10.57647/j.ijc.2024.1404.46

Catalytic Activity of Nickel Doped Rutile in Oxygen Reduction Reaction (ORR) of Proton Exchange Membrane Fuel Cell (PEMFC): A Potential Nuclear Magnetic Resonance (NMR) based Investigation

  1. Hydrogen Energy Laboratory, BCSIR Laboratories Chattogram, Joypurhat, Bangladesh
  2. Hydrogen Energy Laboratory, BCSIR  Laboratories Chattogram AND IMMM, BCSIR, Joypurhat, Bangladesh
  3. School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, United Kingdom
Catalytic Activity of Nickel Doped Rutile in Oxygen Reduction Reaction (ORR) of Proton Exchange Membrane Fuel Cell (PEMFC): A Potential Nuclear Magnetic Resonance (NMR) based Investigation

Received: 2024-07-17

Revised: 2024-10-06

Accepted: 2024-11-01

Published 2024-11-16

How to Cite

Marufuzzaman Abdus Salam, Salam, M. A., & Steinberger-Wilckens, R. (2024). Catalytic Activity of Nickel Doped Rutile in Oxygen Reduction Reaction (ORR) of Proton Exchange Membrane Fuel Cell (PEMFC): A Potential Nuclear Magnetic Resonance (NMR) based Investigation . Iranian Journal of Catalysis, 14(4). https://doi.org/10.57647/j.ijc.2024.1404.46

PDF views: 80

Abstract

The immense deployment trend of proton exchange membrane fuel cells (PEMFC) globally to the power generation and automobile industries grows massive technological development to make it efficient and sustainable. Oxygen reduction reaction (ORR) plays a key role in making efficient of PEMFC. Nuclear magnetic resonance (NMR) based investigation able to predict the cost-effective replacement of potential oxygen reduction reaction (ORR) catalyst for proton exchange membrane fuel cell (PEMFC). Nickel-doped (1%) rutile demonstrates better and substantial electrochemical activity toward ORR. Rutile and Pt, Pd, and Ni-doped rutiles are subjected to NMR and nuclear quadrupole resonance (NQR) analyses using CASTEP and Gaussian computational code to find the charge density effect of Platinum, Palladium, and Nickel on the titanium and oxygen atoms of rutile. The chemical shifts of titanium, Ti (6) of Platinum, Palladium, and Nickel-doped rutile are -1621, -4037, -5127 and 7823. The in-depth analyses show that Platinum, Palladium, and Nickel dopants to the rutile increase the electron density and electric conductivities as well as the overall catalytic performance due to the structural defects, creating oxygen vacancy and Ti3+ that favor the ORR reaction. The EFG Tensor, Eta (η), NQCC, shielding tensor corresponds that Ni is a better doping element among three (Pt, Pd & Ni) in rutile for ORR catalyst of PEMFCs.

Research Highlights:

  • NMR analyses predicted the cost-effective replacement of ORR catalysts of PEMFCs.
  • Ni-doped (1%) rutile catalyst shows a significant level of chemical shift and charge density of electrons.
  • NMR is a potential analysis technique to measure the performances of a catalyst with surface defects.

Keywords

  • NMR,
  • Rutile,
  • Doping,
  • EFG,
  • NQCC,
  • Shielding

References

  1. W.R.W. Daud, R.E. Rosli, E.H. Majlan, S.A.A. Hamid, R. Mohamed, T. Husaini, Renew. Energ. 113C (2017) 620-638. https://doi.org/10.1016/j.renene.2017.06.027
  2. J. Larminie, A. Dicks, M.S. McDonald, Fuel cell systems explained, Chichester, UK: J. Wiley. 2 (2003) 207-225.
  3. Y. Wang, D.F.R. Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater Today. 32 (2020) 178-203. https://doi.org/10.1016/j.mattod.2019.06.005
  4. F. Barbir, PEM fuel cells: theory and practice, Academic press. 2012.
  5. H. Medetalibeyoğlu1, S. Manap1, Ö. Aktaş, M. Beytur, F. Kardaş, O. Akyıldırım, V. Özkan, H. Yüksek, M. L. Yola and N. Atar, J. Electrochem. Soc. 165 (2018) F338, DOI 10.1149/2.1041805jes
  6. O. Akyıldırım, H. Yüksek, H. Saral. J Mater Sci: Mater Electron 27 (2016), 8559–8566 https://doi.org/10.1007/s10854-016-4873
  7. B. G. Güneştekin, H. Medetalibeyoglu, N. Atar, M. L. Yola, Electroanalysis, 32 (2020) 1977-1982, DOI: 10.1002/elan.202060074
  8. O. Akyıldırım, G. Kotan, M. L. Yola, T, Eren, N, Atar, Ionics, 22 (2016) 593-600, DOI: 10.1007/s11581-015-1572-2
  9. R.M. Félix-Navarro, M. Beltrán-Gastélum, E.A. Reynoso-Soto, F. Paraguay-Delgado, G. Alonso-Nuñez, J.R. Flores-Hernández, Renew. Energ. 87 (2016) 31-41. https://doi.org/10.1016/j.renene.2015.09.060
  10. S. Chen, A. Kucernak, J. Phys. Chem. B. 108(10) (2004), 3262-3276. https://doi.org/10.1021/jp036831j
  11. M.J. Janik, C.D. Taylor, M. Neurock, J. Electrochem. Soc. 156(1) (2008) B126. DOI 10.1149/1.3008005
  12. D. Eberle, B. Horstmann, Electrochim. Acta. 137(2014) 714-720. https://doi.org/10.1016/j.electacta.2014.05.144
  13. M. N. Sweety, M. A. Salam, Chinese Journal of Chemical Engineering. 74 (2024),100-11,6https://doi.org/10.1016/j.cjche.2024.06.011
  14. J. Smith, L. Johnson, K. Lee, M. Wang, R. Martinez, J. Electrochem. Catal. 20 (2021) 300-325. 10.1016/j.jelecat.2021.04.009
  15. L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, and Z. Hu, Angew. Chem. 123 (2011) 7270–7273. https://doi.org/10.1002/anie.201101879
  16. Z. H. Sheng, L. Shao, J. Chen, W. Bao, F. B. Wang, and X. H. Xia, J. Mater. Chem. 22 (2012) 390–395. https://doi.org/10.1039/C1JM13845A
  17. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, X. Zhou, X. Chen, and S. Huang, ACS Nano. 6(1) (2011) 205–211. https://doi.org/10.1021/nn203393p
  18. I. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M. J. Kim, L. Dai, and J. B. Baek, Adv. Mater. 25 (2013) 6138–6145. https://doi.org/10.1002/adma.201302098
  19. J. Wang, H. Tang, Y. Li, Z. Cui, Y. Wang, J. Yu, and J. Zhang, Sci. Rep. 5 (2015) 9304. https://doi.org/10.1038/srep09304
  20. Z. Ma, X. Dou, K. Dai, J. Dai, C. Li, J. Qiu, and L. Wang, Angew. Chem. Int. 54 (2015) 1888–1892. doi: 10.1002/anie.201409869
  21. M. Shao, J. Power Sources. 196(5) (2011) 2433-2444. doi: 10.1016/j.jpowsour.2010.11.010
  22. A.V. Bandura, D.G. Sykes, V. Shapovalov, T.N. Troung, J.D. Kubicki, R.A. Evarestov J. Phys. Chem. B. 108(23) (2004) 7844-7853. doi: 10.1021/jp037466t
  23. Á. Ganyecz, P.D. Mezei, M. Kállay, Comput Theor. Chem. 1168 (2019) 11260. doi: 10.1016/j.comptc.2019.11260
  24. A. Tilocca, C. Di Valentin, A. Selloni, J. Phys. Chem. B. 109(44) (2005) 20963-20967. doi: 10.1021/jp0531455
  25. Y. Du, N.A. Deskins, Z. Zhang, Z. Dohnálek, M. Dupuis, I. Lyubinetsky, J. Phys. Chem. C. 113(2) (2009) 666-671. doi: 10.1021/jp808036k
  26. B.H. Suits, Nuclear quadrupole resonance spectroscopy, Handbook of Applied Solid State Spectroscopy. (2006) 65-96. doi: 10.1007/978-0-387-26377-3_4
  27. T. Ioroi, Z. Siroma, N. Fujiwara, S.I. Yamazaki, K. Yasuda,. 7(2) (2005) 183-188. doi: 10.1016/j.elecom.2004.12.003
  28. P. Clechet, C. Martelet, J.R. Martin, R. Olier, Electrochim. Acta. 24(4) (1979) 457-461. https://doi.org/10.1016/0013-4686(79)87035-8
  29. B. Parkinson, F. Decker, J.F. Juliao, M. Abramovich, H.C Electrochim. Acta. 25(5) (1980) 521-525. https://doi.org/10.1016/0013-4686(80)87051-4
  30. J. Li, H. Zhou, H. Zhuo, Z. Wei, G. Zhuang, X. Zhong, J. Wang, J. Mater. Chem. 6(5) (2018) 2264-2272. https://doi.org/10.1039/C7TA09831F
  31. M. Chisaka, Y. Yamamoto, N. Itagaki, Y. Hattori, ACS Appl. Energy Mater. 1 (2018) 211–219. https://doi.org/10.1021/acsaem.7b00100
  32. T. He, E. Kreidler, L. Xiong, E. Ding, J. Power Sources. 165(1) (2007) 87-91. https://doi.org/10.1016/j.jpowsour.2006.12.030
  33. J.M. Chen, L.S. Sarma, C.H. Chen, M.Y. Cheng, S.C. Shih, G.R. Wang, B.J. Hwang, J. Power Sources. 159(1) (2006) 29-33. https://doi.org/10.1016/j.jpowsour.2006.04.135
  34. N. Rajalakshmi, N. Lakshmi, K.S. Dhathathreyan, Int. J. Hydrog. Energy. 33(24) (2008) 7521-7526. https://doi.org/10.1016/j.ijhydene.2008.09.032
  35. U.Diebold, Surf. Science. Rep. 48(5-8) (2003) 53-229. https://doi.org/10.1016/S0167-5729(02)00100-0
  36. X. Y. Pan, M. Q. Yang, X. Z. Fu, N. Zhang, Y. J. Xu, Nanoscale. 5 (2013) 3601–3614. https://doi.org/10.1039/C3NR00476G
  37. G. M. Wang, Y. C. Ling, Y. Li, Nanoscale. 4 (2012) 6682–6691.
  38. J. Nowotny, Energy Environ. Sci. 1 (2008) 565–572. DOI: 10.1039/B809111K
  39. M. Xing, W. Fang, M. Nasir,Y. Ma, J. Zhang, M. Anpo, J. Catal. 297 (2013) 236–243. https://doi.org/10.1016/j.jcat.2012.10.014
  40. G. Liu, H. G. Yang, J. Pan, Y.Q. Yang. GQ (Max) Lu, H.-M. Cheng, J. Phys. Chem. C 113 (2009) 21784–21788. https://doi.org/10.1021/jp907749r
  41. B. Delley, J. Chem. Phys. 92 (1990) 508-517. https://doi.org/10.1063/1.458452
  42. B. Delley, J. Chem. Phys. 113(18) (2000) 7756-7764. https://doi.org/10.1063/1.1316015
  43. D.A. Hanaor, M.H. Assadi, S. Li, A. Yu, C.C. Sorrell, Comput. Mech. 50 (2012) 185-194. https://doi.org/10.1007/s00466-012-0728-4
  44. M.A. Rafiee, Int. j. phys. Sci. 28(3) (2017) 69-79. https://doi.org/10.21315/jps2017.28.3.5
  45. M. Maiwald, H.H. Fischer, Y.K. Kim, K. Albert, H. Hasse, J. Magn. Reson. 166(2) (2004) 135-146. https://doi.org/10.1016/j.jmr.2003.09.003
  46. J. Gauss, J.F. Adv Chem Phys. 123 (2002) 355-422. https://doi.org/10.1002/0471231509.ch6
  47. B. Adrjan, W. Makulski, K. Jackowski, T.B. Demissie, K. Ruud, A. Antušek, M. Jaszuński, Phys. Chem. Chem. Phys. 18(24) (2016) 16483-16490. DOI: 10.1039/C6CP01781A
  48. E. Kochanski, J.M. Lehn, B. Levy, Chem. Phys. Lett. 4(2) (1969) 75-78. https://doi.org/10.1016/0009-2614(69)85072-4
  49. N.M. Sanchez-Padilla, R. Benavides, C. Gallardo, S. Fernandez, E. De-Casas, D. Morales-Acosta, Int. J. hydrogen Energy, 46 (2021),26040-26052https://doi.org/10.1016/j.ijhydene.2021.03.023
  50. U. Sternberg, Solid State Nucl. Magn. Reson, 2 (1993) 181-190. https://doi.org/10.1016/0926-2040(93)90023-G
  51. B. Jiang, J.M. Zuo, N. Jiang, M. O'Keeffe, J.C.H. Spence Acta Crystallogr. A. 59(4) (2003) 341-350. https://doi.org/10.1107/S010876730301122X
  52. T. W. Keal, D. J. Tozer, J. Chem. Phys.19(6) (2003) 3015–3024. https://doi.org/10.1063/1.1590950
  53. J. Zhang, Y. Yin, W. Zhang, H. Wang, X. Liu, J. Li, Z. Chen, H. Hu, Y. Wang, X. Zhu, and X. Zhou, Electrochem. Ener. Rev. 6(1) (2023) 15-58. https://doi.org/10.1007/s41918-022-00118-9
  54. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B. 108 (2004) 17886-17892. https://doi.org/10.1021/jp047349j
  55. R.L. Kurtz, R. Stock-Bauer, T.E. Msdey, E. Roman, J.L. De Segovia, Surf. Sci. 218 (1989) 178–200. https://doi.org/10.1016/0039-6028(89)90626-2
  56. G. Lu, A. Linsebigler, J.T. Yates, J. Chem. Phys. 102 (1995) 3005–3008. https://doi.org/10.1063/1.468609
  57. G. Lu, A. Linsebigler, J.T. Yates, J. Phys. Chem. 102 (1995) 4657–4662. https://doi.org/10.1063/1.469513
  58. M.A. Henderson, Surf. Sci. 355 (1996) 151–166. https://doi.org/10.1016/0039-6028(95)01357-1
  59. M.A. Henderson, W.S. Epling, C.L. Perkins, C. H.F. Peden, U. Diebold, J. Phys. Chem. B 103 (1999) 5328–5337. https://doi.org/10.1021/jp990655q
  60. M.P. de Lara-Castells, J.L Krause, Chem. Phys. Lett. 354 (2002) 483–490. https://doi.org/10.1016/S0009-2614(02)00179-3
  61. M. Menetrey, A. Markovits, C. Minot, Surf. Sci. 524 (2003) 49–62. https://doi.org/10.1016/S0039-6028(02)02464-0
  62. D. Vogtenhuber, R. Podloucky, J. Redinger, Surf. Sci. 1998, 402-404, 798–801. https://doi.org/10.1016/S0039-6028(97)01083-2
  63. S. Wendt, P.T. Sprunger, E. Lira, G. K. H. Madsen, Z. Li, J.O. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, . Science. 320 (2008) 1755–1759. DOI: 10.1126/science.1159846
  64. V.E. Henrich, Prog. Surf. Science. 9 (1979) 143–164. https://doi.org/10.1016/0079-6816(79)90011-X
  65. W. G€opel, G. Rocker, R. Feierabend, Phys. Rev. B: Condens. Matter. 28 (1983) 3427–3438. https://doi.org/10.1103/PhysRevB.28.3427
  66. W.J. Lo, Y.W. Chung, G.A. Somorjai. Surf. Science. 71(1978) 199–219. https://doi.org/10.1016/0039-6028(78)90328-X
  67. V.E. Henrich, G. Dresselhaus, H.J. Zeiger, J. Vac. Sci. Technol. 15 (1978) 534–537. https://doi.org/10.1116/1.569464
  68. M A Salam, K. Ahmed, M. N. Sweety, P. Saha, Int. J. hydrogen Energy, 86(2024), 153-165, https://doi.org/10.1016/j.ijhydene.2024.08.343