10.57647/j.ijc.2024.1404.42

Preparation of heterostructure Pt/Bi2MoO6 nanocomposites by microwave-assisted deposition method for using as a visible-light-driven photocatalyst

  1. Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla,Thailand
  2. Faculty of Science, Energy and Environment, King Mongkut’s University of Technology, North Bangkok, Rayong Campus, Rayong, Thailand
  3. Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand  AND  Department of Chemistry, Faculty of Science, Chiang Mai University,Chiang Mai, Thailand
  4. Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand  AND  Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
Preparation of heterostructure Pt/Bi2MoO6 nanocomposites by microwave-assisted deposition method for using as a visible-light-driven photocatalyst

Received: 2024-04-24

Revised: 2024-08-16

Accepted: 2024-10-02

Published 2024-10-08

How to Cite

Pinchujit, S., Phuruangrat, A., Wannapop, S., Thongtem, T., & Thongtem, S. (2024). Preparation of heterostructure Pt/Bi2MoO6 nanocomposites by microwave-assisted deposition method for using as a visible-light-driven photocatalyst . Iranian Journal of Catalysis, 14(4), 1-14. https://doi.org/10.57647/j.ijc.2024.1404.42

PDF views: 67

Abstract

Heterostructure Pt/Bi2MoO6 nanocomposites containing different weight contents of Pt nanoparticles were successfully synthesized by an effective microwave-assisted deposition method. The effect of Pt contents loaded on the Bi2MoO6 nanoplates was investigated through the photodegradation of rhodamine B (RhB) illuminated by visible radiation. Face-centered cubic (FCC) metallic Pt nanoparticles were supported on the surface of orthorhombic Bi2MoO6 nanoplates with very good distribution by a microwave-assisted deposition method. The photocatalytic performance of Bi2MoO6 nanoplates was increased with increasing the loaded Pt nanoparticles from 1% to 10%. Upon further increasing the loaded Pt nanoparticles to 15%, the photocatalytic performance for the degradation of RhB was significantly reduced. In this research, 10% Pt/Bi2MoO6 nanocomposites have the highest photocatalytic activity because Pt nanoparticles are very good electrical conductors that play the role of enhancing photocatalytic reaction rate.

Research Highlights

  • Pt/Bi2MoO6 nanocomposites were prepared by microwave-assisted deposition method.
  • They played the role in degrading rhodamine B illuminated by visible radiation.
  • The promising material used for wastewater treatment.

Keywords

  • Active radicals,
  • Pt/Bi2MoO6 nanocomposites,
  • Photocatalytic reaction,
  • Rhodamine B

References

  1. Q. Zhao, M. Long, H. Li, L. Wang, X. Bai, Y. Zhang, D. Li, Cryst. Res. Technol. 56 (2021) 2000219. doi: 10.1002/crat.202000219.
  2. J.P. Shubha, N.V. Sushma, S.F. Adil, M. Khan, M.E. Assal, M.R. Hatshan, B. Shaik, J. King Saud Univ. Sci. 34 (2022) 101738. doi: 10.1016/j.jksus.2021.101738.
  3. M. Faisal, M. Alsaiari, Md.A. Rashed, F.A. Harraz, J. Mater. Res. Technol. 14 (2021) 954-967. doi: 10.1016/j.jmrt.2021.06.093.
  4. M. Yilmaz, N. Mengelizadeh, M.K. Saloot, S. Shahbaksh, D. Balarak, Mater. Sci. Semicond. Process. 144 (2022) 106593. doi: 10.1016/j.mssp.2022.106593.
  5. S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, Mater. Sci. Semicond. Process. 119 (2020) 105229. doi: 10.1016/j.mssp.2020.105229.
  6. L. Liang, L. Cheng, Y. Zhang, Q. Wang, Q. Wu, Y. Xue, X. Meng, RSC Adv. 10 (2020) 28509. doi: 10.1039/D0RA03125A.
  7. Q. Lu, W. Gao, J. Du, L. Zhou, Y. Lian, J. Agric. Food Chem. 60 (2012) 4773-4778. doi: 10.1021/jf300067z.
  8. P. Zhou, Z. Dai, T. Lu, X. Ru, M.A. Ofori, W. Yang, J. Hou, H. Jin, Catalysts 12 (2022) 669. doi: 10.3390/catal12060669.
  9. H. Shen, W. Xue, F. Fu, J. Sun, Y. Zhen, D. Wang, B. Shao, J. Tang, Chem. Eur. J. 24 (2018) 18463-18478. doi: 10.1002/chem.201804267.
  10. V. Shanmugam, A.L. Muppudathi, S. Jayavel, K.S. Jeyaperumal, Arabian J. Chem. 13 (2020) 2439–2455. doi: 10.1016/j.arabjc.2018.05.009.
  11. J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, J. Colloid Interf. Sci. 497 (2017) 126–133. doi: 10.1016/j.jcis.2017.02.060.
  12. J. Zhang, Z. Chen, R. Guo, D. Shan, Y. Zhao, X. Linghu, Y. Shu, B. Wang, Arabian J. Chem. 15 (2022) 103659. doi: 10.1016/j.arabjc.2021.103659.
  13. P. Dhull, A. Sudhaik, V. Sharma, P. Raizada, V. Hasija, N. Gupta, T. Ahamad, V.H. Nguyen, A. Kim, M. Shokouhimehr, S.Y. Kim, Q.V. Le, P. Singh, Mol. Catal. 539 (2023) 113013. doi: 10.1016/j.mcat.2023.113013.
  14. A.A.P. Khan, P. Singh, P. Raizada, A. Khan, A.M. Asiri, M.M. Alotaibi, Chemosphere 316 (2023) 137839. doi: 10.1016/j.chemosphere.2023.137839.
  15. A. Kumar, P. Singh, V.H. Nguyen, Q.V. Le, T. Ahamad, S. Thakur, L.H. Nguyen, P. Raizada, Chem. Eng. J. 474 (2023) 145720. doi: 10.1016/j.cej.2023.145720.
  16. M. Rezaei, A. Nezamzadeh-Ejhieha, Inter. J. Hydrog. Energ. 45 (2020) 24749-24764. doi: 10.1016/j.ijhydene.2020.06.258.
  17. M. Xu, W.D. Zhang, Eur. J. Inorg. Chem. 2016 (2016) 826–831. doi: 10.1002/ejic.201501260.
  18. K. Xia, H. Chen, M. Mao, Z. Chen, F. Xu, J. Yi, Y. Yu, X. She, H. Xu, H. Li, Phys. Status Solidi A 215 (2018) 1800520. doi: 10.1002/pssa.201800520.
  19. A. Phuruangrat, T. Klangnoi, P. Patiphatpanya, P. Dumrongrojthanath, S. Thongtem, T. Thongtem, Optik 212 (2020) 164674. doi: 10.1016/j.ijleo.2020.164674.
  20. H. He, W. Wang, C. Xu, S. Yang, C. Sun, X. Wang, Y. Yao, N. Mi, W. Xiang, S. Li, G. Liu, Sci. Total Environ. 730 (2020) 139100. doi: 10.1016/j.scitotenv.2020.139100.
  21. Y. Shi, S. Feng, C. Cao, Mater. Lett. 44 (2000) 215-218. doi: 10.1016/S0167-577X(00)00030-6.
  22. C. Kongmark, R. Coulter, S. Cristol, A. Rubbens, C. Pirovano, A. Löfberg, G. Sankar, W. Beek, E. Bordes-Richard, R.N. Vannier, Cryst. Growth Des. 12 (2012) 5994-6003. doi: 10.1021/cg301070e.
  23. A.T. Adeleye, K.I. John, P.G. Adeleye, A.A. Akande, O.O. Banjoko, J. Mater. Sci. 56 (2021) 183291-18416. doi: 10.1007/s10853-021-06473-1.
  24. J. Xue, C. Huang, Y. Zong, J. Gu, M. Wang, S. Ma, Appl. Organometal. Chem. 33 (2019) e5187. doi: 10.1002/aoc.5187.
  25. M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Energ. Fuel. 38 (2024) 7637-7664. doi: 10.1021/acs.energyfuels.4c00325.
  26. M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, ACS Omega 9 (2024) 6093-6127. doi: 10.1021/acsomega.3c07560.
  27. Z. Sun, X. Yang, X.F. Yu, L. Xia, Y. Peng, Z. Li, Y. Zhang, J. Cheng, K. Zhang, J. Yu, Appl. Catal. B 285 (2021) 119790. doi: 10.1016/j.apcatb.2020.119790.
  28. Y. Ma, Y. Jia, Y. Lin, W. Shia, Dalton Trans. 48 (2019) 12009-12012. doi: 10.1039/C9DT02028D.
  29. Z.X. Dai, L.Y. Zhang, C.L. Ruan, Z.Q. Yun, G.H. Zheng, Dig. J. Nanomater. Bios. 17 (2022) 179-191. doi: 10.15251/DJNB.2022.171.179.
  30. Y. Wu, M. Song, Z. Chai, X. Wang, Inorg. Chem. 58 (2019) 7374-7384. doi: 10.1021/acs.inorgchem.9b00524.
  31. G. Ren, S. Liu, Z. Li, H. Bai, X. Hu, X. Meng, Sol. RRL 6 (2022) 2200154. doi: 10.1002/solr.202200154.
  32. L. Guo, Q. Zhao, H. Shen, X. Han, K. Zhang, D. Wang, F. Fu, B. Xu, Catal. Sci. Technol. 9 (2019) 3193-3202. doi: 10.1039/C9CY00579J.
  33. J. Cai, J. Huang, Y. Lai, J. Mater. Chem. A 5 (2017) 16412-16421. doi: 10.1039/C7TA02077E.
  34. P. Suebsom, A. Phuruangrat, S. Suwanboon, S. Thongtem, T. Thongtem, Inorg. Chem. Commun. 119 (2020) 108120. doi: 10.1016/j.inoche.2020.108120.
  35. N. Mehrabanpour, A. Nezamzadeh-Ejhieh, S. Ghattavi, A. Ershadi, Appl. Surf. Sci. 614 (2023) 156252. doi: 10.1016/j.apsusc.2022.156252.
  36. X. Yang, Y. Wang, X. Xu, Y. Qu, X. Ding, H. Chen, Chinese J. Catal. 38 (2017) 260-269. doi: 10.1016/S1872-2067(16)62553-6.
  37. S. Dong, J. Wu, L. Huang, H.E. Wang, Crystals 12 (2022) 778. doi: 10.3390/cryst12060778.
  38. J.J. Zou, C.J. Liu, K.L. Yu, D.G. Cheng, Y.P. Zhang, F. He, H.Y. Du, L. Cui, Chem. Phys. Lett. 400 (2004) 520-523. doi: 10.1016/j.cplett.2004.11.003.
  39. J. Li, Y. Yan, G. Sun, J. Yang, Z. Wang, X. Yan, Quim. Nova. 44 (1021) 295-300. doi: 10.21577/0100-4042.20170685.
  40. H. Liu, H. Liu, J. Yang, H. Zhai, X. Liu, H. Jia, Cera. Inter. 45 (2019) 20133-20140. doi: 10.1016/j.ceramint.2019.06.279.
  41. M.H. Wang, H.L. Cai, Z.L. Guo, Q.A. Qiao, S.H. Ren, D.D. Zhu, Z.X. Xue, Micro Nano Lett. 14 (2019) 656-660. doi: 10.1049/mnl.2018.5308.
  42. A. Phuruangrat, T. Thongtem, S. Thongtem, Inorg. Nano-Met. Chem. 51 (2021) 1813-1821. doi: 10.1080/24701556.2020.1855198.
  43. S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R.M.F.R.A. Rahman, Nanoscale Res. Lett. 7 (2012) 541. doi: 10.1186/1556-276X-7-541.
  44. J.D. Xie, S. Gu, H. Zhang, Sensors 17 (2017) 2163. doi: 10.3390/s17102163.
  45. O. Koikolainen, L. Sondermann, S. Roitsch, I. Simon, D. Dietrich, V. Gvilava, J. Barthel, J. Thomas, C. Janiak, I. Boldog, J. Mater. Chem. A 10 (2022) 11955-11970. doi: 10.1039/D2TA00883A.
  46. M. Marcinek, X. Song, R. Kostecki, Electrochem. Commun. 9 (2007) 1739-1743. doi: 10.1016/j.elecom.2007.03.030.
  47. E.H. Jo, H. Chang, S.K. Kim, J.H. Choi, S.R. Park, C.M. Lee, H.D. Jang, Sci. Rep. 6 (2016) 33236. doi: 10.1038/srep33236.
  48. I. Ðurasović, G. Štefanić, G. Dražić, R. Peter, Z. Klencsár, M. Marciuš, T. Jurkin, M. Ivanda, S. Stichleutner, M. Gotić, Nanomaterials 13 (2023) 2481. doi: 10.3390/nano13172481.
  49. C.T. Hsieh, W.Y. Chen, I. Chen, A.K. Roy, J. Power Sources 199 (2012) 94-102. doi: 10.1016/j.jpowsour.2011.10.055.
  50. E. Gabano, M. Ravera, Microwave-assisted synthesis: Can transition metal complexes take advantage of this “green” method?, Molecules 27 (2022) 4249. doi: 10.3390/molecules27134249.
  51. Y.J. Zhu, F. Chen, Chem. Rev. 114 (2014) 6462-6555. doi: 10.1021/cr400366s.
  52. Powder Diffract. File, JCPDS-ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, U.S.A. (2001).
  53. A.B. Shishmakov, Yu. V. Mikushina, O. V. Koryakova, L. A. Petrov, Russ. J. Inorg. Chem. 64 (2019) 864-869. doi: 10.1134/S0036023619070155.
  54. A. Haghighatzadeh, M. Hosseini, S. Haghighi, M.A. Dil, J. Aust. Ceram. Soc., 57 (2021) 993-1002. doi: 10.1007/s41779-021-00602-4.
  55. N. Deilami, A. Haghighatzadeh, J. Aust. Ceram. Soc. 57 (2021) 409-418. doi: 10.1007/s41779-020-00553-2.
  56. H. Hassani, S. Ebrahim, N. Feizi, Russ. J. Inorg. Chem. 65 (2020) 940-947. doi: 10.1134/S0036023620060054.
  57. A. Phuruangrat, S. Buapoon, T. Bunluesak, P. Suebsom, S. Wannapop, T. Thongtem, S. Thongtem, J. Aust. Ceram. Soc. 58 (2022) 999-1008. doi: 10.1007/s41779-022-00765-8.
  58. A. Phuruangrat, S. Buapoon, T. Bunluesak, P. Suebsom, S. Thongtem, T. Thongtem, J. Aust. Ceram. Soc. 58 (2022) 71-82. doi: 10.1007/s41779-021-00665-3.
  59. H.H. Li, C.Y. Liu, K.W. Li, H. Wang, J. Mater. Sci. 43 (2008) 7026-7034. doi: 10.1007/s10853-008-3034-y.
  60. A.L. Cook, C.P. Haycook, A.K. Locke, R.R. Mu, T.D. Giorgio, Nanoscale Adv. 3 (2021) 407. doi: 10.1039/D0NA00563K.
  61. J. Yin, Y. Zang, C. Yue, Z. Wu, S. Wu, J. Li, Z. Wu, J. Mater. Chem. 22 (2012) 7902-7909. doi: 10.1039/C2JM16003J.
  62. P.T. Thuy, V.C. Minh, V.Q. Mai, N.T. Tuan, P.V. Tuan, H.B. Cuong, N.X. Sang, J. Nanomater. 2021 (2021) 3806691. doi: 10.1155/2021/3806691.
  63. H. Zhu, Y. Ji, L. Chen, W. Bian, J. Wang, Catalysts 10 (2020) 206. doi: 10.3390/catal10020206.
  64. A.D. Mauro, M. Zimbone, M. Scuderi, G. Nicotra, M.E. Fragalà, G. Impellizzeri, Nanoscale Res. Lett. 10 (2015) 484. doi: 10.1016/j.jcis.2022.08.048.
  65. S.M. Albukhari, A.A. Ismail, S.Z. Alsheheri, M.H.H. Mahmoud, Inter. J. Environ. Sci. Tech. 19 (2022) 7067-7078. doi: 10.1007/s13762-021-03825-x.
  66. Z. Jia, F. Lyu, L.C. Zhang, S. Zeng, S.X. Liang, Y.Y. Li, J. Lu, Sci. Rep. 9 (2019) 7636. doi: 10.1038/s41598-019-42973-6.
  67. B.Y. Wang, E.D. Li, Y.C. Zong, X.B. Wang, J. Yuan, F.Q. Zhang, J. Mater. Res. 37 (2022) 1070-1082. doi: 10.1557/s43578-022-00513-5.
  68. M. Hosseini-Sarvari, A.M. Sarvestani, Photochem. Photobio. Sci. 20 (2021) 903-911. doi: 10.1007/s43630-021-00068-0.
  69. H. Li, Q. Deng, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Catal. Sci. Technol., 4 (2014) 1028-1037. doi: 10.1039/C3CY00940H.
  70. S. Li, Y. Liu, Y. Long, L. Mo, H. Zhang, J. Liu, Catalysts 8 (2018) 447. doi: 10.3390/catal8100477.
  71. Z.X. Dai, L.Y. Zhang, C.L. Ruan, Z.Q. Yun, G.H. Zheng, Dig. J. Nanomater. Bios. 17 (2022) 179-191. doi: 10.15251/DJNB.2022.171.179.
  72. A.A. Nada, M. Nasr, R. Viter, P. Miele, S. Roualdes, M. Bechelany, J. Phys. Chem. C 121 (2017) 24669−24677. doi: 10.1021/acs.jpcc.7b08567.
  73. X. Liu, W.Y. Huang, Q. Zhou, X.R. Chen, K. Yang, D. Li, D.D. Dionysiou, Rare Met. 40 (2021) 1086-1098. doi: 10.1007/s12598-020-01574-3.
  74. Y. Gao, L. Li, W. Zu, Y. Sun, J. Guan, Y. Cao, H. Yu, W. Zhang, J. Inorg. Organomet. Polym. Mater. 32 (2022) 1840-1852. doi: 10.1007/s10904-022-02242-y.
  75. S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. B 183 (2020) 107712. doi: 10.1016/j.compositesb.2019.107712.
  76. B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li, J.Yu, Langmuir 37 (2021) 14114-14124. doi: 10.1021/acs.langmuir.1c02360.
  77. R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu, Y. Zhang, Nat. Commun. 11 (2020) 4465. doi: 10.1038/s41467-020-18267-1.
  78. A. Barras, S. Cordier, R. Boukherroub, Appl. Catal. B 123-124 (2012). doi: 10.1016/j.apcatb.2012.04.006.
  79. M. Wang, Z. Qiao, M. Fang, Z. Huang, Y. Liu, X. Wu, C. Tang, H. Tang, H. Zhu, RSC Adv. 5 (2015) 94887-94894. doi: 10.1039/C5RA19164E.
  80. Z. Wang, L. Xia, J. Chen, L. Ji, Y. Zhou, Y. Wang, L. Cai, J. Guo, W. Song, Catalysts 10 (2020) 1130. doi: 10.3390/catal10101130.
  81. S. Rajalakshmi, S. Pitchaimuthu, N. Kannan, P. Velusamy, Appl. Water Sci. 7 (2017) 115-127. doi: 10.1007/s13201-014-0223-5.
  82. M. Zhou, X. Tian, H. Yu, Z. Wang, C. Ren, L. Zhou, Y.W. Lin, L. Dou, ACS Omega 6 (2021) 26439-26453. doi: 10.1021/acsomega.1c03694.
  83. D. Ma, J. Tang, G. He, S. Pan, Materials 17 (2024) 957. doi: 10.3390/ma17040957.
  84. R. Xie, K. Fang, Y. Liu, W. Chen, J. Fan, X. Wang, Y. Ren, Y. Song, J. Mater. Sci. 55 (2020) 11919–11937. doi: 10.1007/s10853-020-04863-5.
  85. A.A. Nada, B.O. Orimolade, H.H. El-Maghrabi, B.A. Koiki, M. Rivallin, M.F. Bekheet, R. Viter, D. Damberga, G. Lesage, I. Iatsunskyi, E. Coy, M. Cretin, O.A. Arotiba, M. Bechelany, Appl. Mater. Today 24 (2021) 101129. doi: 10.1016/j.apmt.2021.101129.
  86. H.R. Tantawy, A.A. Nada, A. Baraka, M.A. Elsayed, Appl. Surf. Sci. Adv. 3 (2021) 100056. doi: 10.1016/j.apsadv.2021.100056.
  87. M. Rehan, A.A. Nada, T.A. Khattab, N.A.M. Abdelwahed, A.A.A. El-Kheir, J. Mater. Res. Technol. 9 (2020) 9380-9394. doi: 10.1016/j.jmrt.2020.05.079.
  88. A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. Catal. 11 (2021) 247-259.
  89. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Chem. Eng. J. 228 (2013) 631-641. doi: 10.1016/j.cej.2013.05.035.
  90. Y. Ma, C. Lv, J. Hou, S. Yuan, Y. Wang, P. Xu, G. Gao, J. Shi, Nanomaterials 9 (2019) 322. doi: 10.3390/nano9030322.
  91. B. Niu, Z. Xu, Green Chem. 21 (2019) 874-884. doi: 10.1039/C8GC02263A.
  92. S.A. Mirsalari, A. Nezamzadeh-Ejhieha, Sep. Purif. Technol. 250 (2020) 117235. doi: 10.1016/j.seppur.2020.117235.
  93. W. Kang, Y. Gao, X. Tang, C. Cao, L. Hu, H. Yang, J. Appl. Polym. Sci. 136 (2019) 47468. doi: 10.1002/app.47468.
  94. Z. Jiang, B. Dong, B. Chen, J. Wang, L. Xu, S. Zhang, H. Song, Small 9 (2013) 604-612. doi: 10.1002/smll.201201558.