Geochemical characteristics of hydrothermal manganese deposits in the Sulaimani metallogenic district, Kurdistan Region of Iraq: A serpentinization marker
- Department of Earth Sciences and Petroleum, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
Received: 2024-03-07
Revised: 2024-06-10
Accepted: 2024-07-13
Published 2025-01-10
Copyright (c) 2025 Dnya Abdalwahab Latif, Yousif Osman Mohammad, Mushir Mustafa Qadir, Hossein Azizi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 182
Abstract
This research investigates the geochemical characteristics of hydrothermal manganese deposits in the Sulaimani metallogenic district, Kurdistan Region of Iraq, to understand their formation processes, which may aid in the exploration of manganese resources in the region. These deposits are intimately associated with various units of Mesozoic Qulqula Formation, including jasparite, umber, radiolarian chert, siliceous shale, brown claystone, and basalt sequences of the Penjween ophiolite in the Mlakawa - Tapa sura area. In the Sulaimani district, two types of manganese deposits are found: strata-bound deposits with a thickness of around 200 meters, interbedded with late Cretaceous eip-ophilitic radiolarite chert of the Penjween ophiolite complex, and as exotic massive bodies within Eocene Merga Group, forming boulder placer deposits. The manganese deposits exhibit geochemical characteristics such as intermediate MnO content (up to 24 wt.%), low levels of transitional elements (Co + Ni + Cu < 0.01 wt.%), elevated concentrations of Ba (up to 4490 ppm), and low total rare earth elements. Geochemical analyses reveal negative Ce anomalies (-0.016 _ -1.024) and positive Y anomalies (3.4 _ 22.3) in most samples, indicative of submarine hydrothermal processes within the Neotethys. However, some banded-type deposits show weak positive Ce anomalies (0.1), suggesting minor diagenetic influences. The presence of weak negative Eu anomalies (0.54 _ 0.71) in all samples likely reflects the low Eu content in the ultramafic parent rocks and the influence of low-temperature hydrothermal serpentinization fluids. In summary, the geochemical signatures suggest that these manganese deposits, associated with regional radiolarite facies within the Neotethys, originate from mid-oceanic ridge proximal to distal hydrothermal sources.
Keywords
- Manganese deposits,
- Neotethys,
- Banded chert,
- Zagros orogeny,
- Sulaimani
References
- Al-Bassam K.S. (1984) Final Report On the Regional Geological Survey of Iraq. Vol. 5 Economic Geology of Iraq. http://87.98.241.163/Xmlui/Handle/123456789/32160
- Al-Bassam, K. S. (2013) Mineral Resources of Kurdistan Region, Iraq. Iraqi Bulletin Of Geology And Mining 9(3):103-127. https://ibgm-iq.org/ibgm/index.php/ibgm/article/view/241
- Abrajevitch A. (2020) Diagenetic formation of bedded chert: Implications from a rock magnetic study of siliceous precursor sediments. Earth and Planetary Science Letters 533:116039. https://doi.org/10.1016/j.epsl.2019.116039
- Aydoğan M.S. (2021) An Example of ridge-proximal hydrothermal mineralization: Evidence from Radiolarian Chert-hosted Fe-Mn-oxide Mineralization within the İzmir-Ankara-Erzincan Neotethyan Ocean, Central Turkey. All Earth, 33(1):136-160 https://doi.org/10.1080/27669645.2021.2003009
- Barnes H.L. (1997) Geochemistry of hydrothermal ore deposits. John Wiley & Sons, United States of America.
- Bau M., Koschinsky A., Dulski P., Hein J. R. (1996) Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta 60(10):1709–1725. https://doi.org/10.1016/0016-7037(96)00063-4
- Bau M., Dulski P. (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology 155(1):77–90. https://doi.org/10.1016/S0009-2541(98)00142-9
- Bau M., Schmidt K., Koschinsky A., Hein J., Kuhn T., Usui A. (2014) Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology 381:1–9. https://doi.org/10.1016/j.chemgeo.2014.05.004
- Baziany M.M. (2014) Depositional systems and sedimentary basin analysis of the qulqula radiolarian formation of the zagros suture zone, sulaimani area, Iraqi kurdistan region. Unpublished Ph. D. Thesis, university of sulaimani.
- Bonatti E., Fisher D., Joensuu O., Rydell H., Beyth M. (1972) Iron-Manganese-Barium Deposit from the Northern Afar Rift (Ethiopia). Economic Geology 67:717–730. https://doi.org/10.2113/gsecongeo.67.6.717
- Brookins D. G. (1988) Eh-pH Diagrams for Geochemistry. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-73093-1
- Buday T, Jassim SZ (1984) Tectonic map of Iraq, scale 1: 1000 000. Geological Survey and Mineral Investigation. Baghdad.
- Chen F., Wang Q., Yang S., Zhang Q., Liu X., Chen J., Carranza E. J. M. (2018) Space-time distribution of manganese ore deposits along the southern margin of the South China Block, in the context of Palaeo-Tethyan evolution. International Geology Review 60(1):72–86. https://doi.org/10.1080/00206814.2017.1320689
- Charlou J. L., Donval J. P. Fouquet Y., Jean-Baptiste P., Holm N. (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology 191(4):345–359. https://doi.org/10.1016/S0009-2541(02)00134-1
- Crerar D. A., Namson J., Chyi M. S., Williams L., Feigenson M. D. (1982) Manganiferous cherts of the Franciscan assemblage; I, General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers. Economic Geology 77(3):519–540. https://doi.org/10.2113/gsecongeo.77.3.519
- Cronan D. S. (1977) Chapter 2 Deep-Sea Nodules: Distribution and Geochemistry. In G. P. Glasby (Ed.) Elsevier Oceanography Series 15:11–44 Elsevier. https://doi.org/10.1016/S0422-9894(08)71016-X
- Dabiri R., Hagdoust H., Arjmandzadeh R. (2018) Geochemical Distribution of Heavy Metals and Assessment of Environmental Indicators in Chah-Shaljami Polymetal Ore deposit, South of Birjand, Iran, Geopersia 8(2): 307-317. https://doi.org/10.22059/geope.2018.260186.648395
- De Wever P., Bourdillon-de Grissac C., Bechennec F. (1988) Permian age from radiolarites of the Hawasina nappes, Oman Mountains. Geology 16(10):912–914. https://doi.org/10.1130/0091-7613(1988)016<0912:PAFROT>2.3.CO;2
- Dupont M. F., Donne S. W. (2014) Nucleation and Growth of Electrodeposited Manganese Dioxide for Electrochemical Capacitors. Electrochimica Acta 120:219–225. https://doi.org/10.1016/j.electacta.2013.12.014
- Evensen N. M., Hamilton P. J., O’Nions R.K. (1978) Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42;1199–1212. https://doi.org/10.1016/0016-7037(78)90114-X
- Force E. R., Cannon W. F. (1988) Depositional model for shallow-marine manganese deposits around black shale basins. Economic Geology 83(1):93–117. https://doi.org/10.2113/gsecongeo.83.1.93
- Fouad S. F. A. (2012) Western Zagros Fold – Thrust Belt, Part I: The Low Folded Zone. Iraqi Bulletin of Geology and Mining (5):39-62. https://ibgmiq.org/ibgm/index.php/ibgm/article/view/222
- Früh-Green G. L., Connolly J. A., Plas A., Kelley D. S., Grobéty B. (2004) Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity. The Subseafloor Biosphere at Mid-Ocean Ridges 144:119–136. http://perplex.ethz.ch/papers/frueh-green_agu_04.pdf
- German C. R., Elderfield H. (1990) Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography 5(5):823–833. https://doi.org/10.1029/PA005i005p00823
- German C., Klinkhammer G., Rudnicki M. (1996) The Rainbow hydrothermal plume, 36°15′N, MAR. Geophysical Research Letters 23(21):2979-2982. https://doi.org/10.1029/96GL02883
- Ghasempour M. R., Mehdipour Ghazi J., Biabangard H., Dabiri R. (2014) Petrogenetic Evolution of Plio-Quaternary Mafic Lavas in Nehbandan (East Iran), Iranian Journal of Earth Sciences 6(1): 133-141.
- Glasby G. P., Schulz H. D. (1999) Eh Ph diagrams for Mn, Fe, Co, Ni, Cu and as under seawater conditions: application of two new types of eh ph diagrams to the study of specific problems in marine geochemistry. Aquatic Geochemistry 5(3):227–248. https://doi.org/10.1023/A:1009663322718
- González-Santana D., Planquette H., Cheize M., Whitby H., Gourain A., Holmes T., Guyader V., Cathalot C., Pelleter E., Fouquet Y., Sarthou G. (2020) Processes Driving Iron and Manganese Dispersal From the TAG Hydrothermal Plume (Mid-Atlantic Ridge): Results From a GEOTRACES Process Study. Frontiers in Marine Science 7:568 https://doi.org/10.3389/fmars.2020.00568
- Graca B., Zgrundo A., Zakrzewska D., Rzodkiewicz M., Karczewski J. (2018) Origin and fate of nanoparticles in marine water – Preliminary results. Chemosphere 206:359–368. https://doi.org/10.1016/j.chemosphere.2018.05.022
- Gündüz M., Asan K. (2022) GEOstats: An excel-based data analysis program applying basic principles of statistics for geological studies. Earth Science Informatics 15(1):705–712. https://doi.org/10.1007/s12145-021-00710-6
- Haymon R. M., Fornari D. J., Von Damm K. L., Lilley M. D., Perfit M. R., Edmond J. M., Shanks W. C., Lutz R. A., Grebmeier J. M., Carbotte S., Wright D., McLaughlin E., Smith M., Beedle N., Olson E. (1993) Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52′N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planetary Science Letters 119(1):85–101. https://doi.org/10.1016/0012-821X(93)90008-W
- Hein J. R. (2016) Manganese nodules. Encyclopedia of marine geosciences ,Dordrecht, the Netherlands: Springer 408–412.
- Jassim SZ, Goff JC (2006) Geology of Iraq. DOLIN, distributed by Geological Society of London.
- Josso P., Pelleter E., Pourret O., Fouquet Y., Etoubleau J., Cheron S., & Bollinger C. (2017) A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geology Reviews 87:3–15. https://doi.org/10.1016/j.oregeorev.2016.09.003
- Kelley D. S., Karson J. A., Blackman D. K., Früh-Green G. L., Butterfield D. A., Lilley M. D., Olson E. J., Schrenk M. O., Roe K. K., Lebon, G. T., Rivizzigno P. (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412(6843):145–149. https://doi.org/10.1038/35084000
- Kickmaier W., Peters Tj. (1990) Manganese occurrences in the Al Hammah Range—Wahrah Formation, Oman Mountains. Geological Society, London, Special Publications 49(1):239–249. https://doi.org/10.1144/GSL.SP.1992.049.01.16
- Krishnaswami S., Lal D. (1978) Radionuclide Limnochronology. In A. Lerman (Ed.), Lakes: Chemistry, Geology, Physics, Springer 153–177. https://doi.org/10.1007/978-1-4757-1152-3_6
- Latif D., Mohammad Y., Baziany M. (2022) Mineralogy and Origin of the Manganese Deposit in the Sulaimani Province, Kurdistan Region of Iraq: Insight to Serpentinization-Induced Manganese Production Scenario. Iraqi Geological Journal 55:178–200. https://doi.org/10.46717/igj.55.1F.15Ms-2022-06-30
- Lee C.-T. (2018) Geochemical Classification of Elements. In W. M. White (Ed.), Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth 545–549. Springer International Publishing. https://doi.org/10.1007/978-3-319-39312-4_255
- Lepp H. (1963) The relation of iron and manganese in sedimentary iron formations. Economic Geology 58(4):515–526. https://doi.org/10.2113/gsecongeo.58.4.515
- Lupton J.E., Klinkhammer G.P., Normark W.R., Haymon R., MacDonald K.C., Weiss R.F., Craig H. (1980) Helium-3 and manganese at the 21°N East Pacific Rise hydrothermal site. Earth and Planetary Science Letters 50:115–127. https://doi.org/10.1016/0012-821X(80)90123-5
- Maghfouri S., Rastad E., Movahednia M., Lentz D. R., Reza Hosseinzadeh M., Ye L., Mousivand F. (2019) Metallogeny and temporal–spatial distribution of manganese mineralizations in Iran: Implications for future exploration. Ore Geology Reviews 115: 103026. https://doi.org/10.1016/j.oregeorev.2019.103026
- Mahdavi M., Dabiri R., Shah Hosseini E. (2015) Magmatic evolution and compositional characteristics of tertiary volcanic rocks associated with the Venarch manganese mineralization, SW Qom, central Iran, Earth Sciences Research Journal 19(2): 141-145.
- McLennan S. M. (1989) Chapter 7. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance And Sedimentary Processes. In B. R. Lipin & G. A. McKay (Eds.), Geochemistry and Mineralogy of Rare Earth Elements 169–200 De Gruyter. https://doi.org/10.1515/9781501509032-010
- Michard A. (1989) Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta 53(3):745–750. https://doi.org/10.1016/0016-7037(89)90017-3
- Mohammad Y. O., Maekawa H., Ahmmad Lawa F. (2007) Mineralogy and origin of Mlakawa albitite from Kurdistan region, northeastern Iraq. Geosphere 3(6):624–645. https://pubs.geoscienceworld.org/gsa/geosphere/article-abstract/3/6/624/31203
- Mohammad Y. O. (2011) Serpentinites and their tectonic signature along the Northwest Zagros Thrust Zone, Kurdistan Region, Iraq. Arabian Journal of Geosciences 4(1):69–83. https://doi.org/10.1007/s12517-009-0080-y
- Mohammad Y. O., Cornell D. H., Qaradaghi J. H., Mohammad, F. O. (2014) Geochemistry and Ar–Ar muscovite ages of the Daraban Leucogranite, Mawat Ophiolite, northeastern Iraq: Implications for Arabia–Eurasia continental collision. Journal of Asian Earth Sciences, 86:151–165. https://doi.org/10.1016/j.jseaes.2013.09.029
- Mohammad Y., Qaradaghi J. (2016) Geochronological and mineral chemical constraints on the age and formation conditions of the leucogranite in the Mawat ophiolite, Northeastern of Iraq: Insight to sync-subduction zone granite. Arabian Journal of Geosciences 9: 1-23. https://doi.org/10.1007/s12517-016-2630-4
- Mohammad Y. O. (2020) Cumulate and tectonite dunite from Mawat Ophiolite, Kurdistan Region, Northeastern Iraq: Field evidence and mineral chemical constraints. Iraqi Bulletin of Geology and Mining 16(1):15–33. https://www.iasj.net/iasj/download/c643b1055ae357e5
- Mohammad Y. O., Ali S. A., Aziz N. R., Yara I. O., Abdulla K. L. (2021) Comment on “Generation and exhumation of granitoid intrusions in the Penjween ophiolite complex, NW Zagros of the Kurdistan region of Iraq: Implications for the geodynamic evolution of the Arabia- Eurasia collision zone” by Ismail et al., 2020, 376-377, 105714. Lithos 390, 105915. https://doi.org/10.1016/j.lithos.2020.105915
- Mollai H., Dabiri R., Torshizian H., Pe-Piper G., Wang W. E. I. (2021) Upper Neoproterozoic garnet-bearing granites in the Zeber-Kuh region from east central Iran micro plate: Implications for the magmatic evolution in the northern margin of Gondwanaland, Geologica Carpathica 72(6): 461–481. https://doi.org/10.31577/GeolCarp.72.6.2
- Morgan J. J. (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochimica et Cosmochimica Acta 69(1):35-48. https://doi.org/10.1016/j.gca.2004.06.013
- Mosier D. L., Page N. J. (1988) Descriptive and Grade-tonnage Models of Volcanogenic Manganese Deposits in Oceanic Environments: A Modification. US Government Printing Office 1811:1-28. https://pubs.usgs.gov/bul/b1811/b1811.pdf
- Murray R. W. (1994) Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology 90(3):213–232. https://doi.org/10.1016/0037-0738(94)90039-6
- Nazari M., Arian M. A., Solgi A., Zareisahamieh R., Yazdi A. (2023) Geochemistry and tectonomagmatic environment of Eocene volcanic rocks in the Southeastern region of Abhar, NW Iran, Iranian Journal of Earth Sciences 15(4): 228-247. https://doi.org/10.30495/ijes.2023.1956689.1746
- Neff H. (1994) Rq-Mode Principal Components Analysis Of Ceramic Compositional Data. Archaeometry 36(1):115–130. https://doi.org/10.1111/j.1475-4754.1994.tb01068.x
- Noda N., Imamura S., Sekine Y., Kurisu M., Fukushi K., Terada N., Uesugi S., Numako C., Takahashi Y., Hartmann J. (2019) Highly Oxidizing Aqueous Environments on Early Mars Inferred From Scavenging Pattern of Trace Metals on Manganese Oxides. Journal of Geophysical Research: Planets 124(5):1282–1295. https://doi.org/10.1029/2018JE005892
- Nutman A., Ali S., Mohammad Y., Jones B. G., Zhang Q. (2022) The early Eocene (48 Ma) Qaladeza trondhjemite formed by wet partial remelting of mafic crust in the arc-related Bulfat Igneous Complex (Kurdistan, Iraq): Constraints on the timing of Neotethys closure. Arabian Journal of Geosciences 15(8):679. https://doi.org/10.1007/s12517-022-09975-7
- Ousta S. h., Ashja-Ardalan A., Yazdi A., Dabiri R., Arian M. A. (2024) Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam (SE Iran): Constraints on the development of active continental margin, Geopersia 14 (1): 89-111. https://doi.org/10.22059/geope.2023.364334.648729
- Öksüz N. (2011) Geochemical characteristics of the Eymir (Sorgun-Yozgat) manganese deposit, Turkey. Journal of Rare Earths 29(3):287–296. https://doi.org/10.1016/S1002-0721(10)60446-
- Öztürk H. (1997) Manganese deposits in Turkey: Distribution, types and tectonic setting. Ore Geology Reviews 12(3):187–203. https://doi.org/10.1016/S0169-1368(97)00005-X
- Pirajno F. (2009) Hydrothermal Processes Associated with Meteorite Impacts. In F. Pirajno (Ed.), Hydrothermal Processes and Mineral Systems 1097–1130. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8613-7_11
- Polgári M., Hein J. R., Vigh T., Szabó-Drubina M., Fórizs I., Bíró L., Müller A., Tóth A. L. (2012) Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geology Reviews 47:87–109. https://doi.org/10.1016/j.oregeorev.2011.10.001
- Robertson A. H. F., Fleet A. J. (1986) Geochemistry and palaeo-oceanography of metalliferous and pelagic sediments from the Late Cretaceous Oman ophiolite. Marine and Petroleum Geology 3(4):315–337. https://doi.org/10.1016/0264-8172(86)90036-X
- Schlesinger W. H., Bernhardt E. S. (2013) Biogeochemistry: An analysis of global change. Waltham, MA. Elsevier, Academic Press.
- Sissakian V. (2018) The Minerals Wealth in the Kurdistan Region, Iraq. UKH Journal of Science and Engineering 2:23–36. https://doi.org/10.25079/ukhjse.v2n2y2018.pp23-36
- Sun W., McDonough W. (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Geological Society, London, Special Publications 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- Taylor S. R., McLennan S. M. (1985) The Continental Crust: Its Composition and Evolution. xvi + 312 pp. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific. Price £16.80 (paperback). ISBN 0 632 01148 3. Geological Magazine 122(6):673–674. https://doi.org/10.1017/S0016756800032167
- Usui A., Nishimura A., Mita N. (1993) Composition and growth history of surficial and buried manganese nodules in the Penrhyn Basin, Southwestern Pacific. Marine Geology 114(1–2):133–153. https://doi.org/10.1016/0025-3227(93)90044-V
- Usui A., Nishi K., Sato H., Nakasato Y., Thornton B., Kashiwabara T., Tokumaru A., Sakaguchi A., Yamaoka K., Kato S., Nitahara S., Suzuki K., Iijima K., Urabe T. (2017) Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800–5500 m. Ore Geology Reviews 87:71–87. https://doi.org/10.1016/j.oregeorev.2016.09.032
- Xie C., Xu L., Peng T., Chen K., Zhao J. (2013) Leaching process and kinetics of manganese in low-grade manganese ore. Chinese Journal of Geochemistry 32(2), Article 2. https://doi.org/10.1007/s11631-013-0625-3
- Weast R. C., Astle M. J., & Beyer W. H. (1986) CRC Handbook of Chemistry and Physics 67th edn (Boca Raton, FL: Chemical Rubber Company).
- Yazdi A., Shahhosseini E., Moharami F. (2022) Petrology and tectono-magmatic environment of the volcanic rocks of West Torud–Iran, Iranian Journal of Earth Sciences 14(1): 40-57. https://dx.doi.org/10.30495/ijes.2022.1929200.1601
- Yücel M., Gartman A., Chan C. S., Luther G. W. (2011) Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geoscience 4(6):367–371. https://doi.org/10.1038/ngeo1148
- Zarasvandi A., Lentz D., Rezaei M., Pourkaseb H. (2013) Genesis of the Nasirabad manganese occurrence, Fars province, Iran: Geochemical evidences. Geochemistry 73(4):495–508. https://doi.org/10.1016/j.chemer.2013.02.003
- Zarasvandi A., Rezaei M., Sadeghi M., Pourkaseb H., Sepahvand M. (2016) Rare-earth element distribution and genesis of manganese ores associated with Tethyan ophiolites, Iran: A review. Mineralogical Magazine, 80(1):127–142. https://doi.org/10.1180/minmag.2016.080.054