Fabrication of a New Magnetic Nanocatalyst and its Application for the Effectual Construction of Pyrimido[4,5-b]Quinolines
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
- Department of Chemistry, Payame Noor University, Tehran, Iran
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran AND Chemistry Department, College of Sciences, Shiraz University, Shiraz, Iran
Received: 2024-05-27
Revised: 2024-09-24
Accepted: 2024-11-01
Published 2024-11-16
Copyright (c) 2024 Abdolkarim Zare, Marziyeh Barzegar, Ahmad Reza Moosavi-Zare (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 85
Abstract
A new magnetic nanocatalyst, namely [Fe3O4@SiO2@RNMe2-SO3H][CF3CO2] (FSRNSC), was fabricated, and characterized using FT-IR, EDS (energy-dispersive X-ray spectroscopy), elemental mapping, FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), VSM (vibrating-sample magnetometry), TG (thermogravimetric) and DTG (differential thermogravimetric) analyses. It was utilized as a highly effectual and magnetically recoverable catalyst for the construction of pyrimido[4,5-b]quinolines (12 examples) in high yields (15-50 min) and short times (88-96%). The synthesis was performed through the one-pot, three-component reaction of aryl aldehydes, dimedone, and 6-amino-1,3-dimethyluracil in the absence of solvent.
Research Highlights
- A novel magnetic nanocatalyst namely [Fe3O4@SiO2@RNMe2-SO3H][CF3CO2] (FSRNSC) was prepared.
- Full characterization of FSRNSC using FT-IR, EDS, elemental mapping, FE-SEM, XRD, VSM, TG and DTG analyses was aperformed.
- Application of FSRNSC for the construction of pyrimido[4,5-b]quinolones was done..
- Producing pyrimido[4,5-b]quinolines in short times with high yields were advantages of this method.
- Reusability of the catalyst was investigated.
Keywords
- Magnetic nanocatalyst,
- [Fe3O4@SiO2@RNMe2-SO3H][CF3CO2],
- 6-Amino-1,3-dimethyluracil,
- Pyrimido[4,5-b]quinoline
References
- S. Ramu, I. Kainthla, L. Chandrappa, J.M. Shivanna, B. Kumaran, and R.G. Balakrishna. Recent advances in metal organic frameworks-based magnetic nanomaterials for waste water treatment. Environ. Sci. Pollut. Res., 31(2024):167-190. DOI: https://doi.org/10.1007/s11356-023-31162-8.
- M. Haghshenas, M. Mazloum-Ardakani, F. Tamaddon, and A. Nasiri. CoFe2O4@ methyl cellulose core-shell nanostructure and their hybrids with functionalized graphene aerogel for high performance asymmetric supercapacitor. Int. J. Hydrog. Energy, 46(2021):3984-3995. DOI: https://doi.org/10.1016/j.ijhydene.2020.10.253.
- F.M.A. Altalbawy, E. Ali , Y. F. Mustafa, A.A. Ibrahim, S. Mansouri, D.O. Bokov, A. Alawadi, A. Saxena, A. Alsaalamy, and S.K. Oudah. Comprehensive review on biosensors based on integration of aptamer and magnetic nanomaterials for food analysis. J. Taiwan Inst. Chem. Eng., 157(2024):105410. DOI: https://doi.org/10.1016/j.jtice.2024.105410.
- Y. Cao, C. Sathish, X. Guan, S. Wang, T. Palanisami, A. Vinu, and J. Yi. Advances in magnetic materials for microplastic separation and degradation. J. Hazard. Mater., 461(2024):132537. DOI: https://doi.org/10.1016/j.jhazmat.2023.132537.
- T.I. Shabatina, O.I. Vernaya, V.P. Shabatin, and M.Y. Melnikov. Magnetic nanoparticles for biomedical purposes: modern trends and prospects. Magnetochemistry, 6(2020):30. DOI: https://doi.org/10.3390/magnetochemistry6030030.
- M.A. Khajeh Shahkoei, A. Yahyazadeh, and A. Dehno Khalaji. One-pot synthesis of arylidene barbituric acid derivatives using Fe2O3 and Fe2O3/MFe2O4 (M = Cu, and Ni) nanoparticles as heterogeneous catalysts in Knoevenagel condensation reaction. Inorg. Chem. Res., 7(2023):34-41. DOI: https://doi.org/10.22036/j10.22036.2024.423255.1154.
- H. Atharifar, A. Keivanloo, B. Maleki, M. Baghayeri, and H. Alinezhad. Magnetic nanoparticle supported choline chloride-glucose (deep eutectic solvent) for the one-pot synthesis of 3,4-disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed., 50(2024):281-296. https://doi.org/10.1007/s11164-023-05152-x.
- R. Jahanshahi, A. Khazaee, S. Sobhani, and J.M. Sansano. g-C3N4/-Fe2O3/TiO2/Pd: a new magnetically separable photocatalyst for visible-light-driven fluoride-free Hiyama and Suzuki-Miyaura cross-coupling reactions at room temperature. New J. Chem., 44(2020):11513-11526. DOI: https://doi.org/10.1039/D0NJ01599G.
- M. Foroughi Kaldareh, M. Mokhtary, and M. Nikpassand. Nicotinic acid-supported cobalt ferrite-catalyzed one-pot synthesis of substituted chromeno[3,4-b]quinolones. Appl. Organomet. Chem., 34(2020):e54692020. DOI: https://doi.org/10.1002/aoc.5469.
- M. Hosseinzehi, M.H. Ehrampoush, F. Tamaddon, M. Mokhtari, and A. Dalvand. Eco-environmental preparation of magnetic activated carbon modified with 3-aminopropyltrimethoxysilane (APTMS) from sawdust waste as a novel efficient adsorbent for humic acid removal: characterisation, modelling, optimisation and equilibrium studies. Int. J. Environ. Anal. Chem., 103(2023):4339-4359. DOI: https://doi.org/10.1080/03067319.2021.1928096.
- F. Rezaei, H. Alinezhad, B. Maleki. Captopril supported on magnetic graphene nitride, a sustainable and green catalyst for one‑pot multicomponent synthesis of 2‑amino‑4H‑chromene and 1,2,3,6‑tetrahydropyrimidine. Sci. Rep., 13(2023):20562. DOI: https://doi.org/10.1038/s41598-023-47794-2.
- S. Ghiassi, M. Mokhtary, S. Sedaghat, H. Kefayati. Preparation and antibacterial activity of chloroacetic acid immobilized on chitosan-coated iron oxide decorated silver nanoparticles as an efficient catalyst for the synthesis of hexahydroquinoline-3-carboxamides. J. Inorg. Organomet. Polym., 29(2019):1972-1982. DOI: https://doi.org/10.1007/s10904-019-01156-6.
- N. Karami, A. Mohammadpour, M.R. Samaei, A.M. Amani, M. Dehghani, R.S. Varma, and J.N. Sahu. Int. J. Biol. Macromol., 254 (Part 1)(2024):127663. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127663.
- K. Alizadeh, E. Khaledyan, and Y. Mansourpanah. Novel modified magnetic mesoporous silica for rapid and efficient removal of methylene blue dye from aqueous media. J. Appl. Organomet. Chem., 2(2022):198-208. DOI: https://doi.org/10.22034/jaoc.2022.155004.
- F. Hakimi, M. Taghvaee, and E. Golrasan. Synthesis of benzoxazole derivatives using Fe3O4@SiO2-SO3H nanoparticles as a useful and reusable heterogeneous catalyst without using a solvent. Adv. J. Chem. A, 6(2023):188-197. DOI: https://doi.org/10.22034/AJCA.2023.393949.1364.
- N. Azgomi and M. Mokhtary. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. A: Chem., 398(2015):58-64. DOI: https://doi.org/10.1016/j.molcata.2014.11.018.
- A. Barzkar and A. Salimi Beni. Fe3O4@C@MCM41-guanidine core-shell nanostructures as a powerful and recyclable nanocatalyst with high performance for synthesis of Knoevenagel reaction. Sci. Rep., 13(2023):10336. DOI: https://doi.org/10.1038/s41598-023-36352-5.
- F.H. Mohammed, A.M. Aljeboree, A.N. Abd, A.F. Alkaimb, Y.S. Karim, S.A. Hamoodd, A.B. Mahdie, M.A. Jawadf, and S. Ahjelg. An update on half-decade recent advances in functionalized Fe3O4 nanoparticles as heterogeneous nanocatalysts for the synthesis of six membered compounds containing nitrogen: a mini-review. Iran. J. Catal., 12(2022):237-259. DOI: https://doi.org/10.30495/ijc.2022.1957195.1929.
- E. Jazinizadeh, A. Zare, S.S. Sajadikhah, M. Barzegar, and A. Kohzadian. Synthesis, characterization and application of a magnetically separable nanocatalyst for the preparation of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives. Res. Chem. Intermed., 48(2022):2059-2075. DOI: https://doi.org/10.1007/s11164-022-04854-y.
- N. Salarinejad, M. Dabiri, and S. Kazemi Movahed. CuPd bimetallic nanoparticles supported magnetic ionic liquid-derived N-doped carbon as a highly efficient heterogeneous catalyst for the one-pot oxidative multicomponent reactions. J. Taiwan Inst. Chem. Eng., 159(2024):105496. DOI: https://doi.org/10.1016/j.jtice.2024.105496.
- M. Mokhtary. Recent advances in catalysts immobilized on magnetic nanoparticles. J. Iran. Chem. Soc., 13(2016):1827-1845. DOI: https://doi.org/10.1007/s13738-016-0900-4.
- M. Barzegar, A. Zare, A. Ghobadpoor, and M. Dianat. Preparation, characterization and application of a novel organic-inorganic hybrid magnetic nanomaterial as a highly efficient catalyst for the synthesis of bis-coumarins. Iran. J. Catal., 12(2022):13-24. DOI: https://doi.org/10.30495/ijc.2022.688895.
- S.-M. Khatami, M. Khalaj, and M. Ghashang. Alkyl ammonium tungstate bonded to Fe3O4@SiO2 nanoparticles; a highly efficient catalyst for the oxidation of symmetrical sulfides to symmetrical sulfoxides. Iran. J. Catal., 13(2023):475-485. DOI: https://doi.org/10.30495/IJC.2023.1993331.2039.
- A. Khazaei, A.R. Moosavi-Zare, F. Gholami, and V. Khakyzadeh. Preparation of 1,2,4,5-tetrasubstituted imidazoles over magnetic core-shell titanium dioxide nanoparticles. Appl. Organomet. Chem., 30(2016):691-694. DOI: https://doi.org/10.1002/aoc.3491.
- S. Esmaili, A.R. Moosavi-Zare, and A. Khazaei. Nano-[Fe3O4@SiO2/N-propyl-1-(thiophen-2-yl)ethanimine][ZnCl2] as a nano magnetite Schiff base complex and heterogeneous catalyst for the synthesis of pyrimido[4,5-b]quinolones. RSC Adv., 12(2022):5386-5394. DOI: https://doi.org/10.1039/D2RA00213B.
- S. Esmaili, A. Khazaei, and A.R. Moosavi-Zare. Multi-component synthesis of pyrido[2,3-d]pyrimidines catalyzed by nano magnetite Schiff base complex. Polycycl. Aromat. Compd., 43(2023):6615-6626. DOI: https://doi.org/10.1080/10406638.2022.2123539.
- F. Hakimi, A. Sharifi-Zarchi, and E. Golrasan. Bifunctional polyethylene glycol/ethylenediamine nanomagnetic phase-transfer catalyst: preparation, characterization, and application in Knoevenagel condensation. Chem. Methodol., 7(2023):489-498. DOI: https://doi.org/10.22034/chemm.2023.392041.1667.
- E. Mohamadzadehm and Z. Gordi. Application of Fe3O4/SiO2/CeO2 nanocomposite, an efficient and magnetic catalyst, to synthesize 2,3-dihydroquinazolin-4(1H)-ones derivatives. Iran. J. Catal., 12(2022):169-180. DOI: https://doi.org/10.30495/IJC.2022.689839.
- M.A. Nasseri, Z. Rezazadeh, M. Kazemnejadim, and A. Allahresani. A Co-Cu bimetallic magnetic nanocatalyst with synergistic and bifunctional performance for the base-free Suzuki, Sonogashira, and C–N cross-coupling reactions in water. Dalton Trans., 49(2020):10645-10660. DOI: https://doi.org/10.1039/D0DT01846E.
- S.M. Saied, M.Y. Saleh, and A. M. Hamdoon. Multicomponent synthesis of tetrahydrobenzo[a]xanthene and tetrahydrobenzo[a]acridine derivatives using sulfonated multi-walled carbon nanotubes as heterogeneous nanocatalysts. Iran. J. Catal., 12(2022):189-205. DOI: https://doi.org/10.30495/IJC.2022.1955651.1924.
- A. Kohzadian, R. Fathollahi, M. Karami, E. Korani, and A. Zare. La2O3 as a very effective double-functional catalyst for the production of 2-amino-4-aryl-4H-pyrans and pyrazolopyranopyrimidines. Iran. J. Catal., 13(2023):331-340. DOI: https://doi.org/10.30495/ijc.2023.1990117.2017.
- B. Maleki, M. Chahkandi, R. Tayebee, S. Kahrobaei, H. Alinezhad, and S. Hemmati. Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. Appl. Organomet. Chem., 33(2019):e5118. DOI: https://doi.org/10.1002/aoc.5118
- S. Mehrizi Marvast and E. Rostami. Graphene oxide modified with tetramethylethylenediamine ammonium salt as a powerful catalyst for production of trisubstituted imidazoles. Asian J. Green Chem., 8(2024):261-277. DOI: https://doi.org/10.48309/AJGC.2024.430848.1469.
- A. Zare, A. Kohzadian, Z. Abshirini, S.S. Sajadikhah, J. Phipps, M. Benamarad, and M. H. Beyzavi. Nano-2-(dimethylamino)-N-(silica-n-propyl)-N,N-dimethylethanaminium chloride as a novel basic catalyst for the efficient synthesis of pyrido[2,3-d:6,5-d′]dipyrimidines. New J. Chem., 43(2019):2247-2257. DOI: https://doi.org/10.1039/C8NJ04921A.
- A.R. Moosavi-Zare and H. Afshar-Hezarkhani. Design of 2-carboxy-1-sulfopyridin-1-ium chloride as an efficient and eco-friendly catalyst for the one-pot synthesis of highly functionalized tetrahydropyridines. Org. Prep. Proced. Int., 52(2020):410-421. DOI: https://doi.org/10.1080/00304948.2020.1787058.
- S. Sargazi Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani. Fabrication of sulfamic acid functionalized magnetic nanoparticles with denderimeric linkers and its application for microextraction purposes, one-pot preparation of pyrans pigments and removal of malachite green. J. Taiwan Inst. Chem. Eng., 118(2021):342-354. DOI: https://doi.org/10.1016/j.jtice.2020.12.025
- F. Karimi, M. Torabi, M. Yarie, M. A. Zolfigol, and Y. Gu. Synthesis of new hybrid indolyl-pyridines with sulfonamide moiety in the presence of Fe3O4@SiO2@(CH2)3-urea-quinolinium trifluoroacetate via a cooperative vinylogous anomeric-based oxidation. J. Iran. Chem. Soc., 20(2023):2189-2202. DOI: https://doi.org/10.1007/s13738-023-02794-x.
- M. Barzegar and A. Zare. Nano-[Fe3O4@SiO2@RNHMe2][HSO4]: an effectual catalyst for the production of 1-amidoalkyl-2-naphthols. Prog. Chem. Biochem. Res., 5(2022):68-76. DOI: https://doi.org/10.22034/pcbr.2022.326660.1210.
- L. Amiri-Zirtol, T. Solymani Ahooie, E. Riazimontazer, M.A. Amrollahi, and B.F. Mirjalili. Graphene oxide immobilized 2-morpholinoethanamine as a versatile acid-base catalyst for synthesis of some heterocyclic compounds and molecular docking study. Sci. Rep., 13(2023):17966. DOI: https://doi.org/10.1038/s41598-023-44521-9.
- S.-M. Kim, M. Lee, S.Y. Lee, S.-M. Lee, E.J. Kim, J.S. Kim, J. Ann, J. Lee, and J. Lee. Synthesis and biological evaluation of 3-(2-aminoethyl) uracil derivatives as gonadotropin-releasing hormone (GnRH) receptor antagonists. Eur. J. Med. Chem., 145(2018):413-424. DOI: https://doi.org/10.1016/j.ejmech.2017.12.095.
- E.A. Türkoğlu, M. Şentürk, C.T. Supuran, and D. Ekinci. Carbonic anhydrase inhibitory properties of some uracil derivatives. J. Enzyme Inhib. Med. Chem., 32(2017):74-77. DOI: https://doi.org/10.1080/14756366.2016.1235043.
- P. Yadav and K. Shah. An overview on synthetic and pharmaceutical prospective of pyrido[2,3‐d]pyrimidines scaffold. Chem. Biol. Drug Des., 97(2021):633-648. DOI: https://doi.org/10.1111/cbdd.13800.
- A.A. Joshi and C.L. Viswanathan. Docking studies and development of novel 5-heteroarylamino-2, 4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials. Bioorg. Med. Chem. Lett., 16(2006):2613-2617. DOI: https://doi.org/10.1016/j.bmcl.2006.02.038.
- H.I. Ali, K. Tomita, E. Akaho, M. Kunishima, Y. Kawashima, T. Yamagishi, H. Ikeya, and T. Nagamatsu. Antitumor studies-Part 2: structure-activity relationship study for flavin analogs including investigations on their in vitro antitumor assay and docking simulation into protein tyrosine kinase. Eur. J. Med. Chem., 43(2008):1376-1389. DOI: https://doi.org/10.1016/j.ejmech.2007.10.011.
- T.H. Althuis, P.F. Moore, and H.J. Hess. Development of ethyl 3,4-dihydro-4-oxopyrimido [4,5-b] quinoline-2-carboxylate, a new prototype with oral antiallergy activity. J. Med. Chem., 22(1979):44-48. DOI: https://doi.org/10.1021/jm00187a011.
- S.M. Abdel-Gawad, M.S.A. El-Gaby, H.I. Heiba, H.M. Ali, and M.M. Ghorab. Synthesis and radiation stability of some new biologically active hydroquinoline and pyrimido[4,5‐b]quinoline derivatives. J. Chin. Chem. Soc., 52(2005):1227-1236. DOI: https://doi.org/10.1002/jccs.200500177.
- A.-R.B.A. El-Gazzar, M.M. El-Enany, and M.N. Mahmoud. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido[4,5-b]quinolin-4-ones. Bioorg. Med. Chem., 16(2008):3261-3273. DOI: https://doi.org/10.1016/j.bmc.2007.12.012.
- N. Kaila, K. Janz, S. DeBernardo, P.W. Bedard, R.T. Camphausen, S. Tam, D.H.H. Tsao, J.C. Keith, C. Nickerson-Nutter, A. Shilling, R. Young-Sciame, and Q. Wang. Synthesis and biological evaluation of quinoline salicylic acids as P-selectin antagonists. J. Med. Chem., 50(2007):21-39, 2007. DOI: https://doi.org/10.1021/jm0602256.
- K.D. Upadhyay, N.M. Dodia, R.C. Khunt, R.S. Chaniara, and A.K. Shah. Synthesis and biological screening of pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 9(2018):283-288. DOI: https://doi.org/10.1021/acsmedchemlett.7b00545
- A. Zarghi, R. Ghodsi, E. Azizi, B. Daraie, M. Hedayati, and O.G. Dadrass. Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 17(2009):5312-5317. DOI: https://doi.org/10.1016/j.bmc.2009.05.084.
- S. Esmaili, A.R. Moosavi-Zare, A. Khazaei, and Z. Najafi. Synthesis of novel pyrimido[4,5-b]quinolines containing benzyloxy and 1,2,3-triazole moieties by DABCO as a basic catalyst. ACS Omega, 7(2022):45314-45324. DOI: https://doi.org/10.1021/acsomega.2c05896.
- A. Zare, M. Dianat, and M.M. Eskandari. A novel organic-inorganic hybrid material: production, characterization and catalytic performance for the reaction of arylaldehydes, dimedone and 6-amino-1,3-dimethyluracil. New J. Chem., 44(2020):4736-4743. DOI: https://doi.org/10.1039/C9NJ06393E.
- L. Edjlali, R. Hosseinzdeh Khanamiri, and J. Abolhasani. Fe3O4 nano-particles supported on cellulose as an efficient catalyst for the synthesis of pyrimido[4,5-b]quinolines in water. Monatsh. Chem., 146(2015):1339-1342. DOI: https://doi.org/10.1007/s00706-014-1368-5.
- A. Gholami, M. Mokhtary, and M. Nikpassand. Glycolic acid-supported cobalt ferrite-catalyzed one-pot synthesis of pyrimido[4,5-b]quinoline and indenopyrido[2,3-d]pyrimidine derivatives. Appl. Organomet. Chem., 34(2020):e6007. DOI: https://doi.org/10.1002/aoc.6007.
- F. Shirini, M. Safarpoor Nikoo Langarudi, N. Daneshvar, M. Mashhadinezhad, and N. Nabinia. Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido[4,5-b]quinoline derivatives. J. Mol. Liq., 243(2017):302-312. DOI: https://doi.org/10.1016/j.molliq.2017.07.080.
- J.M. Khurana, A. Chaudhary, B. Nand, and A. Lumb. Aqua mediated indium (III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett., 53(2012):3018-3022. DOI: https://doi.org/10.1016/j.tetlet.2012.04.001.
- A. Zare and M. Barzegar. Dicationic ionic liquid grafted with silica-coated nano-Fe3O4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles. Res. Chem. Intermed., 46(2020):3727-3740. DOI: https://doi.org/10.1007/s11164-020-04171-2.
- A. Gholami, M. Mokhtary, and M. Nikpassand, Choline chloride/oxalic acid (ChCl/Oxa) catalyzed one-pot synthesis of novel azo and sulfonated pyrimido[4,5-b]quinoline derivatives. Dyes Pigm., 180(2020):108453. DOI: 10.1016/j.dyepig.2020.108453.
- F. Osanlou, F. Nemati, and S. Sabaqian. An eco-friendly and magnetized biopolymer cellulose-based heterogeneous acid catalyst for facile synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Res. Chem. Intermed., 43(2017):2159-2174. DOI: https://doi.org/10.1007/s11164-016-2752-z.
- K. Mohammadi, F. Shirini, and A. Yahyazadeh. 1,3-Disulfonic acid imidazolium hydrogen sulfate: a reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido[4,5-b]quinoline derivatives. RSC Adv., 5(2015):23586-23590. DOI: https://doi.org/10.1039/C5RA02198G.
- A.R. Moosavi-Zare and R. Najafi. Multicomponent synthesis of pyrimido[4,5-b]quinolines over a carbocationic catalytic system. Sci. Rep., 13(2023):16501. DOI: https://doi.org/10.1038/s41598-023-43793-5.
- A. Zare, N. Lotfifar, and M. Dianat. Preparation, characterization and application of nano-[Fe3O4@-SiO2@R-NHMe2][H2PO4] as a novel magnetically recoverable catalyst for the synthesis of pyrimido[4,5-b]quinolones. J. Mol. Struct., 1211(2020):128030. DOI: https://doi.org/10.1016/j.molstruc.2020.128030.
- M.A. Zolfigol, R. Ayazi-Nasrabadi, and S. Baghery. Synthesis of the first nanomagnetic particles with semicarbazide-based acidic ionic liquid tag: an efficient catalyst for the synthesis of 3,3′-(arylmethylene)bis(4-hydroxycoumarin) and 1-carbamato-alkyl-2-naphthol derivatives under mild and green conditions. Appl. Organomet. Chem., 30(2016):500-509. DOI: https://doi.org/10.1002/aoc.3461.
- S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Liand, and M. Li. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interface Sci., 215(1999):190-192. DOI: https://doi.org/10.1006/jcis.1999.6185.
- Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, and S.K. Fu. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids Surf. A: Physicochem. Eng. Aspects, 262(2005):87-93. DOI: https://doi.org/10.1016/j.colsurfa.2005.04.009.
- M.A. Zolfigol, R. Ayazi-Nasrabadi, and S. Baghery. The first urea-based ionic liquid-stabilized magnetic nanoparticles: an efficient catalyst for the synthesis of bis(indolyl)methanes and pyrano[2,3-d]pyrimidinone derivatives. Appl. Organomet. Chem., 30(2016):273-281. DOI: https://doi.org/10.1002/aoc.3428.