Preparation of heterostructure Pt/Bi2MoO6 nanocomposites by microwave-assisted deposition method for using as a visible-light-driven photocatalyst
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla,Thailand
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology, North Bangkok, Rayong Campus, Rayong, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand AND Department of Chemistry, Faculty of Science, Chiang Mai University,Chiang Mai, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand AND Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
Received: 2024-04-24
Revised: 2024-08-16
Accepted: 2024-10-02
Published 2024-10-08
Copyright (c) 2024 Soraya Pinchujit, Anukorn Phuruangrat, Surangkana Wannapop, Titipun Thongtem, Somchai Thongtem (Author)

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
How to Cite
PDF views: 67
Abstract
Heterostructure Pt/Bi2MoO6 nanocomposites containing different weight contents of Pt nanoparticles were successfully synthesized by an effective microwave-assisted deposition method. The effect of Pt contents loaded on the Bi2MoO6 nanoplates was investigated through the photodegradation of rhodamine B (RhB) illuminated by visible radiation. Face-centered cubic (FCC) metallic Pt nanoparticles were supported on the surface of orthorhombic Bi2MoO6 nanoplates with very good distribution by a microwave-assisted deposition method. The photocatalytic performance of Bi2MoO6 nanoplates was increased with increasing the loaded Pt nanoparticles from 1% to 10%. Upon further increasing the loaded Pt nanoparticles to 15%, the photocatalytic performance for the degradation of RhB was significantly reduced. In this research, 10% Pt/Bi2MoO6 nanocomposites have the highest photocatalytic activity because Pt nanoparticles are very good electrical conductors that play the role of enhancing photocatalytic reaction rate.
Research Highlights
- Pt/Bi2MoO6 nanocomposites were prepared by microwave-assisted deposition method.
- They played the role in degrading rhodamine B illuminated by visible radiation.
- The promising material used for wastewater treatment.
Keywords
- Active radicals,
- Pt/Bi2MoO6 nanocomposites,
- Photocatalytic reaction,
- Rhodamine B
References
- Q. Zhao, M. Long, H. Li, L. Wang, X. Bai, Y. Zhang, D. Li, Cryst. Res. Technol. 56 (2021) 2000219. doi: 10.1002/crat.202000219.
- J.P. Shubha, N.V. Sushma, S.F. Adil, M. Khan, M.E. Assal, M.R. Hatshan, B. Shaik, J. King Saud Univ. Sci. 34 (2022) 101738. doi: 10.1016/j.jksus.2021.101738.
- M. Faisal, M. Alsaiari, Md.A. Rashed, F.A. Harraz, J. Mater. Res. Technol. 14 (2021) 954-967. doi: 10.1016/j.jmrt.2021.06.093.
- M. Yilmaz, N. Mengelizadeh, M.K. Saloot, S. Shahbaksh, D. Balarak, Mater. Sci. Semicond. Process. 144 (2022) 106593. doi: 10.1016/j.mssp.2022.106593.
- S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, Mater. Sci. Semicond. Process. 119 (2020) 105229. doi: 10.1016/j.mssp.2020.105229.
- L. Liang, L. Cheng, Y. Zhang, Q. Wang, Q. Wu, Y. Xue, X. Meng, RSC Adv. 10 (2020) 28509. doi: 10.1039/D0RA03125A.
- Q. Lu, W. Gao, J. Du, L. Zhou, Y. Lian, J. Agric. Food Chem. 60 (2012) 4773-4778. doi: 10.1021/jf300067z.
- P. Zhou, Z. Dai, T. Lu, X. Ru, M.A. Ofori, W. Yang, J. Hou, H. Jin, Catalysts 12 (2022) 669. doi: 10.3390/catal12060669.
- H. Shen, W. Xue, F. Fu, J. Sun, Y. Zhen, D. Wang, B. Shao, J. Tang, Chem. Eur. J. 24 (2018) 18463-18478. doi: 10.1002/chem.201804267.
- V. Shanmugam, A.L. Muppudathi, S. Jayavel, K.S. Jeyaperumal, Arabian J. Chem. 13 (2020) 2439–2455. doi: 10.1016/j.arabjc.2018.05.009.
- J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, J. Colloid Interf. Sci. 497 (2017) 126–133. doi: 10.1016/j.jcis.2017.02.060.
- J. Zhang, Z. Chen, R. Guo, D. Shan, Y. Zhao, X. Linghu, Y. Shu, B. Wang, Arabian J. Chem. 15 (2022) 103659. doi: 10.1016/j.arabjc.2021.103659.
- P. Dhull, A. Sudhaik, V. Sharma, P. Raizada, V. Hasija, N. Gupta, T. Ahamad, V.H. Nguyen, A. Kim, M. Shokouhimehr, S.Y. Kim, Q.V. Le, P. Singh, Mol. Catal. 539 (2023) 113013. doi: 10.1016/j.mcat.2023.113013.
- A.A.P. Khan, P. Singh, P. Raizada, A. Khan, A.M. Asiri, M.M. Alotaibi, Chemosphere 316 (2023) 137839. doi: 10.1016/j.chemosphere.2023.137839.
- A. Kumar, P. Singh, V.H. Nguyen, Q.V. Le, T. Ahamad, S. Thakur, L.H. Nguyen, P. Raizada, Chem. Eng. J. 474 (2023) 145720. doi: 10.1016/j.cej.2023.145720.
- M. Rezaei, A. Nezamzadeh-Ejhieha, Inter. J. Hydrog. Energ. 45 (2020) 24749-24764. doi: 10.1016/j.ijhydene.2020.06.258.
- M. Xu, W.D. Zhang, Eur. J. Inorg. Chem. 2016 (2016) 826–831. doi: 10.1002/ejic.201501260.
- K. Xia, H. Chen, M. Mao, Z. Chen, F. Xu, J. Yi, Y. Yu, X. She, H. Xu, H. Li, Phys. Status Solidi A 215 (2018) 1800520. doi: 10.1002/pssa.201800520.
- A. Phuruangrat, T. Klangnoi, P. Patiphatpanya, P. Dumrongrojthanath, S. Thongtem, T. Thongtem, Optik 212 (2020) 164674. doi: 10.1016/j.ijleo.2020.164674.
- H. He, W. Wang, C. Xu, S. Yang, C. Sun, X. Wang, Y. Yao, N. Mi, W. Xiang, S. Li, G. Liu, Sci. Total Environ. 730 (2020) 139100. doi: 10.1016/j.scitotenv.2020.139100.
- Y. Shi, S. Feng, C. Cao, Mater. Lett. 44 (2000) 215-218. doi: 10.1016/S0167-577X(00)00030-6.
- C. Kongmark, R. Coulter, S. Cristol, A. Rubbens, C. Pirovano, A. Löfberg, G. Sankar, W. Beek, E. Bordes-Richard, R.N. Vannier, Cryst. Growth Des. 12 (2012) 5994-6003. doi: 10.1021/cg301070e.
- A.T. Adeleye, K.I. John, P.G. Adeleye, A.A. Akande, O.O. Banjoko, J. Mater. Sci. 56 (2021) 183291-18416. doi: 10.1007/s10853-021-06473-1.
- J. Xue, C. Huang, Y. Zong, J. Gu, M. Wang, S. Ma, Appl. Organometal. Chem. 33 (2019) e5187. doi: 10.1002/aoc.5187.
- M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Energ. Fuel. 38 (2024) 7637-7664. doi: 10.1021/acs.energyfuels.4c00325.
- M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, ACS Omega 9 (2024) 6093-6127. doi: 10.1021/acsomega.3c07560.
- Z. Sun, X. Yang, X.F. Yu, L. Xia, Y. Peng, Z. Li, Y. Zhang, J. Cheng, K. Zhang, J. Yu, Appl. Catal. B 285 (2021) 119790. doi: 10.1016/j.apcatb.2020.119790.
- Y. Ma, Y. Jia, Y. Lin, W. Shia, Dalton Trans. 48 (2019) 12009-12012. doi: 10.1039/C9DT02028D.
- Z.X. Dai, L.Y. Zhang, C.L. Ruan, Z.Q. Yun, G.H. Zheng, Dig. J. Nanomater. Bios. 17 (2022) 179-191. doi: 10.15251/DJNB.2022.171.179.
- Y. Wu, M. Song, Z. Chai, X. Wang, Inorg. Chem. 58 (2019) 7374-7384. doi: 10.1021/acs.inorgchem.9b00524.
- G. Ren, S. Liu, Z. Li, H. Bai, X. Hu, X. Meng, Sol. RRL 6 (2022) 2200154. doi: 10.1002/solr.202200154.
- L. Guo, Q. Zhao, H. Shen, X. Han, K. Zhang, D. Wang, F. Fu, B. Xu, Catal. Sci. Technol. 9 (2019) 3193-3202. doi: 10.1039/C9CY00579J.
- J. Cai, J. Huang, Y. Lai, J. Mater. Chem. A 5 (2017) 16412-16421. doi: 10.1039/C7TA02077E.
- P. Suebsom, A. Phuruangrat, S. Suwanboon, S. Thongtem, T. Thongtem, Inorg. Chem. Commun. 119 (2020) 108120. doi: 10.1016/j.inoche.2020.108120.
- N. Mehrabanpour, A. Nezamzadeh-Ejhieh, S. Ghattavi, A. Ershadi, Appl. Surf. Sci. 614 (2023) 156252. doi: 10.1016/j.apsusc.2022.156252.
- X. Yang, Y. Wang, X. Xu, Y. Qu, X. Ding, H. Chen, Chinese J. Catal. 38 (2017) 260-269. doi: 10.1016/S1872-2067(16)62553-6.
- S. Dong, J. Wu, L. Huang, H.E. Wang, Crystals 12 (2022) 778. doi: 10.3390/cryst12060778.
- J.J. Zou, C.J. Liu, K.L. Yu, D.G. Cheng, Y.P. Zhang, F. He, H.Y. Du, L. Cui, Chem. Phys. Lett. 400 (2004) 520-523. doi: 10.1016/j.cplett.2004.11.003.
- J. Li, Y. Yan, G. Sun, J. Yang, Z. Wang, X. Yan, Quim. Nova. 44 (1021) 295-300. doi: 10.21577/0100-4042.20170685.
- H. Liu, H. Liu, J. Yang, H. Zhai, X. Liu, H. Jia, Cera. Inter. 45 (2019) 20133-20140. doi: 10.1016/j.ceramint.2019.06.279.
- M.H. Wang, H.L. Cai, Z.L. Guo, Q.A. Qiao, S.H. Ren, D.D. Zhu, Z.X. Xue, Micro Nano Lett. 14 (2019) 656-660. doi: 10.1049/mnl.2018.5308.
- A. Phuruangrat, T. Thongtem, S. Thongtem, Inorg. Nano-Met. Chem. 51 (2021) 1813-1821. doi: 10.1080/24701556.2020.1855198.
- S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R.M.F.R.A. Rahman, Nanoscale Res. Lett. 7 (2012) 541. doi: 10.1186/1556-276X-7-541.
- J.D. Xie, S. Gu, H. Zhang, Sensors 17 (2017) 2163. doi: 10.3390/s17102163.
- O. Koikolainen, L. Sondermann, S. Roitsch, I. Simon, D. Dietrich, V. Gvilava, J. Barthel, J. Thomas, C. Janiak, I. Boldog, J. Mater. Chem. A 10 (2022) 11955-11970. doi: 10.1039/D2TA00883A.
- M. Marcinek, X. Song, R. Kostecki, Electrochem. Commun. 9 (2007) 1739-1743. doi: 10.1016/j.elecom.2007.03.030.
- E.H. Jo, H. Chang, S.K. Kim, J.H. Choi, S.R. Park, C.M. Lee, H.D. Jang, Sci. Rep. 6 (2016) 33236. doi: 10.1038/srep33236.
- I. Ðurasović, G. Štefanić, G. Dražić, R. Peter, Z. Klencsár, M. Marciuš, T. Jurkin, M. Ivanda, S. Stichleutner, M. Gotić, Nanomaterials 13 (2023) 2481. doi: 10.3390/nano13172481.
- C.T. Hsieh, W.Y. Chen, I. Chen, A.K. Roy, J. Power Sources 199 (2012) 94-102. doi: 10.1016/j.jpowsour.2011.10.055.
- E. Gabano, M. Ravera, Microwave-assisted synthesis: Can transition metal complexes take advantage of this “green” method?, Molecules 27 (2022) 4249. doi: 10.3390/molecules27134249.
- Y.J. Zhu, F. Chen, Chem. Rev. 114 (2014) 6462-6555. doi: 10.1021/cr400366s.
- Powder Diffract. File, JCPDS-ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, U.S.A. (2001).
- A.B. Shishmakov, Yu. V. Mikushina, O. V. Koryakova, L. A. Petrov, Russ. J. Inorg. Chem. 64 (2019) 864-869. doi: 10.1134/S0036023619070155.
- A. Haghighatzadeh, M. Hosseini, S. Haghighi, M.A. Dil, J. Aust. Ceram. Soc., 57 (2021) 993-1002. doi: 10.1007/s41779-021-00602-4.
- N. Deilami, A. Haghighatzadeh, J. Aust. Ceram. Soc. 57 (2021) 409-418. doi: 10.1007/s41779-020-00553-2.
- H. Hassani, S. Ebrahim, N. Feizi, Russ. J. Inorg. Chem. 65 (2020) 940-947. doi: 10.1134/S0036023620060054.
- A. Phuruangrat, S. Buapoon, T. Bunluesak, P. Suebsom, S. Wannapop, T. Thongtem, S. Thongtem, J. Aust. Ceram. Soc. 58 (2022) 999-1008. doi: 10.1007/s41779-022-00765-8.
- A. Phuruangrat, S. Buapoon, T. Bunluesak, P. Suebsom, S. Thongtem, T. Thongtem, J. Aust. Ceram. Soc. 58 (2022) 71-82. doi: 10.1007/s41779-021-00665-3.
- H.H. Li, C.Y. Liu, K.W. Li, H. Wang, J. Mater. Sci. 43 (2008) 7026-7034. doi: 10.1007/s10853-008-3034-y.
- A.L. Cook, C.P. Haycook, A.K. Locke, R.R. Mu, T.D. Giorgio, Nanoscale Adv. 3 (2021) 407. doi: 10.1039/D0NA00563K.
- J. Yin, Y. Zang, C. Yue, Z. Wu, S. Wu, J. Li, Z. Wu, J. Mater. Chem. 22 (2012) 7902-7909. doi: 10.1039/C2JM16003J.
- P.T. Thuy, V.C. Minh, V.Q. Mai, N.T. Tuan, P.V. Tuan, H.B. Cuong, N.X. Sang, J. Nanomater. 2021 (2021) 3806691. doi: 10.1155/2021/3806691.
- H. Zhu, Y. Ji, L. Chen, W. Bian, J. Wang, Catalysts 10 (2020) 206. doi: 10.3390/catal10020206.
- A.D. Mauro, M. Zimbone, M. Scuderi, G. Nicotra, M.E. Fragalà, G. Impellizzeri, Nanoscale Res. Lett. 10 (2015) 484. doi: 10.1016/j.jcis.2022.08.048.
- S.M. Albukhari, A.A. Ismail, S.Z. Alsheheri, M.H.H. Mahmoud, Inter. J. Environ. Sci. Tech. 19 (2022) 7067-7078. doi: 10.1007/s13762-021-03825-x.
- Z. Jia, F. Lyu, L.C. Zhang, S. Zeng, S.X. Liang, Y.Y. Li, J. Lu, Sci. Rep. 9 (2019) 7636. doi: 10.1038/s41598-019-42973-6.
- B.Y. Wang, E.D. Li, Y.C. Zong, X.B. Wang, J. Yuan, F.Q. Zhang, J. Mater. Res. 37 (2022) 1070-1082. doi: 10.1557/s43578-022-00513-5.
- M. Hosseini-Sarvari, A.M. Sarvestani, Photochem. Photobio. Sci. 20 (2021) 903-911. doi: 10.1007/s43630-021-00068-0.
- H. Li, Q. Deng, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Catal. Sci. Technol., 4 (2014) 1028-1037. doi: 10.1039/C3CY00940H.
- S. Li, Y. Liu, Y. Long, L. Mo, H. Zhang, J. Liu, Catalysts 8 (2018) 447. doi: 10.3390/catal8100477.
- Z.X. Dai, L.Y. Zhang, C.L. Ruan, Z.Q. Yun, G.H. Zheng, Dig. J. Nanomater. Bios. 17 (2022) 179-191. doi: 10.15251/DJNB.2022.171.179.
- A.A. Nada, M. Nasr, R. Viter, P. Miele, S. Roualdes, M. Bechelany, J. Phys. Chem. C 121 (2017) 24669−24677. doi: 10.1021/acs.jpcc.7b08567.
- X. Liu, W.Y. Huang, Q. Zhou, X.R. Chen, K. Yang, D. Li, D.D. Dionysiou, Rare Met. 40 (2021) 1086-1098. doi: 10.1007/s12598-020-01574-3.
- Y. Gao, L. Li, W. Zu, Y. Sun, J. Guan, Y. Cao, H. Yu, W. Zhang, J. Inorg. Organomet. Polym. Mater. 32 (2022) 1840-1852. doi: 10.1007/s10904-022-02242-y.
- S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. B 183 (2020) 107712. doi: 10.1016/j.compositesb.2019.107712.
- B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li, J.Yu, Langmuir 37 (2021) 14114-14124. doi: 10.1021/acs.langmuir.1c02360.
- R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu, Y. Zhang, Nat. Commun. 11 (2020) 4465. doi: 10.1038/s41467-020-18267-1.
- A. Barras, S. Cordier, R. Boukherroub, Appl. Catal. B 123-124 (2012). doi: 10.1016/j.apcatb.2012.04.006.
- M. Wang, Z. Qiao, M. Fang, Z. Huang, Y. Liu, X. Wu, C. Tang, H. Tang, H. Zhu, RSC Adv. 5 (2015) 94887-94894. doi: 10.1039/C5RA19164E.
- Z. Wang, L. Xia, J. Chen, L. Ji, Y. Zhou, Y. Wang, L. Cai, J. Guo, W. Song, Catalysts 10 (2020) 1130. doi: 10.3390/catal10101130.
- S. Rajalakshmi, S. Pitchaimuthu, N. Kannan, P. Velusamy, Appl. Water Sci. 7 (2017) 115-127. doi: 10.1007/s13201-014-0223-5.
- M. Zhou, X. Tian, H. Yu, Z. Wang, C. Ren, L. Zhou, Y.W. Lin, L. Dou, ACS Omega 6 (2021) 26439-26453. doi: 10.1021/acsomega.1c03694.
- D. Ma, J. Tang, G. He, S. Pan, Materials 17 (2024) 957. doi: 10.3390/ma17040957.
- R. Xie, K. Fang, Y. Liu, W. Chen, J. Fan, X. Wang, Y. Ren, Y. Song, J. Mater. Sci. 55 (2020) 11919–11937. doi: 10.1007/s10853-020-04863-5.
- A.A. Nada, B.O. Orimolade, H.H. El-Maghrabi, B.A. Koiki, M. Rivallin, M.F. Bekheet, R. Viter, D. Damberga, G. Lesage, I. Iatsunskyi, E. Coy, M. Cretin, O.A. Arotiba, M. Bechelany, Appl. Mater. Today 24 (2021) 101129. doi: 10.1016/j.apmt.2021.101129.
- H.R. Tantawy, A.A. Nada, A. Baraka, M.A. Elsayed, Appl. Surf. Sci. Adv. 3 (2021) 100056. doi: 10.1016/j.apsadv.2021.100056.
- M. Rehan, A.A. Nada, T.A. Khattab, N.A.M. Abdelwahed, A.A.A. El-Kheir, J. Mater. Res. Technol. 9 (2020) 9380-9394. doi: 10.1016/j.jmrt.2020.05.079.
- A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. Catal. 11 (2021) 247-259.
- A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Chem. Eng. J. 228 (2013) 631-641. doi: 10.1016/j.cej.2013.05.035.
- Y. Ma, C. Lv, J. Hou, S. Yuan, Y. Wang, P. Xu, G. Gao, J. Shi, Nanomaterials 9 (2019) 322. doi: 10.3390/nano9030322.
- B. Niu, Z. Xu, Green Chem. 21 (2019) 874-884. doi: 10.1039/C8GC02263A.
- S.A. Mirsalari, A. Nezamzadeh-Ejhieha, Sep. Purif. Technol. 250 (2020) 117235. doi: 10.1016/j.seppur.2020.117235.
- W. Kang, Y. Gao, X. Tang, C. Cao, L. Hu, H. Yang, J. Appl. Polym. Sci. 136 (2019) 47468. doi: 10.1002/app.47468.
- Z. Jiang, B. Dong, B. Chen, J. Wang, L. Xu, S. Zhang, H. Song, Small 9 (2013) 604-612. doi: 10.1002/smll.201201558.