Catalytic Activity of Nickel Doped Rutile in Oxygen Reduction Reaction (ORR) of Proton Exchange Membrane Fuel Cell (PEMFC): A Potential Nuclear Magnetic Resonance (NMR) based Investigation
- Hydrogen Energy Laboratory, BCSIR Laboratories Chattogram, Joypurhat, Bangladesh
- Hydrogen Energy Laboratory, BCSIR Laboratories Chattogram AND IMMM, BCSIR, Joypurhat, Bangladesh
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, United Kingdom
Received: 2024-07-17
Revised: 2024-10-06
Accepted: 2024-11-01
Published 2024-11-16
Copyright (c) 2024 Marufuzzaman Abdus Salam, Md Abdus Salam, Robert Steinberger-Wilckens (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 80
Abstract
The immense deployment trend of proton exchange membrane fuel cells (PEMFC) globally to the power generation and automobile industries grows massive technological development to make it efficient and sustainable. Oxygen reduction reaction (ORR) plays a key role in making efficient of PEMFC. Nuclear magnetic resonance (NMR) based investigation able to predict the cost-effective replacement of potential oxygen reduction reaction (ORR) catalyst for proton exchange membrane fuel cell (PEMFC). Nickel-doped (1%) rutile demonstrates better and substantial electrochemical activity toward ORR. Rutile and Pt, Pd, and Ni-doped rutiles are subjected to NMR and nuclear quadrupole resonance (NQR) analyses using CASTEP and Gaussian computational code to find the charge density effect of Platinum, Palladium, and Nickel on the titanium and oxygen atoms of rutile. The chemical shifts of titanium, Ti (6) of Platinum, Palladium, and Nickel-doped rutile are -1621, -4037, -5127 and 7823. The in-depth analyses show that Platinum, Palladium, and Nickel dopants to the rutile increase the electron density and electric conductivities as well as the overall catalytic performance due to the structural defects, creating oxygen vacancy and Ti3+ that favor the ORR reaction. The EFG Tensor, Eta (η), NQCC, shielding tensor corresponds that Ni is a better doping element among three (Pt, Pd & Ni) in rutile for ORR catalyst of PEMFCs.
Research Highlights:
- NMR analyses predicted the cost-effective replacement of ORR catalysts of PEMFCs.
- Ni-doped (1%) rutile catalyst shows a significant level of chemical shift and charge density of electrons.
- NMR is a potential analysis technique to measure the performances of a catalyst with surface defects.
Keywords
- NMR,
- Rutile,
- Doping,
- EFG,
- NQCC,
- Shielding
References
- W.R.W. Daud, R.E. Rosli, E.H. Majlan, S.A.A. Hamid, R. Mohamed, T. Husaini, Renew. Energ. 113C (2017) 620-638. https://doi.org/10.1016/j.renene.2017.06.027
- J. Larminie, A. Dicks, M.S. McDonald, Fuel cell systems explained, Chichester, UK: J. Wiley. 2 (2003) 207-225.
- Y. Wang, D.F.R. Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater Today. 32 (2020) 178-203. https://doi.org/10.1016/j.mattod.2019.06.005
- F. Barbir, PEM fuel cells: theory and practice, Academic press. 2012.
- H. Medetalibeyoğlu1, S. Manap1, Ö. Aktaş, M. Beytur, F. Kardaş, O. Akyıldırım, V. Özkan, H. Yüksek, M. L. Yola and N. Atar, J. Electrochem. Soc. 165 (2018) F338, DOI 10.1149/2.1041805jes
- O. Akyıldırım, H. Yüksek, H. Saral. J Mater Sci: Mater Electron 27 (2016), 8559–8566 https://doi.org/10.1007/s10854-016-4873
- B. G. Güneştekin, H. Medetalibeyoglu, N. Atar, M. L. Yola, Electroanalysis, 32 (2020) 1977-1982, DOI: 10.1002/elan.202060074
- O. Akyıldırım, G. Kotan, M. L. Yola, T, Eren, N, Atar, Ionics, 22 (2016) 593-600, DOI: 10.1007/s11581-015-1572-2
- R.M. Félix-Navarro, M. Beltrán-Gastélum, E.A. Reynoso-Soto, F. Paraguay-Delgado, G. Alonso-Nuñez, J.R. Flores-Hernández, Renew. Energ. 87 (2016) 31-41. https://doi.org/10.1016/j.renene.2015.09.060
- S. Chen, A. Kucernak, J. Phys. Chem. B. 108(10) (2004), 3262-3276. https://doi.org/10.1021/jp036831j
- M.J. Janik, C.D. Taylor, M. Neurock, J. Electrochem. Soc. 156(1) (2008) B126. DOI 10.1149/1.3008005
- D. Eberle, B. Horstmann, Electrochim. Acta. 137(2014) 714-720. https://doi.org/10.1016/j.electacta.2014.05.144
- M. N. Sweety, M. A. Salam, Chinese Journal of Chemical Engineering. 74 (2024),100-11,6https://doi.org/10.1016/j.cjche.2024.06.011
- J. Smith, L. Johnson, K. Lee, M. Wang, R. Martinez, J. Electrochem. Catal. 20 (2021) 300-325. 10.1016/j.jelecat.2021.04.009
- L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, and Z. Hu, Angew. Chem. 123 (2011) 7270–7273. https://doi.org/10.1002/anie.201101879
- Z. H. Sheng, L. Shao, J. Chen, W. Bao, F. B. Wang, and X. H. Xia, J. Mater. Chem. 22 (2012) 390–395. https://doi.org/10.1039/C1JM13845A
- Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, X. Zhou, X. Chen, and S. Huang, ACS Nano. 6(1) (2011) 205–211. https://doi.org/10.1021/nn203393p
- I. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M. J. Kim, L. Dai, and J. B. Baek, Adv. Mater. 25 (2013) 6138–6145. https://doi.org/10.1002/adma.201302098
- J. Wang, H. Tang, Y. Li, Z. Cui, Y. Wang, J. Yu, and J. Zhang, Sci. Rep. 5 (2015) 9304. https://doi.org/10.1038/srep09304
- Z. Ma, X. Dou, K. Dai, J. Dai, C. Li, J. Qiu, and L. Wang, Angew. Chem. Int. 54 (2015) 1888–1892. doi: 10.1002/anie.201409869
- M. Shao, J. Power Sources. 196(5) (2011) 2433-2444. doi: 10.1016/j.jpowsour.2010.11.010
- A.V. Bandura, D.G. Sykes, V. Shapovalov, T.N. Troung, J.D. Kubicki, R.A. Evarestov J. Phys. Chem. B. 108(23) (2004) 7844-7853. doi: 10.1021/jp037466t
- Á. Ganyecz, P.D. Mezei, M. Kállay, Comput Theor. Chem. 1168 (2019) 11260. doi: 10.1016/j.comptc.2019.11260
- A. Tilocca, C. Di Valentin, A. Selloni, J. Phys. Chem. B. 109(44) (2005) 20963-20967. doi: 10.1021/jp0531455
- Y. Du, N.A. Deskins, Z. Zhang, Z. Dohnálek, M. Dupuis, I. Lyubinetsky, J. Phys. Chem. C. 113(2) (2009) 666-671. doi: 10.1021/jp808036k
- B.H. Suits, Nuclear quadrupole resonance spectroscopy, Handbook of Applied Solid State Spectroscopy. (2006) 65-96. doi: 10.1007/978-0-387-26377-3_4
- T. Ioroi, Z. Siroma, N. Fujiwara, S.I. Yamazaki, K. Yasuda,. 7(2) (2005) 183-188. doi: 10.1016/j.elecom.2004.12.003
- P. Clechet, C. Martelet, J.R. Martin, R. Olier, Electrochim. Acta. 24(4) (1979) 457-461. https://doi.org/10.1016/0013-4686(79)87035-8
- B. Parkinson, F. Decker, J.F. Juliao, M. Abramovich, H.C Electrochim. Acta. 25(5) (1980) 521-525. https://doi.org/10.1016/0013-4686(80)87051-4
- J. Li, H. Zhou, H. Zhuo, Z. Wei, G. Zhuang, X. Zhong, J. Wang, J. Mater. Chem. 6(5) (2018) 2264-2272. https://doi.org/10.1039/C7TA09831F
- M. Chisaka, Y. Yamamoto, N. Itagaki, Y. Hattori, ACS Appl. Energy Mater. 1 (2018) 211–219. https://doi.org/10.1021/acsaem.7b00100
- T. He, E. Kreidler, L. Xiong, E. Ding, J. Power Sources. 165(1) (2007) 87-91. https://doi.org/10.1016/j.jpowsour.2006.12.030
- J.M. Chen, L.S. Sarma, C.H. Chen, M.Y. Cheng, S.C. Shih, G.R. Wang, B.J. Hwang, J. Power Sources. 159(1) (2006) 29-33. https://doi.org/10.1016/j.jpowsour.2006.04.135
- N. Rajalakshmi, N. Lakshmi, K.S. Dhathathreyan, Int. J. Hydrog. Energy. 33(24) (2008) 7521-7526. https://doi.org/10.1016/j.ijhydene.2008.09.032
- U.Diebold, Surf. Science. Rep. 48(5-8) (2003) 53-229. https://doi.org/10.1016/S0167-5729(02)00100-0
- X. Y. Pan, M. Q. Yang, X. Z. Fu, N. Zhang, Y. J. Xu, Nanoscale. 5 (2013) 3601–3614. https://doi.org/10.1039/C3NR00476G
- G. M. Wang, Y. C. Ling, Y. Li, Nanoscale. 4 (2012) 6682–6691.
- J. Nowotny, Energy Environ. Sci. 1 (2008) 565–572. DOI: 10.1039/B809111K
- M. Xing, W. Fang, M. Nasir,Y. Ma, J. Zhang, M. Anpo, J. Catal. 297 (2013) 236–243. https://doi.org/10.1016/j.jcat.2012.10.014
- G. Liu, H. G. Yang, J. Pan, Y.Q. Yang. GQ (Max) Lu, H.-M. Cheng, J. Phys. Chem. C 113 (2009) 21784–21788. https://doi.org/10.1021/jp907749r
- B. Delley, J. Chem. Phys. 92 (1990) 508-517. https://doi.org/10.1063/1.458452
- B. Delley, J. Chem. Phys. 113(18) (2000) 7756-7764. https://doi.org/10.1063/1.1316015
- D.A. Hanaor, M.H. Assadi, S. Li, A. Yu, C.C. Sorrell, Comput. Mech. 50 (2012) 185-194. https://doi.org/10.1007/s00466-012-0728-4
- M.A. Rafiee, Int. j. phys. Sci. 28(3) (2017) 69-79. https://doi.org/10.21315/jps2017.28.3.5
- M. Maiwald, H.H. Fischer, Y.K. Kim, K. Albert, H. Hasse, J. Magn. Reson. 166(2) (2004) 135-146. https://doi.org/10.1016/j.jmr.2003.09.003
- J. Gauss, J.F. Adv Chem Phys. 123 (2002) 355-422. https://doi.org/10.1002/0471231509.ch6
- B. Adrjan, W. Makulski, K. Jackowski, T.B. Demissie, K. Ruud, A. Antušek, M. Jaszuński, Phys. Chem. Chem. Phys. 18(24) (2016) 16483-16490. DOI: 10.1039/C6CP01781A
- E. Kochanski, J.M. Lehn, B. Levy, Chem. Phys. Lett. 4(2) (1969) 75-78. https://doi.org/10.1016/0009-2614(69)85072-4
- N.M. Sanchez-Padilla, R. Benavides, C. Gallardo, S. Fernandez, E. De-Casas, D. Morales-Acosta, Int. J. hydrogen Energy, 46 (2021),26040-26052https://doi.org/10.1016/j.ijhydene.2021.03.023
- U. Sternberg, Solid State Nucl. Magn. Reson, 2 (1993) 181-190. https://doi.org/10.1016/0926-2040(93)90023-G
- B. Jiang, J.M. Zuo, N. Jiang, M. O'Keeffe, J.C.H. Spence Acta Crystallogr. A. 59(4) (2003) 341-350. https://doi.org/10.1107/S010876730301122X
- T. W. Keal, D. J. Tozer, J. Chem. Phys.19(6) (2003) 3015–3024. https://doi.org/10.1063/1.1590950
- J. Zhang, Y. Yin, W. Zhang, H. Wang, X. Liu, J. Li, Z. Chen, H. Hu, Y. Wang, X. Zhu, and X. Zhou, Electrochem. Ener. Rev. 6(1) (2023) 15-58. https://doi.org/10.1007/s41918-022-00118-9
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B. 108 (2004) 17886-17892. https://doi.org/10.1021/jp047349j
- R.L. Kurtz, R. Stock-Bauer, T.E. Msdey, E. Roman, J.L. De Segovia, Surf. Sci. 218 (1989) 178–200. https://doi.org/10.1016/0039-6028(89)90626-2
- G. Lu, A. Linsebigler, J.T. Yates, J. Chem. Phys. 102 (1995) 3005–3008. https://doi.org/10.1063/1.468609
- G. Lu, A. Linsebigler, J.T. Yates, J. Phys. Chem. 102 (1995) 4657–4662. https://doi.org/10.1063/1.469513
- M.A. Henderson, Surf. Sci. 355 (1996) 151–166. https://doi.org/10.1016/0039-6028(95)01357-1
- M.A. Henderson, W.S. Epling, C.L. Perkins, C. H.F. Peden, U. Diebold, J. Phys. Chem. B 103 (1999) 5328–5337. https://doi.org/10.1021/jp990655q
- M.P. de Lara-Castells, J.L Krause, Chem. Phys. Lett. 354 (2002) 483–490. https://doi.org/10.1016/S0009-2614(02)00179-3
- M. Menetrey, A. Markovits, C. Minot, Surf. Sci. 524 (2003) 49–62. https://doi.org/10.1016/S0039-6028(02)02464-0
- D. Vogtenhuber, R. Podloucky, J. Redinger, Surf. Sci. 1998, 402-404, 798–801. https://doi.org/10.1016/S0039-6028(97)01083-2
- S. Wendt, P.T. Sprunger, E. Lira, G. K. H. Madsen, Z. Li, J.O. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, . Science. 320 (2008) 1755–1759. DOI: 10.1126/science.1159846
- V.E. Henrich, Prog. Surf. Science. 9 (1979) 143–164. https://doi.org/10.1016/0079-6816(79)90011-X
- W. G€opel, G. Rocker, R. Feierabend, Phys. Rev. B: Condens. Matter. 28 (1983) 3427–3438. https://doi.org/10.1103/PhysRevB.28.3427
- W.J. Lo, Y.W. Chung, G.A. Somorjai. Surf. Science. 71(1978) 199–219. https://doi.org/10.1016/0039-6028(78)90328-X
- V.E. Henrich, G. Dresselhaus, H.J. Zeiger, J. Vac. Sci. Technol. 15 (1978) 534–537. https://doi.org/10.1116/1.569464
- M A Salam, K. Ahmed, M. N. Sweety, P. Saha, Int. J. hydrogen Energy, 86(2024), 153-165, https://doi.org/10.1016/j.ijhydene.2024.08.343