10.57647/j.ijes.2025.1701.04

Geochemistry and technomagmatic environment of Eocene volcanic rocks in Yuzbashi Chay region, west of Qazvin (Iran)

  1. Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran
  2. Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran
  3. Department of Geology, Lorestan University, Khorramabad, Iran
  4. Department of Geology, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
Geochemistry and technomagmatic environment of Eocene volcanic rocks in Yuzbashi Chay region, west of Qazvin (Iran)

Received: 2024-02-17

Revised: 2024-05-09

Accepted: 2024-08-08

Published 2025-01-10

How to Cite

Salehpour, S., Arian, M. A., Jafari Rad, A., Zarei Sahamieh, R., & Yazdi, A. (2025). Geochemistry and technomagmatic environment of Eocene volcanic rocks in Yuzbashi Chay region, west of Qazvin (Iran). Iranian Journal of Earth Sciences, 17(1), 1-13. https://doi.org/10.57647/j.ijes.2025.1701.04

PDF views: 76

Abstract

The study area is 92 km northeast of Zanjan City (Iran), north of the Tehran-Tabriz freeway. The rock units outcropped in the Zanjan quadrangle​ include the Precambrian and the Quaternary from the old to the new. However, the volcanic rocks in this vast area are of Eocene age and younger. Volcanic rocks include acidic, rhyolitic, rhyodacite, andesitic lavas, along with tuff and ignimbrite. From the mineralogical perspective, these volcanic rocks have low contents of quartz, low alkaline feldspar, and abundant plagioclase and pyroxene. In addition, porphyritic, microlithic porphyry, glomeroporphyritic, and poikilitic textures are dominant in these rocks. Geochemical studies based on oxides of major and Minor elements indicate the calc-alkaline nature of these volcanic rocks. Furthermore, studying the change trends in major, trace, and rare earth elements demonstrates a connection and affiliation between different rock groups. These rocks have formed during the subduction process and probably originate from a lower crustal source.

Keywords

  • Volcanic rocks,
  • Subduction environment,
  • West Qazvin,
  • Iran

References

  1. Aghazadeh M, Castro A, Badrzadeh Z, Vogt K, (2011) Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 148(5-6): 980-1008. https://doi.org/10.1017/S0016756811000380
  2. Annells RN, Arthurton, R.S., Bazely, R.A. and Davies, R.G. 1975. Explanatory text of the Qazvin and Rasht quadrangles map1:250000, G.S.I. Rep., nos. E3, E4, 94p.
  3. Arjmandzadeh R., Sharifi Teshnizi E., Rastegarnia A. Golian M., Jabbari P., Shamsi H., Tavasoli S. (2020) GIS-Based Landslide Susceptibility Mapping in Qazvin Province of Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering 44 (Suppl 1), 619–647. https://doi.org/10.1007/s40996-019-00326-3
  4. Asaah ANE, Yokoyama T, Aka FT, Iwamori H, Kuritani T, Usui T, Gounti´eDedzo M, Tamen J, Hassegawa T, Fozing EM, Wirmvem MJ, Nche AL, (2020) Major/trace elements and Sr–Nd–Pb isotope systematics of lavas from lakes Barombi Mbo and Barombi Koto in the Kumba graben, Cameroon volcanic line: Constraints on petrogenesis. African Earth Sci (161). https://doi.org/10.1016/j.jafrearsci.2019.103675
  5. Asiabanha A, (2001) Geology and petrogenesis of volcanic facies at the Uzbashichai area, west of Qazvin, PhD thesis, University of Tarbiyat Modares, p: 321.
  6. Asiabanha A, Ghassemi H, Meshkin M, (1989) Paleogene continental arc type volcanism in north Qazvin, north Iran: facies analysis andbasalts as petrogenetic indicator. Chemical Geology 77(3): 165-182. http://dx.doi.org/10.1127/0077-7757/2009/0144
  7. Baker MB, Hirschmann MM, Ghiorsot MS, Stolper EM, (1995) Compositions of nearsolidus peridotite melts from experiments and thermodynamic calculations. Nature (375): 308–311. http://dx.doi.org/10.1038/375308a0
  8. Bhat IM, Ahmad T, Rao DS, (2019) The tectonic evolution of the Dras arc complex along the Indus Suture Zone, western Himalaya: Implications for the Neo-Tethys Ocean geodynamics. Geodyn (124): 52–66 https://doi.10.1016/j.jog.2019.01.015
  9. Chen L, Zheng YF, Zhao ZF, (2018) A common crustal component in the sources of
  10. bimodal magmatism: geochemical evidence from Mesozoic volcanics in the
  11. Middle-Lower Yangtze Valley, South China. Geological Society of America
  12. Bulletin (130): 1959–1980 https://doi.10.1130/B31856.1
  13. Chen X, Shu L, Santosh M, Zhao X, (2013) Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: Geochemistry, zircon U–Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia. Lithos (168–169): 48–66. https://doi:10.1016/j.lithos.2012.10.006
  14. Conceicao RV, Green DH, (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite+pargasite lherzolite. Journal of Geology (72): 209-229. https://doi.10.1016/j.lithos.2003.09.003
  15. Condie KC, (2005) High Field strength element ratios in Archean basalts: a window to
  16. evolving sources of mantle plumes? Lithos (79): 491–504. https://doi.org/10.1016/j.lithos.2004.09.014
  17. Dilek Y, Imamverdiyev N, Altunkaynak Ş, (2010) Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52(4-6) 536–578. http://dx.doi.org/10.1080/00206810903360422
  18. Elliott T, (2003) Tracers of the slab. in Eiler, J., eds., Inside the subduction factory:
  19. Washington". American Geophysical Union, Geophysical Monograph (138): 23-45. https://doi.org/10.1029/138GM03
  20. Floyd PA, Winchester JA, (1977) Magma type and tectonic setting discrimination using immobile elements. Earth Planet. ( 27): 211 218.
  21. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD, )2001( A geochemical classification for granitic rocks. Journal of Petrology (42): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033
  22. Ghasempour M. R., Mehdipour Ghazi J., Biabangard H., Dabiri R. (2014) Petrogenetic Evolution of Plio-Quaternary Mafic Lavas in Nehbandan (East Iran), Iranian Journal of Earth Sciences 6(1): 133-141.
  23. Gill R, (2010) Igneous Rocks and Processes. Wiley-Blackwell, Malaysia. 440P.
  24. Gounti´e Dedzo M, Asaah ANE, Martial Fozing E, Chako-Tchamab´e B, Tefogoum
  25. Zangmo G, Dagwai N, Tchokona Seuwui D, Kamgang P, Aka FT, Ohba T,
  26. (2019) Petrology and geochemistry of lavas from Gawar, Minawao and Zamay
  27. volcanoes of the northern segment of the Cameroon volcanic line (Central Africa):
  28. constraints on mantle source and geochemical evolution". Geochemistry, 80(4): 31–41. https://doi.org/10.1016/j.chemer.2020.125663
  29. Heaton D, Kirchenbaur M, Shimizu K, Sakuyama T, Li Y, Vetter SK, (2019)
  30. Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the izu-bonin
  31. arc from IODP expedition 352. Geochemistry, Geophys. Geosystems (20): 314–338. https://doi.org/10.1029/2018GC007731
  32. Harris NBW, Pearce JA, Tindle AG, (1986) Geochemical characteristics of
  33. collision-zone magmatism. Geological Society Special Publications (19): 67–81. https://doi:10.1144/GSL.SP.1986.019.01.04
  34. Hermann J, Spandler C, Hack A, Korsakov AV, (2006) Aqueous fluids and hydrous
  35. melts in high pressure and ultra¬_highpressure rocks: implications for element
  36. transfer in subduction zones. Lithos (92): 399–417. https://doi.org/10.1016/j.lithos.2006.03.055
  37. Hofmann AW, (1997) Mantle geochemistry: the message from oceanic volcanism
  38. Nature 9385): 219–229
  39. Jahangiri, A (2007) Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. Journal of Asian Earth Sciences, 30(3-4): 433–447. https://doi.org/10.1016/j.jseaes.2006.11.008
  40. Jiang YH, Jiang SY, Ling HF, Zhou XR, Rui XJ, Yang WZ, (2002) Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid genesis, Lithos (63): 165-187. https://doi.10.1016/S0024-4937(02)00140-8
  41. Kamber BS, Ewart A, Collerson KD, Bruce MC, Donald GD, (2002) Fluid-mobile trace element constraints on the role slab melting and implication for Archean crustal growth models" Contribution to Mineralogy and Petrology, (144): 38-56. http://dx.doi.org/10.1007/s00410-002-0374-5
  42. Kelemen PB, Hanghoj K, Greene AR, (2003) One view of the geochemistry of
  43. subduction-related magmatic arcs, with an emphasis on primitive andesite and
  44. lower crust. Treatise on Geochemistry (3): 593–659. https://doi:10.1016/B0-08-043751-6/03035-8
  45. Keshtkar I, Ghorbani M, (2016) Petrology and geochemistry of intrusive masses of Karaj-Taleghan axis. PhD thesis in Petrology, Shahid Beheshti University, Tehran, 324 pages.
  46. Keskin M, (2002) FC-Modeler: a Microsoft® Excel© spreadsheet program for modeling Rayleigh fractionation vectors in closed magmatic systems. Computers & Geosciences (28): 919-928. http://dx.doi:10.1016/S0098-3004(02)00010-9
  47. Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Chiaradia M, (2013) A detailed geochemical study of a shallow arc-related laccolith, the Torres del Paine mafic complex (Patagonia). Journal of Petrology (54): 273-303. http://dx.doi.org/10.1093/petrology/egs069
  48. Mobashergarmi M, (2013) Petrological, petrographical and geochemical studies of basaltic rocks in south Germi (Ardabil province), MSc thesis, University of Tabriz, Tabriz, Iran, (in Persian).
  49. Moghadam H. S, Stern R.J, Griffin W, Khedr M, Kirchenbaur M, Ottley C., Gain S, (2020) Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran. Bulletin, 132(5-6):1083-1105. https://doi.org/10.1130/B35065.1
  50. Moghadam HS, Griffin WL, Li XH, Santos JF, Karsli O, Stern RJ, Ghorbani G, Gain S, Murphy R, OReilly SY, (2018) Roll-Back, Extension and Mantle Upwelling Triggered Eocene Potassic Magmatism in NW Iran. Journal of Petrology (59)7: 1417–1465. https://doi.org/10.1093/petrology/egy067
  51. Mollai H., Dabiri R., Torshizian H., Pe-Piper G., Wang W. E. I. (2021) Upper Neoproterozoic garnet-bearing granites in the Zeber-Kuh region from east central Iran micro plate: Implications for the magmatic evolution in the northern margin of Gondwanaland, Geologica Carpathica 72(6): 461–481. https://doi.org/10.31577/GeolCarp.72.6.2
  52. Nabavi M H (1976) An Introduction to Geology of Iran, Geological Survey of Iran.109P.
  53. Nazari M., Arian M. A., Solgi A., Zareisahamieh R., Yazdi A. (2023) Geochemistry and tectonomagmatic environment of Eocene volcanic rocks in the Southeastern region of Abhar, NW Iran, Iranian Journal of Earth Sciences 15(4): 228-247. https://doi.org/10.30495/ijes.2023.1956689.1746
  54. Ousta S. h., Ashja-Ardalan A., Yazdi A., Dabiri R., Arian M. A. (2024) Petrogenesis and tectonic implications of Miocene dikes in the southeast of Bam (SE Iran): Constraints on the development of active continental margin, Geopersia 14 (1): 89-111. https://doi.org/10.22059/geope.2023.364334.648729
  55. Pearce J.A, Peate D, (1995) Tectonic implications of the composition of volcanic arc
  56. magmas. Annual Review of Earth and Planetary Sciences (23): 251–286.
  57. Pearce JA, (2008) Geochemical fngerprinting of oceanic basalts with applications to
  58. ophiolite classifcation and the search for Archean oceanic crust. Lithos (100): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
  59. Pearce JA, Harris N, Tindle AG, (1984) Trace element discrimination diagrams for
  60. the tectonic interpretation of granitic rocks. Journal of Petrology 25(4): 956-983.
  61. Perfit M, Gust D, Bence A.E, Arculus R, Taylor S, (1980) Chemical
  62. characteristics of island-arc basalts: implications formantle sources". Chemical
  63. Geology (30): 227–256. https://doi.org/10.1016/0009-2541(80)90107-2
  64. Sarikhani R, Ghasemi Dehnavi A, Zarei Sahamiyeh R, Moradpour A, (2017) Investigation of magmatic rocks and environmental effects of alteration zones in the region of Yuzbashi Chay (west of Qazvin). New Findings of Applied Geology 11( 21): 34-50. https://doi.org/10.22084/nfag.2017.1922
  65. Saunders AD, Storey M, Kent RW, Norry MJ, (1992) Consequences of plume–lithosphere interactions: Storey, B. C., Alabaster, T., and Pankhurst, R.J., eds., Magmatism and the cause of Continental breakup, Geological Society of Special Publication(68): 41–60.
  66. Schmidt M.W, Jagoutz O, (2017) The global systematics of primitive arc melts. Geochem. Geophys. Geosyst (18): 2817–2854. https://doi.org/10.1002/2016GC006699
  67. Shafaii Moghadam M.H, Shahbazi Shiran S.H, (2010) Geochemistry and petrogenesis of volcanic rocks from the northern part of the Lahrud region(Ardabil): an example of shoshonitic occurrence in northwestern Iran. Journal of Petrology, 1(4).16-31(in Persian).
  68. Stocklin J (1968) Structural history and tectonics of Iran, A review. AAPG Bulletin 52,7:1229-1258.
  69. Su WB, Cai KD, Sun M, Wan B, Wang XS, Bao ZH, Xiao WJ, (2018)
  70. Carboniferous volcanic rocks associated with back-arc extension in the western
  71. Chinese Tianshan, NW China: insight from temporal-spatial character,
  72. petrogenesis and tectonic significance. Lithos (310–311): 241–254. http://dx.doi.org/10.1007/s00531-021-02111-y
  73. Sun S. S, McDonough W. F, (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, In: Saunders, A. D. and Norry M. J. (eds), Magmatism in ocean basins. Geological Society, London, Spec. Pub. (42): 313- 345.
  74. Swain G, Barovich K, Hand M, Ferris G, Schwarz M, (2008) Petrogenesis of the
  75. St Peter Suite, southern Australia: Arc magmatism and Proterozoic crustal growth of the
  76. South Australian Craton, Precambrian Research (166): 283-296. https://doi.org/10.1016/j.precamres.2007.07.028
  77. Tatsumi Y, Hamilton DL, Nesbitt RW, (1986) Chemical characteristics of fluid plase released from a subducted lithosphere and origin of arc magmas: evidence from high pressure experiments and natural rocks. Journal of Volcanology (29): 293-31o.. https://doi.org/10.1016/0377-0273(86)90049-1
  78. Teshnizi E. S., Golian M., Sadeghi S., Rastegarnia, A. (2022). Application of analytical hierarchy process (AHP) in landslide susceptibility mapping for Qazvin province, N Iran. In Computers in Earth and Environmental Sciences (pp. 55-95). Elsevier. https://doi.org/10.1016/B978-0-323-89861-4.00041-5
  79. Verdel C, Wernicke BP, Hassanzadeh J, Guest B, (2011) A Paleogene extensional arc flare‐up in Iran. Tectonics, 30, TC3008, http://dx.doi.org/10.1029/2010TC002809
  80. Wendt JI, Regelous M, Niu Y, H´ ekinian R, Collerson KD, (1999) Geochemistry of lavas from the garrett transform fault: insights into mantle heterogeneity beneath the
  81. eastern pacific. Earth Planet Sci(173): 271–284. http://dx.doi.org/10.1016/S0012-821X(99)00236-8
  82. Whitney DL, Evans BW, (2010) Abbreviations for names of rock-forming minerals. American Mineralogist (95):158-187. http://dx.doi.org/10.2138/am.2010.3371
  83. Wyllie PJ, Skine, T (1982), The formation of mantle phlogopite in subduction zone hybridization. Contribution to Mineralogy and Petrology (79): 375-380.
  84. Xu W, Zhu DC, Wang Q, Weinberg RF, Wang R, Li SM, Zhang LL, Zhao ZD, (2019) Constructing the Early Mesozoic Gangdese crust in southern Tibet by hornblende dominated magmatic differentiation. Journal of Petrology 60 (3): 515–552. https://doi.org/10.1093/petrology/egz005
  85. Zanchi A, Berra F, Mattei M, Ghassemi M R, Sabouri, J (2006) Inversion tectonics in Central Iran, Journal of Structural Geology (28): 2023-2037. https://doi.org/10.1016/j.jsg.2006.06.020.
  86. Zarei Sahamieh R (1992) Petrography, Petrology, and Geochemistry of North Abhar Volcanic Rocks and the Relationship between Volcanism in the Region and Mineralization, M.Sc. Thesis, Faculty of Science, Tarbiat Moallem University.
  87. Zhang XH, Zhang HF, Tang YJ, Wilde SA, Hu ZC, (2008) Geochemistry of
  88. Permian bimodal volcanic rocks from central Inner Mongolia, North China:
  89. implication for tectonic setting and Phanerozoic continental growth in Central
  90. Asian Orogenic Belt. Chemical Geology (249): 262–281. http://dx.doi.org/10.1016/j.chemgeo.2008.01.005
  91. Zhang YY, Yuan C, Long XP, Sun M, Zhang Y, Du L, Wang XY, (2017)
  92. Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China:
  93. evidence for arc rifting. Gondwana Research (43): 92–106. https://doi.org/10.1016/j.gsf.2019.06.003
  94. Zhao JH, Zhou MF, (2007) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan province, SW China). implications for subduction-related metasomatism in the upper mantle. Precambrian Research (152): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002
  95. Zheng YF, (2019) Subduction zone geochemistry Geosci (4): 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003