10.57647/j.ijc.2024.1404.43

Fabrication of a New Magnetic Nanocatalyst and its Application for the Effectual Construction of Pyrimido[4,5-b]Quinolines

  1. Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
  2. Department of Chemistry, Payame Noor University, Tehran, Iran
  3. Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran AND Chemistry Department, College of Sciences, Shiraz University, Shiraz, Iran
Fabrication of a new magnetic nanocatalyst and its application for the effectual construction of pyrimido[4,5-b]quinolines

Received: 2024-05-27

Revised: 2024-09-24

Accepted: 2024-11-01

Published 2024-11-16

How to Cite

Zare, A., Barzegar, M., & Moosavi-Zare, A. R. (2024). Fabrication of a New Magnetic Nanocatalyst and its Application for the Effectual Construction of Pyrimido[4,5-b]Quinolines. Iranian Journal of Catalysis, 14(4), 1-11. https://doi.org/10.57647/j.ijc.2024.1404.43

PDF views: 85

Abstract

A new magnetic nanocatalyst, namely [Fe3O4@SiO2@RNMe2-SO3H][CF3CO2] (FSRNSC), was fabricated, and characterized using FT-IR, EDS (energy-dispersive X-ray spectroscopy), elemental mapping, FE-SEM (field-emission scanning electron microscopy), XRD (X-ray diffraction), VSM (vibrating-sample magnetometry), TG (thermogravimetric) and DTG (differential thermogravimetric) analyses. It was utilized as a highly effectual and magnetically recoverable catalyst for the construction of pyrimido[4,5-b]quinolines (12 examples) in high yields (15-50 min) and short times (88-96%). The synthesis was performed through the one-pot, three-component reaction of aryl aldehydes, dimedone, and 6-amino-1,3-dimethyluracil in the absence of solvent.

Research Highlights

  • A novel magnetic nanocatalyst namely [Fe3O4@SiO2@RNMe2-SO3H][CF3CO2] (FSRNSC) was prepared.
  • Full characterization of FSRNSC using FT-IR, EDS, elemental mapping, FE-SEM, XRD, VSM, TG and DTG analyses was aperformed.
  • Application of FSRNSC for the construction of pyrimido[4,5-b]quinolones was done..
  • Producing pyrimido[4,5-b]quinolines in short times with high yields were advantages of this method.
  • Reusability of the catalyst was investigated.

Keywords

  • Magnetic nanocatalyst,
  • [Fe3O4@SiO2@RNMe2-SO3H][CF3CO2],
  • 6-Amino-1,3-dimethyluracil,
  • Pyrimido[4,5-b]quinoline

References

  1. S. Ramu, I. Kainthla, L. Chandrappa, J.M. Shivanna, B. Kumaran, and R.G. Balakrishna. Recent advances in metal organic frameworks-based magnetic nanomaterials for waste water treatment. Environ. Sci. Pollut. Res., 31(2024):167-190. DOI: https://doi.org/10.1007/s11356-023-31162-8.
  2. M. Haghshenas, M. Mazloum-Ardakani, F. Tamaddon, and A. Nasiri. CoFe2O4@ methyl cellulose core-shell nanostructure and their hybrids with functionalized graphene aerogel for high performance asymmetric supercapacitor. Int. J. Hydrog. Energy, 46(2021):3984-3995. DOI: https://doi.org/10.1016/j.ijhydene.2020.10.253.
  3. F.M.A. Altalbawy, E. Ali , Y. F. Mustafa, A.A. Ibrahim, S. Mansouri, D.O. Bokov, A. Alawadi, A. Saxena, A. Alsaalamy, and S.K. Oudah. Comprehensive review on biosensors based on integration of aptamer and magnetic nanomaterials for food analysis. J. Taiwan Inst. Chem. Eng., 157(2024):105410. DOI: https://doi.org/10.1016/j.jtice.2024.105410.
  4. Y. Cao, C. Sathish, X. Guan, S. Wang, T. Palanisami, A. Vinu, and J. Yi. Advances in magnetic materials for microplastic separation and degradation. J. Hazard. Mater., 461(2024):132537. DOI: https://doi.org/10.1016/j.jhazmat.2023.132537.
  5. T.I. Shabatina, O.I. Vernaya, V.P. Shabatin, and M.Y. Melnikov. Magnetic nanoparticles for biomedical purposes: modern trends and prospects. Magnetochemistry, 6(2020):30. DOI: https://doi.org/10.3390/magnetochemistry6030030.
  6. M.A. Khajeh Shahkoei, A. Yahyazadeh, and A. Dehno Khalaji. One-pot synthesis of arylidene barbituric acid derivatives using Fe2O3 and Fe2O3/MFe2O4 (M = Cu, and Ni) nanoparticles as heterogeneous catalysts in Knoevenagel condensation reaction. Inorg. Chem. Res., 7(2023):34-41. DOI: https://doi.org/10.22036/j10.22036.2024.423255.1154.
  7. H. Atharifar, A. Keivanloo, B. Maleki, M. Baghayeri, and H. Alinezhad. Magnetic nanoparticle supported choline chloride-glucose (deep eutectic solvent) for the one-pot synthesis of 3,4-disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed., 50(2024):281-296. https://doi.org/10.1007/s11164-023-05152-x.
  8. R. Jahanshahi, A. Khazaee, S. Sobhani, and J.M. Sansano. g-C3N4/-Fe2O3/TiO2/Pd: a new magnetically separable photocatalyst for visible-light-driven fluoride-free Hiyama and Suzuki-Miyaura cross-coupling reactions at room temperature. New J. Chem., 44(2020):11513-11526. DOI: https://doi.org/10.1039/D0NJ01599G.
  9. M. Foroughi Kaldareh, M. Mokhtary, and M. Nikpassand. Nicotinic acid-supported cobalt ferrite-catalyzed one-pot synthesis of substituted chromeno[3,4-b]quinolones. Appl. Organomet. Chem., 34(2020):e54692020. DOI: https://doi.org/10.1002/aoc.5469.
  10. M. Hosseinzehi, M.H. Ehrampoush, F. Tamaddon, M. Mokhtari, and A. Dalvand. Eco-environmental preparation of magnetic activated carbon modified with 3-aminopropyltrimethoxysilane (APTMS) from sawdust waste as a novel efficient adsorbent for humic acid removal: characterisation, modelling, optimisation and equilibrium studies. Int. J. Environ. Anal. Chem., 103(2023):4339-4359. DOI: https://doi.org/10.1080/03067319.2021.1928096.
  11. F. Rezaei, H. Alinezhad, B. Maleki. Captopril supported on magnetic graphene nitride, a sustainable and green catalyst for one‑pot multicomponent synthesis of 2‑amino‑4H‑chromene and 1,2,3,6‑tetrahydropyrimidine. Sci. Rep., 13(2023):20562. DOI: https://doi.org/10.1038/s41598-023-47794-2.
  12. S. Ghiassi, M. Mokhtary, S. Sedaghat, H. Kefayati. Preparation and antibacterial activity of chloroacetic acid immobilized on chitosan-coated iron oxide decorated silver nanoparticles as an efficient catalyst for the synthesis of hexahydroquinoline-3-carboxamides. J. Inorg. Organomet. Polym., 29(2019):1972-1982. DOI: https://doi.org/10.1007/s10904-019-01156-6.
  13. N. Karami, A. Mohammadpour, M.R. Samaei, A.M. Amani, M. Dehghani, R.S. Varma, and J.N. Sahu. Int. J. Biol. Macromol., 254 (Part 1)(2024):127663. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127663.
  14. K. Alizadeh, E. Khaledyan, and Y. Mansourpanah. Novel modified magnetic mesoporous silica for rapid and efficient removal of methylene blue dye from aqueous media. J. Appl. Organomet. Chem., 2(2022):198-208. DOI: https://doi.org/10.22034/jaoc.2022.155004.
  15. F. Hakimi, M. Taghvaee, and E. Golrasan. Synthesis of benzoxazole derivatives using Fe3O4@SiO2-SO3H nanoparticles as a useful and reusable heterogeneous catalyst without using a solvent. Adv. J. Chem. A, 6(2023):188-197. DOI: https://doi.org/10.22034/AJCA.2023.393949.1364.
  16. N. Azgomi and M. Mokhtary. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. A: Chem., 398(2015):58-64. DOI: https://doi.org/10.1016/j.molcata.2014.11.018.
  17. A. Barzkar and A. Salimi Beni. Fe3O4@C@MCM41-guanidine core-shell nanostructures as a powerful and recyclable nanocatalyst with high performance for synthesis of Knoevenagel reaction. Sci. Rep., 13(2023):10336. DOI: https://doi.org/10.1038/s41598-023-36352-5.
  18. F.H. Mohammed, A.M. Aljeboree, A.N. Abd, A.F. Alkaimb, Y.S. Karim, S.A. Hamoodd, A.B. Mahdie, M.A. Jawadf, and S. Ahjelg. An update on half-decade recent advances in functionalized Fe3O4 nanoparticles as heterogeneous nanocatalysts for the synthesis of six membered compounds containing nitrogen: a mini-review. Iran. J. Catal., 12(2022):237-259. DOI: https://doi.org/10.30495/ijc.2022.1957195.1929.
  19. E. Jazinizadeh, A. Zare, S.S. Sajadikhah, M. Barzegar, and A. Kohzadian. Synthesis, characterization and application of a magnetically separable nanocatalyst for the preparation of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives. Res. Chem. Intermed., 48(2022):2059-2075. DOI: https://doi.org/10.1007/s11164-022-04854-y.
  20. N. Salarinejad, M. Dabiri, and S. Kazemi Movahed. CuPd bimetallic nanoparticles supported magnetic ionic liquid-derived N-doped carbon as a highly efficient heterogeneous catalyst for the one-pot oxidative multicomponent reactions. J. Taiwan Inst. Chem. Eng., 159(2024):105496. DOI: https://doi.org/10.1016/j.jtice.2024.105496.
  21. M. Mokhtary. Recent advances in catalysts immobilized on magnetic nanoparticles. J. Iran. Chem. Soc., 13(2016):1827-1845. DOI: https://doi.org/10.1007/s13738-016-0900-4.
  22. M. Barzegar, A. Zare, A. Ghobadpoor, and M. Dianat. Preparation, characterization and application of a novel organic-inorganic hybrid magnetic nanomaterial as a highly efficient catalyst for the synthesis of bis-coumarins. Iran. J. Catal., 12(2022):13-24. DOI: https://doi.org/10.30495/ijc.2022.688895.
  23. S.-M. Khatami, M. Khalaj, and M. Ghashang. Alkyl ammonium tungstate bonded to Fe3O4@SiO2 nanoparticles; a highly efficient catalyst for the oxidation of symmetrical sulfides to symmetrical sulfoxides. Iran. J. Catal., 13(2023):475-485. DOI: https://doi.org/10.30495/IJC.2023.1993331.2039.
  24. A. Khazaei, A.R. Moosavi-Zare, F. Gholami, and V. Khakyzadeh. Preparation of 1,2,4,5-tetrasubstituted imidazoles over magnetic core-shell titanium dioxide nanoparticles. Appl. Organomet. Chem., 30(2016):691-694. DOI: https://doi.org/10.1002/aoc.3491.
  25. S. Esmaili, A.R. Moosavi-Zare, and A. Khazaei. Nano-[Fe3O4@SiO2/N-propyl-1-(thiophen-2-yl)ethanimine][ZnCl2] as a nano magnetite Schiff base complex and heterogeneous catalyst for the synthesis of pyrimido[4,5-b]quinolones. RSC Adv., 12(2022):5386-5394. DOI: https://doi.org/10.1039/D2RA00213B.
  26. S. Esmaili, A. Khazaei, and A.R. Moosavi-Zare. Multi-component synthesis of pyrido[2,3-d]pyrimidines catalyzed by nano magnetite Schiff base complex. Polycycl. Aromat. Compd., 43(2023):6615-6626. DOI: https://doi.org/10.1080/10406638.2022.2123539.
  27. F. Hakimi, A. Sharifi-Zarchi, and E. Golrasan. Bifunctional polyethylene glycol/ethylenediamine nanomagnetic phase-transfer catalyst: preparation, characterization, and application in Knoevenagel condensation. Chem. Methodol., 7(2023):489-498. DOI: https://doi.org/10.22034/chemm.2023.392041.1667.
  28. E. Mohamadzadehm and Z. Gordi. Application of Fe3O4/SiO2/CeO2 nanocomposite, an efficient and magnetic catalyst, to synthesize 2,3-dihydroquinazolin-4(1H)-ones derivatives. Iran. J. Catal., 12(2022):169-180. DOI: https://doi.org/10.30495/IJC.2022.689839.
  29. M.A. Nasseri, Z. Rezazadeh, M. Kazemnejadim, and A. Allahresani. A Co-Cu bimetallic magnetic nanocatalyst with synergistic and bifunctional performance for the base-free Suzuki, Sonogashira, and C–N cross-coupling reactions in water. Dalton Trans., 49(2020):10645-10660. DOI: https://doi.org/10.1039/D0DT01846E.
  30. S.M. Saied, M.Y. Saleh, and A. M. Hamdoon. Multicomponent synthesis of tetrahydrobenzo[a]xanthene and tetrahydrobenzo[a]acridine derivatives using sulfonated multi-walled carbon nanotubes as heterogeneous nanocatalysts. Iran. J. Catal., 12(2022):189-205. DOI: https://doi.org/10.30495/IJC.2022.1955651.1924.
  31. A. Kohzadian, R. Fathollahi, M. Karami, E. Korani, and A. Zare. La2O3 as a very effective double-functional catalyst for the production of 2-amino-4-aryl-4H-pyrans and pyrazolopyranopyrimidines. Iran. J. Catal., 13(2023):331-340. DOI: https://doi.org/10.30495/ijc.2023.1990117.2017.
  32. B. Maleki, M. Chahkandi, R. Tayebee, S. Kahrobaei, H. Alinezhad, and S. Hemmati. Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. Appl. Organomet. Chem., 33(2019):e5118. DOI: https://doi.org/10.1002/aoc.5118
  33. S. Mehrizi Marvast and E. Rostami. Graphene oxide modified with tetramethylethylenediamine ammonium salt as a powerful catalyst for production of trisubstituted imidazoles. Asian J. Green Chem., 8(2024):261-277. DOI: https://doi.org/10.48309/AJGC.2024.430848.1469.
  34. A. Zare, A. Kohzadian, Z. Abshirini, S.S. Sajadikhah, J. Phipps, M. Benamarad, and M. H. Beyzavi. Nano-2-(dimethylamino)-N-(silica-n-propyl)-N,N-dimethylethanaminium chloride as a novel basic catalyst for the efficient synthesis of pyrido[2,3-d:6,5-d′]dipyrimidines. New J. Chem., 43(2019):2247-2257. DOI: https://doi.org/10.1039/C8NJ04921A.
  35. A.R. Moosavi-Zare and H. Afshar-Hezarkhani. Design of 2-carboxy-1-sulfopyridin-1-ium chloride as an efficient and eco-friendly catalyst for the one-pot synthesis of highly functionalized tetrahydropyridines. Org. Prep. Proced. Int., 52(2020):410-421. DOI: https://doi.org/10.1080/00304948.2020.1787058.
  36. S. Sargazi Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani. Fabrication of sulfamic acid functionalized magnetic nanoparticles with denderimeric linkers and its application for microextraction purposes, one-pot preparation of pyrans pigments and removal of malachite green. J. Taiwan Inst. Chem. Eng., 118(2021):342-354. DOI: https://doi.org/10.1016/j.jtice.2020.12.025
  37. F. Karimi, M. Torabi, M. Yarie, M. A. Zolfigol, and Y. Gu. Synthesis of new hybrid indolyl-pyridines with sulfonamide moiety in the presence of Fe3O4@SiO2@(CH2)3-urea-quinolinium trifluoroacetate via a cooperative vinylogous anomeric-based oxidation. J. Iran. Chem. Soc., 20(2023):2189-2202. DOI: https://doi.org/10.1007/s13738-023-02794-x.
  38. M. Barzegar and A. Zare. Nano-[Fe3O4@SiO2@RNHMe2][HSO4]: an effectual catalyst for the production of 1-amidoalkyl-2-naphthols. Prog. Chem. Biochem. Res., 5(2022):68-76. DOI: https://doi.org/10.22034/pcbr.2022.326660.1210.
  39. L. Amiri-Zirtol, T. Solymani Ahooie, E. Riazimontazer, M.A. Amrollahi, and B.F. Mirjalili. Graphene oxide immobilized 2-morpholinoethanamine as a versatile acid-base catalyst for synthesis of some heterocyclic compounds and molecular docking study. Sci. Rep., 13(2023):17966. DOI: https://doi.org/10.1038/s41598-023-44521-9.
  40. S.-M. Kim, M. Lee, S.Y. Lee, S.-M. Lee, E.J. Kim, J.S. Kim, J. Ann, J. Lee, and J. Lee. Synthesis and biological evaluation of 3-(2-aminoethyl) uracil derivatives as gonadotropin-releasing hormone (GnRH) receptor antagonists. Eur. J. Med. Chem., 145(2018):413-424. DOI: https://doi.org/10.1016/j.ejmech.2017.12.095.
  41. E.A. Türkoğlu, M. Şentürk, C.T. Supuran, and D. Ekinci. Carbonic anhydrase inhibitory properties of some uracil derivatives. J. Enzyme Inhib. Med. Chem., 32(2017):74-77. DOI: https://doi.org/10.1080/14756366.2016.1235043.
  42. P. Yadav and K. Shah. An overview on synthetic and pharmaceutical prospective of pyrido[2,3‐d]pyrimidines scaffold. Chem. Biol. Drug Des., 97(2021):633-648. DOI: https://doi.org/10.1111/cbdd.13800.
  43. A.A. Joshi and C.L. Viswanathan. Docking studies and development of novel 5-heteroarylamino-2, 4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials. Bioorg. Med. Chem. Lett., 16(2006):2613-2617. DOI: https://doi.org/10.1016/j.bmcl.2006.02.038.
  44. H.I. Ali, K. Tomita, E. Akaho, M. Kunishima, Y. Kawashima, T. Yamagishi, H. Ikeya, and T. Nagamatsu. Antitumor studies-Part 2: structure-activity relationship study for flavin analogs including investigations on their in vitro antitumor assay and docking simulation into protein tyrosine kinase. Eur. J. Med. Chem., 43(2008):1376-1389. DOI: https://doi.org/10.1016/j.ejmech.2007.10.011.
  45. T.H. Althuis, P.F. Moore, and H.J. Hess. Development of ethyl 3,4-dihydro-4-oxopyrimido [4,5-b] quinoline-2-carboxylate, a new prototype with oral antiallergy activity. J. Med. Chem., 22(1979):44-48. DOI: https://doi.org/10.1021/jm00187a011.
  46. S.M. Abdel-Gawad, M.S.A. El-Gaby, H.I. Heiba, H.M. Ali, and M.M. Ghorab. Synthesis and radiation stability of some new biologically active hydroquinoline and pyrimido[4,5‐b]quinoline derivatives. J. Chin. Chem. Soc., 52(2005):1227-1236. DOI: https://doi.org/10.1002/jccs.200500177.
  47. A.-R.B.A. El-Gazzar, M.M. El-Enany, and M.N. Mahmoud. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido[4,5-b]quinolin-4-ones. Bioorg. Med. Chem., 16(2008):3261-3273. DOI: https://doi.org/10.1016/j.bmc.2007.12.012.
  48. N. Kaila, K. Janz, S. DeBernardo, P.W. Bedard, R.T. Camphausen, S. Tam, D.H.H. Tsao, J.C. Keith, C. Nickerson-Nutter, A. Shilling, R. Young-Sciame, and Q. Wang. Synthesis and biological evaluation of quinoline salicylic acids as P-selectin antagonists. J. Med. Chem., 50(2007):21-39, 2007. DOI: https://doi.org/10.1021/jm0602256.
  49. K.D. Upadhyay, N.M. Dodia, R.C. Khunt, R.S. Chaniara, and A.K. Shah. Synthesis and biological screening of pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 9(2018):283-288. DOI: https://doi.org/10.1021/acsmedchemlett.7b00545
  50. A. Zarghi, R. Ghodsi, E. Azizi, B. Daraie, M. Hedayati, and O.G. Dadrass. Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 17(2009):5312-5317. DOI: https://doi.org/10.1016/j.bmc.2009.05.084.
  51. S. Esmaili, A.R. Moosavi-Zare, A. Khazaei, and Z. Najafi. Synthesis of novel pyrimido[4,5-b]quinolines containing benzyloxy and 1,2,3-triazole moieties by DABCO as a basic catalyst. ACS Omega, 7(2022):45314-45324. DOI: https://doi.org/10.1021/acsomega.2c05896.
  52. A. Zare, M. Dianat, and M.M. Eskandari. A novel organic-inorganic hybrid material: production, characterization and catalytic performance for the reaction of arylaldehydes, dimedone and 6-amino-1,3-dimethyluracil. New J. Chem., 44(2020):4736-4743. DOI: https://doi.org/10.1039/C9NJ06393E.
  53. L. Edjlali, R. Hosseinzdeh Khanamiri, and J. Abolhasani. Fe3O4 nano-particles supported on cellulose as an efficient catalyst for the synthesis of pyrimido[4,5-b]quinolines in water. Monatsh. Chem., 146(2015):1339-1342. DOI: https://doi.org/10.1007/s00706-014-1368-5.
  54. A. Gholami, M. Mokhtary, and M. Nikpassand. Glycolic acid-supported cobalt ferrite-catalyzed one-pot synthesis of pyrimido[4,5-b]quinoline and indenopyrido[2,3-d]pyrimidine derivatives. Appl. Organomet. Chem., 34(2020):e6007. DOI: https://doi.org/10.1002/aoc.6007.
  55. F. Shirini, M. Safarpoor Nikoo Langarudi, N. Daneshvar, M. Mashhadinezhad, and N. Nabinia. Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido[4,5-b]quinoline derivatives. J. Mol. Liq., 243(2017):302-312. DOI: https://doi.org/10.1016/j.molliq.2017.07.080.
  56. J.M. Khurana, A. Chaudhary, B. Nand, and A. Lumb. Aqua mediated indium (III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett., 53(2012):3018-3022. DOI: https://doi.org/10.1016/j.tetlet.2012.04.001.
  57. A. Zare and M. Barzegar. Dicationic ionic liquid grafted with silica-coated nano-Fe3O4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles. Res. Chem. Intermed., 46(2020):3727-3740. DOI: https://doi.org/10.1007/s11164-020-04171-2.
  58. A. Gholami, M. Mokhtary, and M. Nikpassand, Choline chloride/oxalic acid (ChCl/Oxa) catalyzed one-pot synthesis of novel azo and sulfonated pyrimido[4,5-b]quinoline derivatives. Dyes Pigm., 180(2020):108453. DOI: 10.1016/j.dyepig.2020.108453.
  59. F. Osanlou, F. Nemati, and S. Sabaqian. An eco-friendly and magnetized biopolymer cellulose-based heterogeneous acid catalyst for facile synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Res. Chem. Intermed., 43(2017):2159-2174. DOI: https://doi.org/10.1007/s11164-016-2752-z.
  60. K. Mohammadi, F. Shirini, and A. Yahyazadeh. 1,3-Disulfonic acid imidazolium hydrogen sulfate: a reusable and efficient ionic liquid for the one-pot multi-component synthesis of pyrimido[4,5-b]quinoline derivatives. RSC Adv., 5(2015):23586-23590. DOI: https://doi.org/10.1039/C5RA02198G.
  61. A.R. Moosavi-Zare and R. Najafi. Multicomponent synthesis of pyrimido[4,5-b]quinolines over a carbocationic catalytic system. Sci. Rep., 13(2023):16501. DOI: https://doi.org/10.1038/s41598-023-43793-5.
  62. A. Zare, N. Lotfifar, and M. Dianat. Preparation, characterization and application of nano-[Fe3O4@-SiO2@R-NHMe2][H2PO4] as a novel magnetically recoverable catalyst for the synthesis of pyrimido[4,5-b]quinolones. J. Mol. Struct., 1211(2020):128030. DOI: https://doi.org/10.1016/j.molstruc.2020.128030.
  63. M.A. Zolfigol, R. Ayazi-Nasrabadi, and S. Baghery. Synthesis of the first nanomagnetic particles with semicarbazide-based acidic ionic liquid tag: an efficient catalyst for the synthesis of 3,3′-(arylmethylene)bis(4-hydroxycoumarin) and 1-carbamato-alkyl-2-naphthol derivatives under mild and green conditions. Appl. Organomet. Chem., 30(2016):500-509. DOI: https://doi.org/10.1002/aoc.3461.
  64. S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Liand, and M. Li. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interface Sci., 215(1999):190-192. DOI: https://doi.org/10.1006/jcis.1999.6185.
  65. Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, and S.K. Fu. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids Surf. A: Physicochem. Eng. Aspects, 262(2005):87-93. DOI: https://doi.org/10.1016/j.colsurfa.2005.04.009.
  66. M.A. Zolfigol, R. Ayazi-Nasrabadi, and S. Baghery. The first urea-based ionic liquid-stabilized magnetic nanoparticles: an efficient catalyst for the synthesis of bis(indolyl)methanes and pyrano[2,3-d]pyrimidinone derivatives. Appl. Organomet. Chem., 30(2016):273-281. DOI: https://doi.org/10.1002/aoc.3428.