10.57647/j.ijes.2025.1701.03

Landslide Susceptibility Mapping (LSM) of the Boudinar Basin (Morocco) using the Geographic Information System (GIS) and the Analytical Hierarchy Process (AHP) method

  1. Applied Geosciences and Geological Engineering Research Team, FSTH, Abdelmalek Essaˆadi University, Tetouan, Morocco
  2. Department of Geology, Faculty of Science, Abdelmalek Essaˆadi University, Tetouan, Morocco
  3. Geosciences, water and Environment Laboratory, Department of Geology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
  4. Laboratory of Engineering Sciences and Applications (LSIA), Materials Science, Energy and Environment (SM2E), ENSAH, Abdelmalek Essaˆadi University, Tetouan, Morocco
  5. Department of Geography, The Faculty of Letters and Human Sciences of Oujda, Mohammed first University, Oujda, Morocco
Landslide Susceptibility Mapping (LSM) of the Boudinar Basin (Morocco) using the Geographic Information System (GIS) and the Analytical Hierarchy Process (AHP) method

Received: 2024-04-19

Revised: 2024-05-07

Accepted: 2024-07-15

Published 2025-01-10

How to Cite

Taher , M. ., Taoufik, M. ., El Talibi, H. ., Amine, A. ., Bourjila, A. ., Errahmouni, A. ., Azzouzi, S. ., & Etebaai, I. . (2025). Landslide Susceptibility Mapping (LSM) of the Boudinar Basin (Morocco) using the Geographic Information System (GIS) and the Analytical Hierarchy Process (AHP) method. Iranian Journal of Earth Sciences, 17(1), 1-10. https://doi.org/10.57647/j.ijes.2025.1701.03

PDF views: 86

Abstract

Creating a landslide susceptibility map for the Boudinar basin is of paramount significance due to the region's susceptibility to landslides, which pose considerable risks to both human settlements and the environment. By integrating Geographic Information Systems (GIS) and the Analytical Hierarchy Process (AHP), our study aims to address this challenge. These methods provide distinct advantages, as they facilitate spatial analysis and enable a thorough evaluation of the various factors contributing to landslide susceptibility. Therefore, various factors were considered in the study, including rainfall, lithology, slope, aspect, NDVI, distance from the fault, distance from the river, distance from the road, and elevation. The causative factors were divided into sub-factors, and weightages were assigned based on the AHP methodology. The resulting landslide susceptibility map was classified into three categories: low (5 %, 18 km2), moderate (69 %, 242 km2), and high (25 %, 88 km2). Nevertheless, the primary sources of uncertainty of our analysis include data quality, and the absence of field landslide inventory data for the validation process. Using Google Earth pro, the landslide inventory, consisting of 100 landslides, was used to validate the landslide susceptibility map, which had a prediction rate of 65.7% using the area under curve (AUC) technique. The LSM study is a valuable tool for construction planners and decision-makers. Therefore, by identifying high-risk areas, it aids in better preparedness and risk reduction efforts. Its integration into the planning process can significantly enhance the region's resilience to landslide hazards.

Keywords

  • Geological hazard,
  • Heavy rainfall,
  • Rif,
  • Seismic activities

References

  1. Abedini, M., & Tulabi, S. (2018). Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran. Environmental Earth Sciences, 77(11), 1–13. https://doi.org/10.1007/s12665-018-7524-1
  2. Afzal, N., Ahmad, A., Shirazi, S. A., Younes, I., & Ha, L. T. T. (2022). GIS-based Landslide Susceptibility Mapping using Analytical Hierarchy Process : A Case Study of Astore Region, Pakistan. EQA - International Journal of Environmental Quality, 48(2), 27–40. https://doi.org/10.6092/issn.2281-4485/12600
  3. Agrawal, N., & Dixit, J. (2022). Assessment of landslide susceptibility for Meghalaya (India) using bivariate (frequency ratio and Shannon entropy) and multi-criteria decision analysis (AHP and fuzzy-AHP) models. All Earth, 34(1), 179–201. https://doi.org/10.1080/27669645.2022.2101256
  4. Akbar, T. A., Ullah, S., Ullah, W., Ullah, R., Sajjad, R. U., Mohamed, A., Khalil, A., Javed, M. F., & Din, A. (2022). Development and Application of Models for Landslide Hazards in Northern Pakistan. Sustainability (Switzerland), 14(16), 1–17. https://doi.org/10.3390/su141610194
  5. Alsabhan, A. H., Singh, K., Sharma, A., Alam, S., Pandey, D. D., Rahman, S. A. S., Khursheed, A., & Munshi, F. M. (2022). Landslide susceptibility assessment in the Himalayan range based along Kasauli – Parwanoo road corridor using weight of evidence, information value, and frequency ratio. Journal of King Saud University - Science, 34(2), 101759. https://doi.org/10.1016/j.jksus.2021.101759
  6. Arjmandzadeh R., Shafiei Rashvanlou V., Dabiri R., Almasi A. (2017) Satellite thermal surveys to detecting hidden active faults and fault termination, Case study of Quchan fault, NE Iran, Iranian Journal of Earth Sciences 9(2): 39-47.
  7. Azarafza, M., Azarafza, M., Akgün, H., Atkinson, P. M., & Derakhshani, R. (2021). Deep learning-based landslide susceptibility mapping. Scientific Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-021-03585-1
  8. Byou, T. (2021). Evaluation of the landslide susceptibility map obtained by a GIS matrix method: a case of Al Hoceima city (northern Morocco). SHS Web of Conferences, 119, 04002. https://doi.org/10.1051/shsconf/202111904002
  9. Chang, L., Zhang, R., & Wang, C. (2022). Evaluation and Prediction of Landslide Susceptibility in Yichang Section of Yangtze River Basin Based on Integrated Deep Learning Algorithm. Remote Sensing, 14(11). https://doi.org/10.3390/rs14112717
  10. Chang, Z., Catani, F., Huang, F., Liu, G., Meena, S. R., Huang, J., & Zhou, C. (2022). Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. Journal of Rock Mechanics and Geotechnical Engineering, xxxx. https://doi.org/10.1016/j.jrmge.2022.07.009
  11. El Jazouli, A., Barakat, A., & Khellouk, R. (2019). GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6(1). https://doi.org/10.1186/s40677-019-0119-7
  12. El Ouahabi, F. Z., Saint Martin, S., Saint Martin, J. P., Ben Moussa, A., & Conesa, G. (2007). Messinian diatom assemblages from Boudinar basin (northeastern Rif, Morocco). Revue de Micropaleontologie, 50(2), 149–167. https://doi.org/10.1016/j.revmic.2007.02.004
  13. Golian M., Teshnizi E.S., Parise M. Terzić J., Milanović S., Vakanjac V. R., Mahdad M., Abbasi M., Taghikhani H., Saadat H. (2021) A new analytical method for determination of discharge duration in tunnels subjected to groundwater inrush, Bulletin of Engineering Geology and the Environment 80, 3293–3313. https://doi.org/10.1007/s10064-021-02140-6
  14. Gupta, N., Pal, S. K., & Das, J. (2022). GIS-based evolution and comparisons of landslide susceptibility mapping of the East Sikkim Himalaya. Annals of GIS, 28(3), 359–384. https://doi.org/10.1080/19475683.2022.2040587
  15. Hamdouni, I. El, Brahim, L. A., Mahsani, A. El, & Abdelouafi, A. (2022). The Prevention of Landslides Using the Analytic Hierarchy Process (AHP) in a Geographic Information System (GIS) Environment in the Province of Larache, Morocco. Geomatics and Environmental Engineering, 16(2), 77–93. https://doi.org/10.7494/geom.2022.16.2.77
  16. Hashemi H., Yazdi A., Sharifi TeshniziI E. (2023) mprovement of collapsing problematic soils on the sabzevar-mashhad railway route (northeast of Iran) using traditional additives, Nexo Revista Científica 36(3): 383-403. http://dx.doi.org/10.5377/nexo.v36i03.16461
  17. He, H., Hu, D., Sun, Q., Zhu, L., & Liu, Y. (2019). A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of southern Anhui, China. ISPRS International Journal of Geo-Information, 8(6). https://doi.org/10.3390/ijgi8060266
  18. Himmi, M. (1994). General Analysis of Landslides in Northern Morocco: Impact on the Road Network. Proceedings of the 4th National Road Congress.
  19. Ibrahim, M. B., Mustaffa, Z., Balogun, A. B., Indra, S. H. H., & Nur Ain, A. (2022). Landslide’s analysis and Hazard mapping based on ANALYTIC HIERARCHY PROCESS (AHP) using GIS, in Lawas, Sabah-Sarawak. IOP Conference Series: Earth and Environmental Science, 1064(1). https://doi.org/10.1088/1755-1315/1064/1/012031
  20. KC, D., Dangi, H., & Hu, L. (2022). Assessing Landslide Susceptibility in the Northern Stretch of Arun Tectonic Window, Nepal. CivilEng, 3(2), 525–540. https://doi.org/10.3390/civileng3020031
  21. Kincal, C., & Kayhan, H. (2022). A Combined Method for Preparation of Landslide Susceptibility Map in Izmir (Türkiye). Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12189029
  22. Kushal, M., & Barman, S. D. (2022). Kodagu disaster (Floods - Emphasis on Catchment Fragmentation Index and unscientific land usage) analysis using GIS. IOP Conference Series: Earth and Environmental Science, 1032(1). https://doi.org/10.1088/1755-1315/1032/1/012036
  23. Leonardi, G., Palamara, R., Manti, F., & Tufano, A. (2022). GIS-Multicriteria Analysis Using AHP to Evaluate the Landslide Risk in Road Lifelines. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094707
  24. Liu, Y., Yuan, A., Bai, Z., & Zhu, J. (2022). GIS-based landslide susceptibility mapping using frequency ratio and index of entropy models for She County of Anhui Province, China. Applied Rheology, 32(1), 22–33. https://doi.org/10.1515/arh-2022-0122
  25. Panchal, S., & Shrivastava, A. K. (2020). Application of analytic hierarchy process in landslide susceptibility mapping at regional scale in GIS environment. Journal of Statistics and Management Systems, 23(2), 199–206. https://doi.org/10.1080/09720510.2020.1724620
  26. Panchal, S., & Shrivastava, A. K. (2021). A comparative study of frequency ratio, shannon’s entropy and analytic hierarchy process (Ahp) models for landslide susceptibility assessment. ISPRS International Journal of Geo-Information, 10(9). https://doi.org/10.3390/ijgi10090603
  27. Panchal, S., & Shrivastava, A. K. (2022). Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Engineering Journal, 13(3), 101626. https://doi.org/10.1016/j.asej.2021.10.021
  28. Rahali, H. (2019). Improving the reliability of landslide susceptibility mapping through spatial uncertainty analysis: a case study of Al Hoceima, Northern Morocco. Geocarto International, 34(1), 43–77. https://doi.org/10.1080/10106049.2017.1357767
  29. Rehman, A., Song, J., Haq, F., Mahmood, S., Ahamad, M. I., Basharat, M., Sajid, M., & Mehmood, M. S. (2022). Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan. Remote Sensing, 14(3), 1–31. https://doi.org/10.3390/rs14030554
  30. Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60–91.
  31. Saadat S., Ghoorchi M, Dabiri R. (2023) Extracting clay minerals with emphasis on Bentonite in Eastern Iran, using Landsat 8 and ASTER images, Iranian Journal of Earth Sciences 15(3): 188-194. https://doi.org/10.30495/ijes.2023.1973739.1815
  32. Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I
  33. Saha, A., Villuri, V. G. K., & Bhardwaj, A. (2022). Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India. Land, 11(10). https://doi.org/10.3390/land11101711
  34. Seddiki, A., & Dehimi, S. (2022). Using GIS Combined with AHP for Mapping landslide Susceptibility in Mila, in Algeria. International Journal of Design and Nature and Ecodynamics, 17(2), 169–175. https://doi.org/10.18280/ijdne.170202
  35. Senapati, U., & Das, T. K. (2022). GIS-based comparative assessment of groundwater potential zone using MIF and AHP techniques in Cooch Behar district, West Bengal. Applied Water Science, 12(3). https://doi.org/10.1007/s13201-021-01509-y
  36. Sheng, M., Zhou, J., Chen, X., Teng, Y., Hong, A., & Liu, G. (2022). Landslide Susceptibility Prediction Based on Frequency Ratio Method and C5.0 Decision Tree Model. Frontiers in Earth Science, 10(May), 1–14. https://doi.org/10.3389/feart.2022.918386
  37. Sun, D., Chen, D., Zhang, J., Mi, C., Gu, Q., & Wen, H. (2023). Landslide Susceptibility Mapping Based on Interpretable Machine Learning from the Perspective of Geomorphological Differentiation. Land, 12(5). https://doi.org/10.3390/land12051018
  38. Taher, M., & Mourabit, T. (2022). The Use of an ELMI for Measuring the Movement of the Trougout and the Ajdir-Imzouren Faults—(North East of the RIF) MOROCCO—Between 2017 and 2019. Advances in Science, Technology and Innovation, 95–99. https://doi.org/10.1007/978-3-030-73026-0_24
  39. Taher, M., Mourabit, T., Etebaai, I., Dekkaki, H. C., Amine, A., Abdelhak, B., Errahmouni, A., & Azzouzi, S. (2023). Identification of Groundwater Potential Zones ( GWPZ ) Using Geospatial Techniques and AHP Method : a Case Study of the Boudinar Basin , Rif Belt ( Morocco ). 17(3), 83–106.
  40. Trinh, T., Luu, B. T., Le, T. H. T., Nguyen, D. H., Van Tran, T., Van Nguyen, T. H., Nguyen, K. Q., & Nguyen, L. T. (2022). A comparative analysis of weight-based machine learning methods for landslide susceptibility mapping in Ha Giang area. Big Earth Data, 00(00), 1–30. https://doi.org/10.1080/20964471.2022.2043520
  41. Trisnawati, D., Najib, Hidayatillah, A. S., Robbany, A. Z., & Pellokila, Y. A. L. (2022). Comparative Study of Determination of Landslide Susceptibility Based on Weighting Methods and Analytical Hierarchy Processes in Pringapus, East Ungaran. IOP Conference Series: Earth and Environmental Science, 1039(1), 012024. https://doi.org/10.1088/1755-1315/1039/1/012024
  42. Wang, H., Zhang, L., Yin, K., Luo, H., & Li, J. (2021). Landslide identification using machine learning. Geoscience Frontiers, 12(1), 351–364. https://doi.org/10.1016/j.gsf.2020.02.012
  43. Wang, Z., Ma, C., Qiu, Y., Xiong, H., & Li, M. (2022). Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China. International Journal of Environmental Research and Public Health, 19(15). https://doi.org/10.3390/ijerph19159412
  44. Yamusa, I. B., Ismail, M. S., & Tella, A. (2022). Highway Proneness Appraisal to Landslides along Taiping to Ipoh Segment Malaysia, Using MCDM and GIS Techniques. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159096
  45. Yuan, X., Liu, C., Nie, R., Yang, Z., Li, W., Dai, X., Cheng, J., Zhang, J., Ma, L., Fu, X., Tang, M., Xu, Y., & Lu, H. (2022). A Comparative Analysis of Certainty Factor-Based Machine Learning Methods for Collapse and Landslide Susceptibility Mapping in Wenchuan County, China. Remote Sensing, 14(14). https://doi.org/10.3390/rs14143259
  46. Zhang, L., Wang, J., Bai, Z., & Lv, C. (2015). Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena, 128, 44–53. https://doi.org/10.1016/j.catena.2015.01.016