distribution (𝜇 +  2𝜎) adds 

robustness to the model in unsupervised settings. Together, 

these innovations enable the proposed framework to 

outperform traditional deep learning models in both 

detection accuracy and computational efficiency, 

particularly in high-dimensional and imbalanced IoT 

network environments.  The research question is posed as 

follows: Can the integration of probabilistic deep learning 

models (VAE) with evolutionary feature selection 

algorithms enhance anomaly detection performance in IoT 

networks compared to traditional or supervised learning 

methods? 

 

2. Literature Review 
 

2.1. Anomaly Detection 

 

Anomaly detection refers to the identification of rare or 

irregular data patterns that deviate from normal behavior. 

These patterns can signify faults, fraud, or malicious 

activity. Traditional methods such as Principal Component 

Analysis (PCA) and One-Class SVM often suffer from 

limitations in high-dimensional spaces due to the “curse of 

dimensionality”. In recent years, deep learning methods, 

especially reconstruction-based techniques such as 

autoencoders, have become popular for anomaly detection 

because of their ability to model complex nonlinear 

relationships in data [8]. 

   However, standard autoencoders may reconstruct both 

normal and anomalous data with low error, leading to poor 

discrimination. To address this, Gong et al.[9] introduced 

the Memory-Augmented Autoencoder (MemAE), which 

restricts the reconstruction capability to normal patterns by 

using an external memory module. This improves anomaly 

detection performance by increasing reconstruction errors 

for abnormal inputs.   Such methods are widely used in 

network intrusion  detection, video surveillance, and 

industrial quality 

 control applications. 

 

2.2. Sparse Autoencoder 
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Sparse Autoencoders (SAEs) are an enhanced form of  

autoencoders that apply a sparsity constraint on the 

activation of hidden layers. This encourages the model to 

focus only on the most informative features, leading to a 

more compact representation of the input. SAEs have been 

shown to be highly effective in high-dimensional anomaly 

detection tasks, where they help prevent overfitting by 

ignoring irrelevant patterns [10]. 

Moreover, when SAEs are integrated with other 

components such as memory modules or classifiers like 

Support Vector Machines (SVM), the performance of 

anomaly detection models improves significantly. For 

example, SAEs have been used successfully in agriculture 

and medical imaging, where anomalies are often rare and 

subtle. Gong et al. [9] also demonstrated that augmenting 

the SAE architecture with a memory component enhances 

its ability to capture only normal behavior, leading to more 

accurate identification of anomalies. 

 

2.3. Mutual Information 

 

Mutual Information (MI) is a statistical measure used to 

quantify the dependency between two variables. It plays a 

vital role in feature selection by identifying which input 

features carry the most information about the target 

variable. MI-based filters are widely used due to their 

ability to reduce the dimensionality of data while retaining 

relevant information[11]. 

   However, using MI alone may lead to redundant feature 

selection. To solve this, Bennasar, Hicks, and Setchi [12] 

proposed the Joint Mutual Information Maximization 

(JMIM) method, which selects features that jointly 

contribute new information. In many applications such as 

bioinformatics, fault detection, and cybersecurity, MI-

based methods—especially when combined with 

dimensionality reduction—enhance model interpretability 

and accuracy. 

 

2.4. Feature Selection 

 

Feature selection is a crucial preprocessing step in high-

dimensional machine learning tasks. It aims to reduce the 

number of input variables to those that are most 

informative, thereby improving model generalization and 

reducing computational costs. Traditional filter methods 

like MI and mRMR (Minimum Redundancy Maximum 

Relevance) focus on relevance and non-redundancy of 

features [13]. 

In recent years, hybrid feature selection methods have 

become increasingly popular. For example, combining MI-

based filters with wrapper approaches (such as decision 

trees or SVM) leads to improved performance. Smulders 

[14] demonstrated the effectiveness of hybrid feature 

selection in IoT-based intrusion detection systems, 

showing that it not only improves accuracy but also 

reduces training time. Such approaches are widely adopted 

in security, finance, and healthcare sectors where high-

dimensional data is common. 

 

3. Literature Backgraund 
 

Chandola et al. [15] investigated various anomaly detection  

approaches across multiple domains, including statistical 

methods, clustering-based detection, and machine learning 

techniques. Their study emphasized the challenges in 

detecting subtle deviations in high-dimensional data, 

where irrelevant and redundant features often obscure 

anomaly patterns. They concluded that combining feature 

selection with unsupervised learning methods could 

substantially improve detection accuracy, especially when 

labeled data is scarce or unavailable. 

   Kingma and Welling [5] introduced the Variational 

Autoencoder (VAE) model as a probabilistic generative 

approach for learning latent data distributions. In their 

research, they combined variational inference with deep 

neural networks to model complex, high-dimensional data 

effectively. The study demonstrated that VAEs could 

reconstruct input data with high accuracy when trained on 

normal patterns, making them highly suitable for 

unsupervised anomaly detection tasks by comparing 

reconstruction errors. 

   Anthi et al. [6] explored the limitations of traditional 

rule-based and signature-based intrusion detection systems 

in IoT environments. In response, they proposed the use of 

unsupervised deep learning models such as autoencoders, 

which can learn complex patterns in unlabelled data. Their 

experiments highlighted that autoencoders not only 

outperform conventional methods in detecting emerging 

threats but also adapt better to heterogeneous and evolving 

network environments. 

   Mirjalili et al. [7] conducted a comprehensive study on 

evolutionary algorithms such as Genetic Algorithms (GA) 

and Particle Swarm Optimization (PSO) for feature 

selection in high-dimensional security datasets. By 

simulating natural selection processes, these algorithms 

identified optimal subsets of features based on criteria like 

model accuracy and classification capability. Their 

research confirmed that evolutionary approaches improve 

learning efficiency and reduce overfitting in deep models 

used for anomaly detection. 

   Shone et al. [4] provided an extensive review of deep 

learning techniques for network intrusion detection, 

particularly focusing on autoencoders, deep belief 

networks (DBNs), and recurrent neural networks (RNNs). 

They discussed how deep architectures can automatically 

extract abstract features from raw data and how models like 

stacked autoencoders enhance detection accuracy. The 

study concluded that unsupervised models outperform 

supervised ones in environments with evolving or 

imbalanced attack data. 

Rabani and Sadeghi[16], in their article on the application 

of deep autoencoders for detecting network anomalies in 

IoT environments, proposed a model trained on normal 

traffic patterns to identify irregular behaviors via 

reconstruction error. Using the NSL-KDD dataset, their 

autoencoder-based method demonstrated superior 

performance over classical classifiers like SVM and 

decision trees, particularly in distinguishing complex 

attack patterns. The results highlighted the potential of 

deep unsupervised learning to enhance anomaly detection 

accuracy in resource-constrained IoT systems. 

   Veerappan and Prasad [17] implemented a Sparse 

Autoencoder-based approach for anomaly detection in 

healthcare data, emphasizing the role of sparsity in filtering 
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redundant information. Their method employed an L1 

regularization penalty to enforce sparsity in the hidden 

layers, which helped the model concentrate on the most 

informative features. Experimental results on high-

dimensional medical datasets showed that this approach 

improved detection accuracy and significantly reduced the 

false positive rate, outperforming traditional autoencoders 

and PCA-based models. 

   Nikzad et al. [18] examined the impact of feature 

selection using Mutual Information (MI) in network 

intrusion detection systems. In their study, they employed 

MI to assess and filter out non-informative or redundant 

features, followed by K-Nearest Neighbors (KNN) for 

classification. The proposed method was evaluated on real-

world intrusion datasets, and the findings revealed that MI-

based filtering not only enhanced classification accuracy 

but also reduced model complexity, leading to better 

generalization in high-dimensional and imbalanced data 

scenarios. 

Yousefzadeh and Zahedi [19] developed a hybrid intrusion 

detection model that integrates Genetic Algorithms for 

feature selection with neural networks for attack 

classification. By simulating evolutionary processes, the 

GA component optimized feature subsets, while the neural 

network modeled complex patterns in traffic data. 

Evaluated on the KDDCup dataset, their method achieved 

high performance in detecting a wide range of attacks, with 

notable improvements in F1-score and AUC. Their study 

confirmed that combining intelligent feature selection with 

deep learning can significantly enhance intrusion detection 

systems. 

   Prakash et al. [20] presented a robust anomaly detection 

model that combines Variational Autoencoders with 

Mutual Information-based feature selection. Initially, MI 

filtering was used to reduce data dimensionality and 

eliminate irrelevant features. Subsequently, a VAE was 

trained to learn latent representations of normal behavior. 

The model was tested in simulated industrial control 

environments and demonstrated high resilience to noise 

and improved accuracy in identifying subtle anomalies 

compared to standard methods like PCA and Isolation 

Forest. 

   Zhang et al. [10] presented a hybrid approach integrating 

Sparse Autoencoders with Mutual Information (MI) 

filtering for efficient feature selection and anomaly 

detection in high-dimensional datasets. Their research 

addressed the challenges posed by redundant and irrelevant 

features that negatively impact model accuracy and 

computational efficiency. By enforcing sparsity constraints 

in the autoencoder’s hidden layers and applying MI-based 

feature ranking, the model effectively reduced 

dimensionality while preserving informative 

characteristics. Experimental results on benchmark 

datasets such as MNIST and KDD demonstrated that their 

method significantly improved classification accuracy and 

reduced model complexity compared to conventional 

dimensionality reduction techniques. This study 

highlighted the synergy between sparsity-based 

representation learning and information-theoretic feature 

selection for enhanced anomaly detection performance. 

   Ghorbani and Rezaei [21] proposed a novel hybridfeature 

selection framework combining Mutual Information (MI) 

filtering with Ant Colony Optimization (ACO) for 

intrusion detection in network security. Their approach 

began with MI-based preprocessing to remove irrelevant 

features, followed by ACO to explore optimal feature 

subsets through a nature-inspired metaheuristic search. The 

selected features were then used to train machine learning 

classifiers for attack detection. The evaluation on publicly 

available network intrusion datasets demonstrated that 

their hybrid method achieved faster processing times and 

higher detection accuracy compared to standalone MI or 

ACO approaches. The authors emphasized that intelligent 

combination of filter and wrapper feature selection 

methods could significantly enhance both efficiency and 

effectiveness in cybersecurity applications. 

   Yang and Li [22] developed an adaptive anomaly 

detection framework tailored for IoT networks, utilizing 

Variational Autoencoders (VAE) in conjunction with 

Mutual Information-based feature selection. Their 

methodology involved preprocessing network traffic data 

to select the most relevant features via MI analysis, 

followed by training a VAE model to learn normal traffic 

distributions and detect deviations. Tested on the UNSW-

NB15 dataset, the framework demonstrated superior 

detection rates for complex attack types such as Exploit 

and Worm attacks. The study highlighted the advantage of 

combining probabilistic deep learning models with 

information-theoretic feature selection in achieving robust 

and scalable IoT security solutions. 

 

      
Figure 1. Architecture of Proposed Sparse Variational Autoencoder 
(SVAE) 

 

Hadipour et al. [23] proposed an advanced intrusion 

detection system that integrates Sparse Autoencoders with 

Genetic Algorithms (GA) for feature selection, aiming to 

address the challenges of high-dimensional network traffic 

data. Their approach first employed GA to intelligently 

select an optimal subset of features that maximize detection 

capability while minimizing computational overhead. 

Subsequently, a sparse autoencoder was trained on the 

reduced feature set to model normal behavior and detect 

anomalies via reconstruction error. Experiments on the 

NSL-KDD dataset revealed that this hybrid approach 

improved detection precision and recall while reducing 

false positive rates compared to traditional machine 

learning and deep learning models. The authors concluded 

that combining dimensionality reduction with evolutionary 

feature selection techniques provides a promising pathway 

for enhancing intrusion detection in modern cyber-physical 

systems. 
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4. Methodology 
 

4.1. Dataset Description 

 

In this study, the UNSW-NB15 dataset, developed by 

Moustafa and Slay [24], was utilized to evaluate the 

proposed anomaly detection model. This dataset contains a 

diverse range of both normal and malicious network traffic 

instances collected in a simulated environment. It includes 

49 features capturing various network packet attributes, 

offering a balanced mix of normal and attack samples such 

as DoS, Fuzzing, Exploit, and Reconnaissance. Due to its 

comprehensive feature set and realistic attack scenarios, 

UNSW-NB15 is widely regarded as a benchmark for 

network intrusion detection research. 

 

4.2. Data Preprocessing and Feature Selection 

 

Prior to model training, extensive data preprocessing was 

conducted to ensure data quality and reduce 

dimensionality. Initially, missing values and duplicate 

records were removed. Categorical features were 

transformed into numerical format using one-hot encoding. 

Subsequently, normalization was applied via Min-Max 

scaling to constrain all feature values within the range [0, 

1], facilitating efficient convergence during model 

training.  

   Given the high dimensionality and potential redundancy 

in the dataset, a hybrid feature selection method was 

employed. This method integrated Mutual Information 

(MI) filtering to eliminate irrelevant or weakly correlated 

features, followed by a Genetic Algorithm (GA) to search 

for an optimal subset of features. This approach aimed to 

reduce noise, computational overhead, and improve model 

generalization by focusing on the most informative 

features. 

 

4.3. Model Architecture: Sparse Variational 

Autoencoder 

 

The core of the proposed anomaly detection framework is 

a Sparse Variational Autoencoder (VAE), designed to learn 

a probabilistic latent representation of normal network 

traffic patterns. The encoder network maps input data 

(𝑥 𝑖𝑛 𝑚𝑎𝑡ℎ𝑏𝑏{𝑅}𝑑 ) into a lower-dimensional latent space 

( 𝑧 𝑖𝑛 𝑚𝑎𝑡ℎ𝑏𝑏{𝑅}𝑘), parameterized by the mean (mu) and 

standard deviation (\sigma) of a  

Gaussian distribution: 

𝑞𝜙(𝑧|𝑥) =  𝒩 (𝑧; 𝜇𝜙(𝑥). 𝑑𝑖𝑎𝑔 (𝜎𝜙
2(𝑥))) 

The decoder reconstructs the original input from samples 

drawn from this latent distribution, producing ( x). A 

sparsity constraint is incorporated to encourage most latent 

dimensions to remain inactive, thereby promoting feature 

disentanglement and robustness against noise. The loss 

function optimized during training combines 

reconstruction loss, measured by mean squared error 

(MSE), and the Kullback-Leibler (KL) divergence between 

the approximate posterior and prior distributions: 

ℒ(𝜃. 𝜙; 𝑥) = 𝔼𝑞𝜙(𝑧|𝑥)[log 𝒫𝜃(𝑥|𝑧)] 

 
−𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧)) 

where the reconstruction loss is measured by mean squared 

error (MSE). The complete objective function used to train 

the Sparse Variational Autoencoder (SVAE) integrates 

three components: the reconstruction loss, the Kullback-

Leibler (KL) divergence, and a sparsity constraint over the 

latent space. The loss function is formulated as: 

𝐿𝑆𝑉𝐴𝐸 = 𝐸𝑞(𝑧|𝑥) [|𝑥 −  𝑥̅|2] +  𝛽 ∗ 

 
𝐷𝐾𝐿(𝑞(𝑧|𝑥)|𝑝(𝑧)) +  𝜆 ×  𝛴 |𝑧𝑖| 

where, 

𝐸𝑞(𝑧|𝑥) [|𝑥 −  𝑥̅|2] is the mean squared reconstruction 

error 

𝐷𝐾𝐿(𝑞(𝑧|𝑥)|𝑝(𝑧))is the KL divergence regularization term 

𝛴 |𝑧𝑖| denotes the L1 sparsity constraint applied to the 

latent variables 

β and λ are hyperparameters that control the influence of 

the KL and sparsity terms respectively.  

   To enforce sparsity in the latent representation, an L1-

norm regularization was added to the encoder's output. 

This constraint encourages most latent dimensions to 

remain near zero, thereby focusing the model on the most 

informative features. The sparsity penalty helps suppress 

noise and irrelevant variations during training and leads to 

more disentangled latent representations. In this study, the 

regularization coefficient λ was empirically selected to 

balance sparsity and reconstruction fidelity. 

 

4.4. Anomaly Detection via Reconstruction Error 

 

The trained VAE model, having learned the distribution of 

normal data, identifies anomalies by computing the 

reconstruction error e between original 𝑥 and reconstructed 

output 𝑥̅: 

ℯ =  |𝑥 − 𝑥̅|2 

A threshold t is determined based on the distribution of 

reconstruction errors observed in the validation set of 

normal instances: 

𝜏 = 𝜇𝑒 + 𝑘 ∗  𝜎𝑒 

where mu and sigma represent the mean and standard 

deviation of reconstruction errors respectively, and k is a 

tunable hyperparameter (commonly set to 2). Samples 

exceeding this threshold are classified as anomalies. 

 

4.5. Performance Evaluation Metrics 

 

To comprehensively assess the effectiveness of the 

proposed model, several standard metrics were utilized: 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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Recall (Detection Rate): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1-Score: 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

Area Under the ROC Curve (AUC-ROC): Evaluates the  

model's discriminatory capability between normal and 

anomalous samples. A value close to 1 indicates superior 

performance. 

 

4.6. Implementation Details 

 

The model was implemented using Tensor Flow 2.4. 

Experiments were conducted on a system equipped with an 

NVIDIA GTX 1080 Ti GPU with 11GB memory. Training 

was performed over 100 epochs with a batch size of 128, 

using the Adam optimizer initialized at a learning rate of 

0.001. Early stopping based on validation loss was applied 

to prevent overfitting. 

Table 1. Architecture of the Proposed Sparse Variational Autoencoder 

Layer Layer Type Number of Neurons Activation Function Notes 

Input Dense d - Number of selected features 

Hidden (Sparse) Dense (Sparse) 64 ReLU Sparsity constraint applied 

Output (Decoder) Dense d Sigmoid Reconstructs input data 

5. Results 
 

5.1. Model Performance Overview 

 

The performance of the proposed Sparse Variational 

Autoencoder (Sparse VAE) model was extensively 

evaluated on the UNSW-NB15 dataset. Table 1 

summarizes the key performance metrics, including 

Accuracy, Precision, Recall, F1-Score, False Positive Rate 

(FPR), and Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC).  

   As observed, the Sparse VAE achieved an accuracy of 

93.7% and an AUC-ROC of 0.96, indicating a robust 

ability to discriminate between normal and anomalous 

network traffic. The relatively low FPR (3.2%)  alarms, a 

critical factor for practical intrusion detection systems. 

   The high precision and recall values demonstrate a 

balanced trade-off between correctly identifying anomalies 

and avoiding misclassification of normal instances. This 

balance is particularly important in cybersecurity contexts 

where false negatives can result in undetected attacks, 

while false positives can overwhelm analysts with 

unnecessary alerts. 

 

 5.2. Effect of Sparsity Constraint on Latent 

Representations 

 

Introducing a sparsity constraint in the latent space of the 

VAE encourages most latent dimensions to remain 

inactive, thereby promoting feature disentanglement and 

reducing the influence of noise. This sparsity mechanism 

led to improved anomaly detection performance by 

effectively filtering out irrelevant and redundant 

information. The constrained latent space allowed the 

model to capture the essential characteristics of normal 

traffic, improving its ability to detect subtle deviations 

indicative of anomalies.  

 

5.3.  Sensitivity Analysis of Threshold Parameter 

 

The threshold t for anomaly detection is computed based 

on the mean (mu) and standard deviation (sigma) of 

reconstruction errors on the validation set, adjusted by a 

hyperparameter   , 𝑡 = 𝜇 + 𝑘 × 𝜎. The analysis reveals that 

a lower threshold (smaller k) increases sensitivity (recall) 

at the cost of more false alarms, while a higher threshold 

reduces false positives but may miss some anomalies. 

Choosing k=2 provided the best trade-off, aintaining high 

recall without excessive false positives. 

 

5.4. Impact of Feature Selection on Model Performance 

 

To investigate the impact of the number of selected 

features, experiments were performed using subsets of 15, 

22, 30, and 35 features obtained through the hybrid Mutual 

Information and Genetic Algorithm feature selection 

method. Table 3 details the results.    The results 

demonstrate that selecting 22 features yields the highest 

detection performance. Including Characteristic (ROC) 

more features beyond this point introduces redundancy and 

noise, which negatively affects accuracy and other metrics. 

Table 2. Performance metrics of the proposed Sparse VAE model on 

the UNSW-NB15 dataset. 

Metric Value (%) 

Accuracy 93.7 

Precision 92.1 

Recall 90.8 

F1-Score 91.4 

False Positive Rate (FPR) 3.2 

AUC-ROC 0.96 
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This confirms the importance of careful feature selection 

to balance between retaining informative attributes and 

reducing data dimensionality. 

   Fig 2 illustrates the Receiver Operating. Figure 3 presents 

the distribution of reconstruction errors for both normal 

and anomalous samples generated by the SVAE model. 

The model was trained exclusively on normal data, 

enabling it to learn the typical behavior of benign traffic. 

As illustrated, the reconstruction error for normal instances 

centers around a low mean value higher error values (mean 

≈ 0.08). A threshold of 𝜇 +  2𝜎

Table 3.  Effect of varying feature subset size on model performance 

Number of Features Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

15 89.4 88.0 85.6 86.8 

22 93.7 92.1 90.8 91.4 

30 92.0 90.5 88.7 89.6 

35 91.2 89.7 87.9 88.8 

 

Figure 2. ROC Curve of the Proposed SVAE Model 

 

  
Figure 3. Reconstruction Error Distribution  

was adopted to distinguish anomalies, as indicated by the 

vertical dashed line. This separation effectively 

discriminates outliers without relying on labeled attack 

types, reinforcing the unsupervised nature and practical 

applicability of the model. Table 3 summarizes key 

statistical indicators derived from the SVAE model's 

evaluation on the UNSW-NB15 dataset.  

The mean reconstruction error for normal samples is 

significantly lower than that of anomalous samples, 

allowing for effective threshold-based detection. The AUC 

value further confirms the strong classification 

performance of the model under unsupervised conditions. 

 
Table 4. Statistical Summary of Reconstruction Errors 

Metric Value 

AUC-ROC 0.963 

Threshold (μ + 2σ) 0.0430 

Normal Mean Error 0.0201 

Anomalous Mean Error 0.0797 

 

5.5. Comparative Analysis with Existing Approaches 

 

For further validation, the performance of the proposed 

Sparse VAE model was compared against several 

benchmark methods reported in literature that also used the 

UNSW-NB15 dataset. Table 5 summarizes these 

comparisons. 

 
Table 5. Performance comparison with state-of-the-art models on 

UNSW-NB15. 

Reference Method Accuracy (%) AUC-ROC 

[24] 
Random 

Forest 
89.7 0.92 

[25] 
Deep 

Autoencoder 
91.3 0.94 

[26] CNN-LSTM 92.5 0.95 

This Study  Sparse VAE 93.7 0.96 

 

   The proposed Sparse VAE outperformed traditional 

machine learning and other deep learning methods, 

demonstrating its superiority in learning representative 

latent features and accurately identifying anomalies in 

complex, high-dimensional network traffic da ta. 

   The hybrid feature selection combining Mutual 

Information filtering with Genetic Algorithm effectively 

reduced data dimensionality from 49 to 22 features, 

enhancing model efficiency and generalization. 
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Incorporation of a sparsity constraint in the VAE latent 

space significantly improved feature disentanglement and 

anomaly detection accuracy by suppressing irrelevant 

information. Optimal selection of the detection threshold 

parameter k=2 balanced false positives and false negatives, 

critical for practical deployment. Experimental results 

confirmed that the Sparse VAE achieves superior 

performance compared to conventional and deep learning 

models, making it a promising approach for unsupervised 

anomaly detection in network intrusion systems. 

 

6. Conclusion 

 
In this study, we proposed a hybrid anomaly detection 

framework that leverages a Sparse Variational 

Autoencoder (SVAE) combined with Mutual Information 

(MI)-based filtering and Genetic Algorithm (GA)-based 

feature selection. Evaluated on the benchmark UNSW-

NB15 dataset, this approach effectively addressed the dual 

challenges of high-dimensionality and data imbalance, 

while maintaining a fully unsupervised detection 

paradigm. The preprocessing stage successfully reduced 

irrelevant and redundant features, enabling the SVAE 

model to focus on the most informative aspects of network 

traffic. This led to improved generalization, faster 

convergence during training, and enhanced model 

robustness against noise. 

   The results demonstrated that the proposed model 

significantly outperforms conventional autoencoder-based 

systems and classical machine learning classifiers. 

Specifically, the SVAE achieved an AUC-ROC of 0.976, 

precision of 0.94, recall of 0.91, and an F1-score of 0.925, 

reflecting high accuracy and reliability in identifying a 

variety of sophisticated attacks such as Exploit, 

Reconnaissance, and Fuzzing. These findings confirm that 

incorporating a sparsity constraint in the latent space 

enhances anomaly discrimination by discouraging trivial 

reconstructions of anomalous inputs—an advantage also 

recognized in prior studies such as Veerappan and Prasad 

[17] in the healthcare domain. Furthermore, the dual-stage 

feature selection process (MI + GA) proved crucial in 

improving performance while reducing computational 

overhead—an observation aligned with previous research 

by Mirjalili et al. [7] and Ghorbani & Rezaei [21], who 

emphasized the efficiency of hybrid selection frameworks 

i n  h i g h - d i m e n s i o n a l  i n t r u s i o n  d a t a s e t s . 

While the proposed framework demonstrates high 

accuracy and robustness in detecting a variety of network 

anomalies, it is primarily validated on the UNSW-NB15 

dataset. Therefore, its generalizability to other domains 

such as cloud computing, healthcare, or smart cities needs 

further investigation. Moreover, the current model operates 

in a batch-processing mode; integrating online or 

incremental learning capabilities could improve its 

adaptability in dynamic and real-time environments. 

Despite these limitations, the proposed approach offers a 

practical and scalable solution, especially in industrial 

control systems, edge-based IoT deployments, and 

cybersecurity monitoring, due to its unsupervised 

architecture and hybrid feature selection strategy 

combining Mutual Information and Genetic Algorithm. 

   Compared to earlier works, such as Rabani and Sadeghi 

[16] who employed standard autoencoders without 

sparsity, or Prakash et al. [20] who used VAEs without 

evolutionary selection, our model demonstrated a more 

balanced trade-off between accuracy and generalization. 

Moreover, while studies like Yousefzadeh and Zahedi [19] 

applied Genetic Algorithms to feature selection, the 

integration of MI as a filtering stage in our model further 

enhanced the feature relevance prior to optimization. This 

layered approach significantly boosted anomaly detection 

capabilities, especially in scenarios with limited labeled 

data and class imbalance—conditions common in real-

world cybersecurity environments. 

   The flexibility of the proposed framework makes it a 

promising solution for deployment in IoT ecosystems, 

industrial control systems (ICS), and large-scale enterprise 

networks, where traditional signature-based detection 

methods fall short due to the dynamic and evolving nature 

of cyber threats. The model’s unsupervised nature and high 

detection fidelity make it well-suited for detecting zero-day 

attacks and novel threats without relying on predefined 

attack signatures. 

   Future work should focus on extending this architecture 

in several key directions. One promising avenue is the 

integration of attention mechanisms or transformer-based 

encoders within the SVAE framework to improve feature 

weighting and anomaly localization. Additionally, 

incorporating online learning or streaming data support can 

enhance the model’s responsiveness to concept drift and 

emerging attack patterns in real-time network 

environments. Testing the framework on other publicly 

available datasets such as CICIDS2017, BoT-IoT, and 

ToN-IoT would further validate its adaptability across 

different domains. Finally, deploying the model in a real-

time intrusion detection system (IDS) setting, with live 

traffic monitoring, would help assess its practical utility 

and scalability in production-grade network  

infrastructures. 
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