10.57647/j.ijc.2024.1404.41

Design, synthesis, and characterization of CeO2 and SnO2 nanoparticles for enhanced UVA-light-driven photocatalysis

  1. Laboratoire des Mat ́eriaux Inorganiques et Application, Universit ́e des Sciences et de la Technologie d’Oran MohammedBoudiaf (USTO-MB), Oran, Alg ́erie
Design, synthesis, and characterization of CeO2 and SnO2 nanoparticles for enhanced UVA-light-driven photocatalysis

Received: 2024-06-24

Revised: 2024-08-03

Accepted: 2024-09-10

Published 2024-10-08

How to Cite

Abdelkader, E. ., & Nadjia, L. . (2024). Design, synthesis, and characterization of CeO2 and SnO2 nanoparticles for enhanced UVA-light-driven photocatalysis. Iranian Journal of Catalysis, 14(4). https://doi.org/10.57647/j.ijc.2024.1404.41

PDF views: 56

Abstract

In this study, XRD peak profile investigation was performed on CeO2-500 and SnO2-450 materials to assess microstructural parameters. Scherrer (SM, SEAM, and SSM), Monshi-Scherrer (MSM), Williamson-Hall, Size-Strain plot (SSPM), and Halder-Wagner (HWM) models were explored. Additionally, these materials were exploited in heterogeneous photocatalysis experiments. Structural characterization revealed the formation of cubic fluorite type CeO2 phase and pure tetragonal rutile structure of SnO2. All methods provide crystallite sizes within 10-12 nm for CeO2-500 and 20-30 nm for SnO2-450.   SSPM gave the highest values of intrinsic strain and R2  (0.9975) along with satisfactory crystallite size, while the HWM model provided  the highest R2 and exhibited a  decrease in the intrinsic strain, which would suggest that lattice ε  was isotropic in the environment.   SEM analysis showed spherical NPs of CeO2-500 and consisted of a foamed body of SnO2-450. Both materials are legitimately transparent in the entire UV-Vis region with optical gap energy of 3.1 eV for CeO2-500 and 3.35 eV for SnO2-450.  Ultimately, both materials exhibited excellent performance as a result of 76.44 and 61.63 % degradation achieved under UVA-light illumination for CeO2-500 and SnO2-450, respectively. Consequently, the outstanding degradation of CR could be can be synergistically explained by the photocatalysis oxidation procedure  mechanisms through ROS (OH, O2•− ) as the robust oxidizing agents implicated in oxidation and reduction processes with large intrinsic crystal defects (Ce4+-O  and  Sn4+-O  defects sites)  as primary driving forces ultimately facilitate charge separation of carriers,   reduce their recombination rate and thus boost their photocatalytic effectiveness.

Research Highlights  

  •  Facile synthesis of CeO2 and SnO2 nanoscale particles (NPs) as a novel UVA-light photocatalysts.
  • XRD peak profile analysis was performed to assess microstructural parameters of both photocatalysts. 
  • Excellent performances were achieved for CeO2-500 (76.44% CR degradation ) and SnO2-450 (61.63 % CR degradation).
  • The OH and O2•−  radicals were the principal reactive species during Congo red azodye photoegradation

Keywords

  • CeO2,
  • SnO2,
  • XRD peak profile analysis,
  • Congo red (CR),
  • Degradation,
  • Kinetics,
  • Photocatalysis,
  • Synergy

References

  1. A. Verma, S.P. Gautam, K.K. Bansal, N, Prabhakar, J. M. Rosenholm, Green Nanotechnology: Advancement in Phytoformulation Research, Medicines, 6 (1) (2019) 39.
  2. doi: 10.3390/medicines 6010039.
  3. P.G. Jeelani, P. Mulay, R. Venkat, C. Ramalingam, Multifaceted Application of Silica Nanoparticles. A Review, Silicon, 12 (2020) 1337–1354.
  4. doi: 10.1007/s12633-019-00229-y.
  5. M.T. Yashima, S. Sasaki, Y. Yamaguchi, M. Kakihana, M. Yoshimura, T. Mori, Internal distortion in ZrO2-CeO2
  6. solid solutions: Neutron and high-resolution synchrotron x-ray diffraction study, Appl. Phys. Lett., 72 (1998)182-184.
  7. https://doi.org/10.1063/1.120678.
  8. K. Nikolaou, Emissions reduction of high and low polluting new technology vehicles equipped with a CeO2 catalytic system, Sci. Total Environ., 235 (1999) 71-76.
  9. PII: S 0 0 4 8 - 9 6 9 7 9 9 0 0 1 9 1 – 6.
  10. X. Feng, D.C. Sayle, Z.L. Wang, M.S. Paras, B. Santora, A.C. Sutorik. T.X.T. Sayle, Y.Yang, Y. Ding, X. Wang, Y.S.Her, Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science, 312 (2006) 1504-1508.
  11. doi: 10.1126/science.1125767.
  12. I. Nobuhito, M. Toshiyuki, H. Hidekazu, A. Gin-ya, The Synthesis, Characterization and Optical Properties of Nanocrystallined Cerium Dioxide by the Hydrothermal Method, Chem. Mater., 15 (2003) 2289-2291. https://doi.org/10.2320/matertrans.M2016285.
  13. J. Zhou. D R. Mullins, Adsorption and reaction of formaldehyde on thin-film cerium oxide, Surf. Sci., 600(2006) 1540-1546.
  14. https://doi.org/10.1016/j.susc.2006.02.009.
  15. N. Kakuta, N. Morishima, M. Kotobuki, T. Iwase, T. Mizushima. Y. Sato, S. Matsuura, Oxygen storage capacity (OSC) of aged Pt/CeO2/Al2O3 catalysts: roles of Pt and CeO2 supported on Al2O3, Appl. Surf. Sci., 121/122 (1997) 408-412.
  16. PII S0169-4332(97)00346-2.
  17. M. Lira-Cantu. F. C. Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation, Sol. Energy Mater. Sol. Cells, 90 (2006) 2076-2086.
  18. doi : 10.1016/j.solmat.2006.02.007.
  19. M. Flytzani-Stephanopoulos. M. Sakbodin. Z. Wang, M. Flytzani-Stephanopoulos. M. Sakbodin. Z. Wang. Science. 312 (2006). 1508-1510, Science, 312 (2006) 1508-1510.
  20. doi: 10.1126/science.1125684.
  21. A.H. Morshed. M.E. Moussa. S.M. Bedair. R. Leonard. S.X. Liu. N. El-Masry, Violet/blue emission from epitaxial cerium oxide films on silicon substrates, Appl. Phys. Lett., 70 (1997) 1647-1649.
  22. https://doi.org/10.1063/1.118658.
  23. I. Celardo. J.Z. Pedersen. E. Traversa . L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles, Nanoscale, 3 (2011).1411-1420.
  24. https://doi.org/10.1039/C0NR00875C.
  25. S. Das. J.M. Dowding. K.E. Klump. J.F. McGinnis. W. Self. S. Seal., Cerium oxide nanoparticles: applications and prospects in nanomedicine, Nanomedicine, 8 (9) ( 2013) 1483-1508.
  26. doi: 10.2217/nnm.13.133.
  27. C. Walkey. S. Das. S. Seal. J. Erlichman. K. Heckman. L. Ghibelli. E. Traversa. J. F. McGinnis. Self W T. Catalytic Properties and Biomedical Applications of Cerium Oxide NanoparticlesEnviron. Sci. Nano., 2 (2015) 33-53. doi : 10.1039/C4EN00138A.
  28. P. Muhammed Shafi and A. Chandra Bosea, Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO2 nanocrystals, AIP ADVANCES, 5, 057137-10 (2015)
  29. http://dx.doi.org/10.1063/1.4921452.
  30. T.W. Kim, D.U. Lee, D.C. Choo, J.H. Kim, H.J. Kim, J.H. Jeong, M. Jung, J. H. Bahang, H.L. Park, Y.S. Yoon, J.Y. Kim, Optical parameters in SnO2 nanocrystalline textured films grown on p-lnSb (111) substrates, J. Phys. Chem. Sol., 63 (2002) 881–885.
  31. https://doi.org/10.1016/S0022-3697(01)00243-8.
  32. M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J. Mayandi, J.M. Pearce, A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications, AIP Adv., 5 (2) (2015) 027122. https://doi.org/10.1063/1.4909542.
  33. S. Parvathya, B.R. Venkatramanb, In vitro Antibacterial and Anticancer Potential of CeO2 Nanoparticles Prepared by Co-precipitation and Green Synthesis Method J. Nanosci. Curr. Res., 2 (2017)2:1.
  34. doi: 10.4172/2572-0813.1000111.
  35. M.A. Andio, P.N. Browning, P.A. Morris, S.A. Akbar, Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms, Sensor. Actuator. B Chem., 165 (1) (2012) 13–18.
  36. doi: 10.1016/j.snb.2011.12.045.
  37. L. S. Reddy, K. Yadav, B. Manjunath, C. Archana, Madhu. H. Raja Naika. H. Nagabhushana . C. Kavitha, G. Nagaraju, Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities, EPJ Plus., (2016)131:154.
  38. https://doi.org/10.1140/epjp/i2016-16154-y.
  39. N.R. Thammadihalli. R. Thippeswamy. N. Ganganagappa. R. Hanumanaika, Synthesis and Characterization of CeO2 Nanoparticles via Solution Combustion Method for Photocatalytic and Antibacterial Activity Studies, ChemistryOpen , 4 (2015) 146-154.
  40. https://doi.org/10.1002/open.201402046.
  41. F. Gao. Q. Lu. S. Komarneni, Fast synthesis of cerium oxide nanoparticles and nanorods, J. Nanosci.
  42. Nanotechnol., 6 (2006) 3812–3819.
  43. doi: 10.1166/jnn.2006.609.
  44. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, Low temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, J. Am. Chem. Soc., 137 (21) (2015) 6730–6733.
  45. https://doi.org/10.1021/jacs.5b01994.
  46. A. Verma, P. Chaudhary, R.K. Tripathi, B.C. Yadav, Transient photodetection studies on 2D ZnO nanostructures prepared by simple organic-solvent assisted route, Sensor Actuator Phys., 321 (2021) 112600. https://doi.org/10.1016/j.sna.2021.112600.
  47. M.G. Helander, Z.B. Wang, J. Qiu, M.T. Greiner, D.P. Puzzo, Z.W. Liu, Z.H. Lu, Chlorinated indium tin oxide electrodes with high work function for organic device compatibility, Science ,332 (6032) (2011) 944–947. doi: 10.1126/science.1202992
  48. J.L. Vossen, E.S. Poliniak, The properties of very thin RF sputtered transparent conducting films of SnO2: Sb and In2O3: Sn, Thin Solid Films, 13 (2) (1972) 281–284.
  49. https://doi.org/10.1016/0040-6090(72)90296-9.
  50. A. Cabot, A. Dieguez, A. Romano-Rodrıguez, J.R. Morante, N. Barsan, Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances: where and how stay the catalytic atoms? Sensor. Actuator. B Chem., 79 (2–3)(2001) 98–106.
  51. https://doi.org/10.1016/S0925-4005(01)00854-1.
  52. C. Liewhiran, N. Tamaekong, A. Wisitsoraat, S. Phanichphant, Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles, Sensor Actuator. B Chem., 163 (1) (2012) 51–60. https://doi.org/10.1016/j.snb.2011.12.097.
  53. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett., 5 (4) (2005) 667–673.
  54. doi: 10.1021/nl050082v.
  55. R.K. Rawat, A. Singh, P. Chauhan, Ordered mesoporous SnO micro sheets based highly sensitive and selective ethanol gas sensor, ECS J. Solid State Sci. Technol., 10 (9) (2021), 097001.
  56. doi: 10.1149/2162-8777/ac2324
  57. X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon, 49 (1) (2011) 133–139.
  58. doi: 10.1016/j.carbon.2010.08.052
  59. S. Mishra, S. Soren, A.K. Debnath, D.K. Aswal, N. Das, P. Parhi, Rapid microwave – Hydrothermal synthesis of
  60. CeO2 nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light, Optik -
  61. International J. for Light and Electron Optics, 169 (2018) 125–136.
  62. https://doi.org/10.1016/j.ijleo.2018.05.045
  63. N. Ozer, Optical properties and electrochromic characterization of sol-gel deposited ceria films, Sol Energy Mater. Sol. Cells., 68 ( 2001) 391-400.
  64. https://doi.org/10.1016/S0927-0248(00)00371-8.
  65. H. Li. G. Liua, X. Duana, Monoclinic BiVO4 with regular morphologies: Hydrothermal synthesis, characterization and photocatalytic properties, Mater. Chem. Phys., 115 (2009) 9-13. doi:10.1016/J.MATCHEMPHYS.2009.01.014.
  66. H.I. Chen, H.Y. Chang, Synthesis of nanocrystalline cerium oxide particles by the precipitation method, Ceram. Int., 31 (6)(2005) 795-802.
  67. https://doi.org/10.1016/j.ceramint.2004.09.006.
  68. Y. Feng, Y. Cui, J. Liu, B.E. Logan, Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode, J. Hazard. Mater., 178 (2010) 29–34.
  69. doi:10.1016/j.jhazmat.2009.12.101
  70. S.H. Hwang, C. Kim, J. Jang, SnO2 nanoparticle embedded TiO2 nanofibers — Highly efficient photocatalyst for
  71. the degradation of rhodamine B, Catal. Commun., 12 (2011) 1037–1041.
  72. https://doi.org/10.1016/j.catcom.2011.02.024
  73. K.S. Lin, S. Chowdhury, Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review, Int. J. Mol. Sci., 11 ( 2010). 3226-3251.
  74. https://doi.org/10.3390/ijms11093226.
  75. Z. Wu. M. Li. J. Howe. H.M. Meyer. S.H. Overbury. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir, 26 (2010).16595-16606.
  76. doi :10.1021/la101723w.
  77. A Hartridge, A. K. Bhattacharya, Preparation and analysis of zirconia doped ceria nanocrystal dispersions, J. Phys. Chem. Solids., 63 (2) (2002).441-448.
  78. https://doi.org/10.1016/S0022-3697(01)00158-5.
  79. N. Ozer, Optical properties and electrochromic characterization of sol-gel deposited ceria films, Sol Energy Mater. Sol. Cells., 68 ( 2001). 391-400.
  80. https://doi.org/10.1016/S0927-0248(00)00371-8.
  81. E. Kusmierek, A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review, Catalysts 10, 1435 (2020).
  82. https://doi.org/10.3390/catal10121435
  83. I. Erdem, H.H. Kart, T. Cagin, First principles lattice dynamics study of SnO2 polymorphs, J. Alloys Comp., 633 (2015) 272-279.
  84. https://doi.org/10.1016/j.jallcom.2015.01.235
  85. V. Soni, S, P. Singh, S. Thakur,T. Ahamad,V. Nguyen, V. Chaudhary, N. Kumar, S. Kaya, C. Mustansar Hussain, P.j Raizada, Oxygen vacancy enriched SrTiO3 and NiO-based S-scheme heterojunction moored on activated carbon from exhausted water filter batteries for ameliorated photodegradation of doxycycline hydrochloride and methyl orange degradation. Journal of the Taiwan Institute of Chemical EngineersVolume 159 (2024)105419. https://doi.org/10.1016/j.jtice.2024.105419
  86. A. Yousefi, A. Nezamzadeh-Ejhieh, Preparation and characterization of SnO2-BiVO4-CuO catalyst and kinetics of phenazopyridine photodegradation , Iranian Journal of Catalysis 11(3) (2021)247-259.
  87. R. Anitha, K.V. Ramesh, K.H. Sudheerkumar, Photocatalytic activity of CeO2 nanoparticles, Synthesis using Artocarpus Gomezianus fruit mediated facile green combustion method, Int. J. Pharm. Bio. Sci. B 8 (2017) 933-936.
  88. DOI:10.22376/IJPBS.2017.8.2.B933-936
  89. S. Parvathya, B.R. Venkatramanb, Invitro Antibacterial and Anticancer Potential of CeO2 Nanoparticles Prepared by Co-precipitation and Green Synthesis Method, J. Nanosci. Curr. Res. 2, (2017)1-9.
  90. DOI: 10.4172/2572-0813.1000111
  91. S. Mishra, S. Soren, A.K. Debnath, D.K. Aswal, N. Das, P. Parhi, Rapid microwave – Hydrothermal synthesis
  92. of CeO2 nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light, Optik –
  93. International J. for Light and Electron Optics 169 (2018)125–136.
  94. https://doi.org/10.1016/j.ijleo.2018.05.045
  95. S.N. Matussin, F. Khan, M.H. Harunsani, Y.M. Kim, and M.M. Khan, Visible-Light-Induced Photocatalytic and PhotoantibacterialActivities of Co-Doped CeO2, ACS Omega 8, 11868−11879 (2023).
  96. doi: 10.1021/acsomega.2c07058
  97. R. Huang, C. Wu, S. Huang, D. Chen, Q. Zhang, Q. Wang, Z. Hu, Y. Jiang, B. Zhao, Z. Chen, Construction of SnS2–SnO2 heterojunctions decorated on graphene nanosheets with enhanced visible-light photocatalytic performanceActa Crystallogr C Struct Chem. 5( 6)(2019) 812-821.
  98. https://doi.org/10.1107/S2053229619006399
  99. [ 51] M. Hojamberdiev, B. Czech, A.C. Göktaş, K. Yubuta, Z.C. Kadirova, SnO2@ ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater, Journal of Alloys and Compounds, 27 (2020) 154339
  100. https://doi.org/10.1016/j.jallcom.2020.154339
  101. Z. Weldemichael Zena, L. Teshome Tufa, D. M. Andoshe, A.B. Gemta, and F. Birhanu Dejene, Phys. Scr. 98 (10) (2023)105974.
  102. DOI 10.1088/1402-4896/acfa44
  103. J.V. Kumar , D. Karthika, P. Rosaiah , S. Devanesan , R. Mythili , M. Dhananjaya, S.W. Joo, Process Safety and Environmental Protection 188 (2024) 398-405.
  104. https://doi.org/10.1016/j.psep.2024.05.088
  105. Lei Liao , Pengxiang Jia , Yingrong Jin , Fanggong Cai , Qinyong Zhang, Journal of Physics and Chemistry of Solids 188(2024) 111946
  106. https://doi.org/10.1016/j.jpcs.2024.111946
  107. C.S. Riccardi, R.C. Lima, M.L. dos Santos, P.R. Bueno, J.A. Varela, E. Longo, Preparation of CeO2 by a simple microwave–hydrothermal method, Sol. State Ionics 180 (2009) 288-291
  108. https://doi.org/10.1016/j.ssi.2008.11.016
  109. S. Chaiwichian, B. Inceesungvorn, K. Pingmuang, K. Wetchakun, S. Phanichphant, N. Wetchakun, Synthesis and Characterization of the Novel BiVO4/CeO2 Nanocomposites, Enginnering J. 16, (2012) 153-160
  110. DOI: https://doi.org/10.4186/ej.2012.16.3.153
  111. H.W. He, X.Q. Wu, W. Ren, P. Shi, X. Yao, Z.T. Song, Synthesis of crystalline cerium dioxide hydrosol by a sol–gel method, Ceram. Internat. 38, S501–S504(2012).
  112. DOI 10.1016/j.ceramint.2011.05.063
  113. C.W. Raubach, L. Polastro, M.M. Ferrer, A. Perrin, C. Perrin, A.R. Albuquerque, P.G.C. Buzolin, J. R. Sambrano, Y.B. V. de Santana, J.A. Varela, E. Longo, Influence of solvent on the morphology and photocatalytic properties of ZnS decorated CeO2 nanoparticles J. Appl. Phys. 115, 213514(2014).
  114. https://doi.org/10.1063/1.4880795
  115. P. Chaudhary, D.K. Maurya, A. Pandey, A. Verma, R.K. Tripathi, S. Kumar, B. C. Yadav, Design and development of flexible humidity sensor for baby diaper alarm: Experimental and theoretical study Sensor. Actuator. B Chem. 350 (2022) 130818.
  116. https://doi.org/10.1016/j.snb.2021.130818
  117. T. Haldar, U. Kumar, B. Yadav, V.R.K. Kumar, Hierarchical flower-like Bi2SiO5/MWCNT nanocomposites for highly sensitive LPG sensor at room temperature, J. Alloys Compd. 856, 158157 (2021).
  118. https://doi.org/10.1016/j.jallcom.2020.158157
  119. A. Singh, S. Sikarwar, B.C. Yadav, Design and fabrication of quick responsive and highly sensitive LPG sensor using ZnO/SnO2 heterostructured film, Mater, Res. Express 8 (4), 045013(2021).
  120. DOI 10.1088/2053-1591/abf52e
  121. R.K. Tripathi, O.S. Panwar, I. Rawal, C.K. Dixit, A. Verma, P. Chaudhary, A. K. Srivastava, B.C. Yadav, Study of variable range hopping conduction mechanism in nanocrystalline carbon thin films deposited by modified anodic jet carbon arc technique: application to light-dependent resistors.J. Mater. Sci. Mater. Electron. 32 (2) (2021) 2535 –2546.
  122. https://doi.org/10.1007/s10854-020-05020-z
  123. U. Kumar, Y.-H. Yang, Z.-Y. Deng, M.-W. Lee, W.-M. Huang, C.-H. Wu, In situ growth of ternary metal sulfide based quantum dots to detect dual gas at extremely low levels with theoretical investigations, Sensor. Actuator. B Chem. 353 (2022) 131192.
  124. https://doi.org/10.1016/j.snb.2021.131192
  125. K. Balakrishnan, N. Murugasean, Synthesis and characterization of SnO2 nanoparticles by Co-Precipitation method Int. J. Nano Dimens. (IJND) 12 (1) (2021) 76-72.
  126. Doi 10.22034/ijnd.2021.677125
  127. S. Naz, I. Javid, S. Konwar, K. Surana, P.K. Singh, M. Sahni, B. Bhattacharya, A simple low cost method for synthesis of SnO2 nanoparticles and its Characterization, SN Appl. Sci. 2 (5), 1 (2020).
  128. https://doi.org/10.1007/s42452-020-2812-2
  129. V. Garg, H. Sharma, D. Rehani, R. Kumari, V. Kumar, M.K. Tiwari, M. Saxena, Synthesis and Characterization of Temperature Controlled SnO2 Nanoparticles by Solid-state Reaction Method, Journal of Nano- and Electronic Physics 12 (4), 04004 (2020).
  130. https://doi.org/10.21272/jnep.12(4).04004
  131. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Mater. Chem. Phys., 239 (2020) 122021. https://doi.org/10.1016/j.matchemphys.2019.122021.
  132. M. A. Islam, A. K. M. Akther Hossain, M. Z. Ahsan, M. A. A. Bally, M. Samir Ullah, S. M. Hoque and F. A. Khan, Structural characteristics, cation distribution, and elastic properties of Cr3+ substituted stoichiometric and non-stoichiometric cobalt ferrites, RSC Adv., 12 (2022) 8502-8519.
  133. https://doi.org/10.1039/D1RA09090A.
  134. A. Sahai, N. Goswami, Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method, Phys E : Low-Dimens. Syst. Nanostructures, 58 (2014) 130–137. https://doi.org/10.1016/j.physe.2013.12.009.
  135. Y. Zhu, A. Bao, B. Na, G. Su, J. Wang, and J. Lang, A cyclic voltammetry and PM6 semi-empirical molecular orbital method study of the capacity behaviour of an aluminum-8-hydroxyquinoline complex modified carbon paste electrode, RSC Adv., 7 (2017)3586-3593.
  136. https://doi.org/10.1039/C6RA26805F.
  137. N. Knoblauch, L. Do¨rrer, P. Fielitz, M. Schmu¨ckera and G. Borchardt, Surface controlled reduction kinetics of nominally undoped polycrystalline CeO2. Phys. Chem. Chem. Phys., 17 (2015) 5849-5860.
  138. DOI: 10.1039/c4cp05742b.
  139. Z.T. Ichlas, R.A. Rustandi, M.Z. Mubarok, Selective nitric acid leaching for recycling of lead-bearing solder dross. Journal of Cleaner Production 264 (2020) 121675.
  140. https://doi.org/10.1016/j.jclepro.2020.121675
  141. C.W. Raubach, L. Polastro, M.M. Ferrer, A. Perrin, C. Perrin, A.R. Albuquerque, P.G.C. Buzolin, J. R. Sambrano, Y.B. V. de Santana, J.A. Varela, E. Longo, Influence of solvent on the morphology and photocatalytic properties of ZnS decorated CeO2 nanoparticles J. Appl. Phys. 115 (2014) 213514.
  142. https://doi.org/10.1063/1.4880795
  143. A. K. Zak, W.H. Abd, M.E. Majid, R. A. Yousefi, Solid State Sci., 13 (2011) 251–256.
  144. doi: 10.1016/j.solidstatesciences.2010.11.024.
  145. A. K. Zak, W.H. Abd, M.E. Majid, R. A. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sci., 13 (2011) 251–256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024.
  146. J.D. Rodney, S. Deepapriya, P.A.. Vinosha, S. Krishnan, S. J. Priscilla, R. Daniel, S.J. Das, Photo-Fenton degradation of nano-structured La-doped CuO nanoparticles synthesized by combustion technique, Optik, 161 ( 2018) 204–216. https://doi.org/10.1016/j.ijleo.2018.01.125.
  147. M.S. Hossain, M. Mahmud, M.B. Mobarak, S. Ahmed, Crystallographic analysis of biphasic hydroxyapatite synthesized by different methods: an appraisal between new and existing models, Chem. Pap., 76 (2022) 1593–1605. https://doi.org/10.1007/s11696-021-01949-5.
  148. E. Abdelkader, L. Nadjia, B. Naceur,L. Favier-Teodorescu, Thermal, structural and optical properties of magnetic BiFeO3 micron-particles synthesized by coprecipitation method: heterogeneous photocatalysis study under white LED irradiation, Cerâmica, 68 (2022) 84-96.
  149. https://doi.org/10.1590/0366-69132022683853181.
  150. A. Ayeshamariam, V. S. Vidhya, S. Sivaranjani, M. Bououdina, R. PerumalSamy, and M. Jayachandran, Synthesis and Characterizations of SnO2 Nanoparticles, Nanoelectronics and Optoelectronics, 8 (2013) 1-8. doi:10.1166/jno.2013.1471.
  151. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Mater. Chem. Phys., 239 (2020). 122021. https://doi.org/10.1016/j.matchemphys.2019.122021.
  152. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys., 8 (2014) 123–132.
  153. DOI : 10.1007/s40094-014-0141-9.
  154. I-T. Liu, M-H. Hon and L. Gaik Teoh, The Synthesis, Characterization and Optical Properties of Nanocrystallined Cerium Dioxide by the Hydrothermal Method. Materials Transactions, 58 (3) (2017) 505-508. doi:10.2320/matertrans.M2016285
  155. K. Balakrishnan, N. Murugesan, Synthesis and characterization of SnO2 nanoparticles by co-precipitation method. Int. J. Nano Dimens., 12 (1) (2021)76-82.
  156. http://creativecommons.org/licenses/by/4.0/
  157. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, G Janusas, Nanomaterials, 10 (2020) 1627. https://doi.org/10.3390/nano10091627.
  158. M. Bin Mobarak,. M. Sahadat Hossain, F. Chowdhury, . S. Ahmed, Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters, Arabian Journal of Chemistry, 15 (2022) 104117. https://doi.org/10.1016/j.arabjc.2022.104117.
  159. Monshi, A.; Messer. P.F. Ratio of slopes method for quantitative X-ray diraction analysis. J. Mater. Sci., 26 (1991) 3623–3627.
  160. https://doi.org/10.1007/BF00557154.
  161. M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles, Int. Mater. Rev., 41 (1996) 85–115. https://doi.org/10.1179/imr.1996.41.3.85.
  162. N. Rani. S. Chahal, A.S. Chauhan, P. Kumar, R. Shukla, S.K. Singh, X-ray Analysis of MgO Nanoparticles by Modified Scherer’s Williamson-Hall and Size-Strain Method, Materials Today: Proceedings, 12 (2019) 543–548. https://doi.org/10.1016/j.matpr.2019.03.096.
  163. R. Jacob and J. Isac, X-ray diffraction line profile analysis of Ba0.6Sr0.4FexTi(1-x) O3-δ, (x=0.4). Int. J. Chem. Stud., 2 (5) (2015) 12–21.
  164. V.D. Mote. Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized
  165. ZnO particles, J. Theor. Appl. Phys., 6 (2012).
  166. https://doi.org/10.1186/2251-7235-6-6.
  167. P. Vasudevan, Biogenic synthesis of Cerium oxide nanoparticles using Justicia Adathoda leaves extract: Size-strain study by X-ray peak profile analysis and luminescence characteristics. Journal of Molecular Structure, 1272 (2023) 134144.
  168. https://doi.org/10.1016/j.molstruc.2022.134144
  169. T. Amutha, M. Rameshbabu, S. Muthupandi, K. Prabha, Theoretical comparison of lattice parameter and particle size determination of pure tin oxide nanoparticles from powder X-ray diffraction. Materials Today: Proceedings, 49 (2022) 2624–2627.
  170. https://doi.org/10.1016/j.matpr.2021.08.044
  171. M. Isik, S. Delice, N.M. Gasanly,Temperature dependence of band gap of CeO2 nanoparticle photocatalysts. Physica E, 150 (2023) 115712.
  172. https://doi.org/10.1016/j.physe.2023.115712
  173. S. Adachi, Handbook on Physical Properties of Semiconductors, Springer: New York. NY. USA. 2004.
  174. https://doi.org/10.1007/1-4020-7821-8.
  175. N. J. Tamanna, M. S. Hossain, N. M. Bahadur, S. Ahmed, Green synthesis of Ag2O & facile synthesis of ZnO and characterization using FTIR, bandgap energy & XRD (Scherrer equation, Williamson-Hall, size-train plot, Monshi- Scherrer model), Results in Chemistry, 7 (2024) 101313.
  176. https://doi.org/10.1016/j.rechem.2024.101313.
  177. K.A. Aly, N.M. Khalil, Y. Algamal, .Q.M.A. Saleem, Lattice strain estimation for CoAl2O4 nano particles using Williamson-Hall analysis, Journal of Alloys and Compounds, 676 (2016) 606-612.
  178. https://doi.org/10.1016/j.jallcom.2016.03.213.
  179. Y. Canchanya-Huaman, A.F. Mayta-Armas, J. Pomalaya-Velasco, Y. Bendezú-Roca . J. Andres Guerra and J. A. Ramos-Guivar, Strain and Grain Size Determination of CeO2 and TiO2 Nanoparticles: Comparing Integral Breadth Methods versus Rietveld, μ-Raman, and TEM, Nanomaterials, 11 (2021) 2311. https://doi.org/10.3390/nano11092311.
  180. Md. Sahadat Hossain, S. Ahmed, Easy and green synthesis of TiO2 (Anatase and Rutile): Estimation of crystallite size using Scherrer equation, Williamson-Hall plot, Monshi-Scherrer Model, size-strain plot, Halder- Wagner Model, Results in Materials, 20 (2023) 100492.
  181. https://doi.org/10.1016/j.rinma.2023.100492
  182. Y. Canchanya-Huaman, A. F. Mayta-Armas, J. Pomalaya-Velasco, Y. Bendezú-Roca, J. A. Guerra and J. A. Ramos-Guivar. Strain and grain size of CeO2 and TiO2 nanoparticles: Comparing structural and morphological methods, Nanomaterials, 11 (2021) 2311.
  183. https://doi.org/10.3390/nano11092311
  184. A. Verma, U. Kumar, P. Chaudhary, B.C. Yadav, Investigation on structural and optical properties of porous SnO2 nanomaterial fabricated by direct liquid injection chemical vapour deposition technique. Solid State Communications, 348-349 (2022) 114723.
  185. https://doi.org/10.1016/j.ssc.2022.114723
  186. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolframL'elargissement des raies de rayons x obtenues des limailles d'aluminium et de tungsten, Acta Metall., 1 (1953) 22–31. https://doi.org/10.1016/0001-6160(53)90006-6.
  187. K. Arjunan ,R. Ramesh Babu, Facile Homemade Spray Pyrolyzed (SnO2)1‑x(CeO2)x Composite Thin Films for Visible Light Photocatalysis Application. Ionics, 29 (2023) 4797–4816.
  188. https://doi.org/10.1007/s11581-023-05160-2
  189. M. Jarvin, S.S.R. Inbanathan, D. Rani Rosaline, A. Josephine Prabha,S.A. Martin Britto Dhas, A study of the structural, morphological, and optical properties of shock treated SnO2 nanoparticles: removal of Victoria blue dye. Heliyon 8 (2022) e09653.
  190. https://doi.org/10.1016/j.heliyon.2022.e09653
  191. Q. Yousefi, A. Nezamzadeh-Ejhieh. A comprehensive study on RSM optimization of the influencing variables on loading/releasing of ciprofloxacin onto/from magnetic iron nanoparticles. Solid State Sciences 154, 107584 (2024)
  192. DOI: 10.1016/j.solidstatesciences.2024.107584
  193. D. Balzar, H. Ledbetter, Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks, J. Appl. Crystallogr., 26 (1) (1993) 97–103.
  194. https://doi.org/10.1107/S0021889892008987.
  195. M. Basak, L. Rahman, F. Ahmed, B. Biswas, N. J. Sharmin, The use of X-ray Diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: different precipitating agent approach, J.Alloys Compd., 895 (2021) 162694.
  196. doi : 10.1016/j.jallcom.2021.162694.
  197. S. Rani, S. Verma, B. Sharma, S. Kumar, Tuning of structural, optical/ spectral and thermal properties of cubic CeO2 nanoparticles via incorporation of zirconia. Physica B, 661 (2023) 414922. https://doi.org/10.1016/j.physb.2023.414922
  198. P. ˇSimonov´a, W. Pabst, J. Cibulkov´, Crystallite size of pure tin oxide ceramics and its growth during sintering determined from XRD line broadening – A methodological case study and a practitioners’ guide. Ceramics International, 47 (2021) 35333–35347.
  199. https://doi.org/10.1016/j.ceramint.2021.09.076
  200. L. Motevalizadeh, Z. Heidary, M.E. Abrishami, Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods, Bull Mater. Sci., 37(2014) 397–405.
  201. https://doi.org/10.1007/s12034-014-0676-z.
  202. N. Fifere , R. Ardeleanu , F. Doroftei , M. Dobromir and A. Airinei, Tailoring the Structural and Optical Properties of Cerium Oxide Nanoparticles Prepared by an Ecofriendly Green Route Using Plant Extracts. Int. J. Mol. Sci., 25 (2024) 681.
  203. https://doi.org/10.3390/ijms25010681
  204. S. Sarkar, R. Das, Shape effect on the elastic properties of Ag nanocrystals, Lett., 13 (3) (2018) 312–315. doi:10.1049/mnl.2017.0349.
  205. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxlert, P. Sherrell, A. Nattestad, , J. Chen, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/ TiO2 films, J. Colloid. Interf. Sci., 417 (2014) 402-409. https://doi.org/10.1016/j.jcis.2013.11.072
  206. S. Valencia. J.M. Marin, G. Restrepo, Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment, Open Mater. Sci. J., 4 (2010) 9-14. doi: 10.2174/1874088X01004010009.
  207. A.M. Abdulkarem, J. Li, A.A. Aref, L. Ren, E.M. Elssfah, H. Wang, Y. Ge, Y. Yu, CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties, Mater Res Bull., 46
  208. (2011) 1443–1450.
  209. https://doi.org/10.1016/j.materresbull.2011.05.005.
  210. K. Yang, D.F. Li W.Q., Huang X. Liang G.F. Huang S.C. Wen, Origin of enhanced visible-light photocatalytic activity of transition-metal (Fe, Cr and Co)-doped CeO2: effect of 3d orbital splitting, Appl. Phys. A., 123 (2017) 1-11 https://doi.org/10.1007/s00339-016-0700-9.
  211. S. Moeen, M. Ikram, A. Haider, J. Haider, A. Ul-Hamid, W. Nabgan, T. Shujah, M. Naz, and I. Shahzadi, Comparative Study of Sonophotocatalytic, Photocatalytic, and Catalytic Activities of Magnesium and Chitosan-Doped Tin Oxide Quantum Dots. ACS Omega, 7 (2022) 46428−46439 .
  212. https://doi.org/10.1021/acsomega.2c05133
  213. M.R. Gholipour, C.T. Dhin, F. Béland, T.O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale., 7 (2015) 8187-8208 https://doi.org/10.1039/C4NR07224C.
  214. A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: Enhanced visible-light photocatalytic performance through p-n heterojunctions, Separation and Purification Technology, 184 (2017) 334-346. https://doi.org/10.1016/j.seppur.2017.05.007.
  215. J.D. Rodney, S. Deepapriya, P.A. Vinosha, S. Krishnan, S. J., Priscilla, R., Daniel, S.J., Das, Photo-Fenton degradation of nano-structured La doped CuO nanoparticles synthesized by combustion technique, Optik, 161 ( 2018) 204–216. https://doi.org/10.1016/j.ijleo.2018.01.125.
  216. M.S. Hossain, M. Mahmud, M.B. Mobarak, S. Ahmed, Crystallographic analysis of biphasic hydroxyapatite synthesized by different methods: an appraisal between new and existing models, Chem. Pap., 76, 1593–1605 (2022). https://doi.org/10.1007/s11696-021-01949-5.
  217. M. Farsi , A. Nezamzadeh-Ejhieh, A Z-scheme Cobalt(II) oxide-silver tungstate nano photocatalyst: Experimental design and mechanism study for the degradation of methylene blue. Surfaces and Interfaces 32 (2022) 102148. https://doi.org/10.1016/j.surfin.2022.102148
  218. A. Sahai, N. Goswami, Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method, Phys. E: Low Dimens. Syst. Nanostruct., 58, (2014) 130–137. https://doi.org/10.1016/j.physe.2013.12.009.
  219. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study, Mater. Chem. Phys., 239 (2020) 122021
  220. https://doi.org/10.1016/j.matchemphys.2019.122021.
  221. K. Vasanth Kumar, K. Porkodi, F. Rocha, Langmuir–Hinshelwood kinetics – a theoretical study, Catal. Commun. 9 (2008) 82–84.
  222. doi:10.1016/j.catcom.2007.05.019
  223. N. Laouedj, A. Elaziouti, N. Benhadria A. Bekka, CeO2 nanoscale particles: Synthesis, characterization and photocatalytic activity under UVA light irradiation, Journal of Rare Earths, 36 (2018) 575-587 https://doi.org/10.1016/j.jre.2018.01.004.
  224. D. Majumder, I. Chakraborty, K. Mandal, and S. Roy, Facet-Dependent Photodegradation of Methylene Blue Using Pristine CeO2 Nanostructures, ACS Omega, 4 (2019) 4243−4251.
  225. DOI: 10.1021/acsomega.8b03298
  226. Qi. Zhang, Q. Ma, J. Guo, H. Li , Y. Wang , X. Wang, Surface oxygen vacancies modified ridge-like CeO2/ZnO nanobelts for enhancing photocatalytic activity. Chemical Physics Letters, 791 (2022) 139376.
  227. https://doi.org/10.1016/j.cplett.2022.139376
  228. Li. Kalita, K. Sonowal, P. Basyach, B. Saha, and L. Saikia, Multifunctional CdS Nanoparticle-Decorated CeO2 as EfficientVisible Light Photocatalysts and Toxic Cr(VI) Sensors, ACS Omega 8 (2023) 11768−11781. https://doi.org/10.1021/acsomega.2c05811
  229. E. Nurhidayah1, A. Herman Yuwono, F. Septiningrum, F. Akbar Maulana, D. Dhaneswara, N. Sofyan1, A. Intan Pangesty and A. Noviyanto, Optimizing the photocatalytic performance of SnO2 nanoparticles for methylene blue removal with variation in calcination temperatures, E3S Web of Conferences 4 (88) (2024) 02016.
  230. https://doi.org/10.1051/e3sconf/202448802016
  231. Y. Etafa Tasisa, T. Kumar Sarma, T. Kumar Sahu & R. Krishnaraj, Phytosynthesis and characterization of tin‑oxide nanoparticles (SnO2‑NPs) from Croton macrostachyus leaf extract and its application under visible light photocatalytic activities, Scientific Reports 14 (2024) 10780.
  232. https://doi.org/10.1038/s41598-024-60633-2
  233. J.Wang, H. Fana, H. Yu, Synthesis of hierarchical flower-like SnO2 nanostructures and their photo-catalytic properties, Opt. Int. J. Light Electron Opt. 127 (2016). 580–584.
  234. http://dx.doi.org/10.1016/j.ijleo.2015.10.104
  235. R. B. Rajput and R. B. Kale, Solvothermally synthesized oxygen-deficient SnO2 for the degradation of methyl orange dye under sunlight and LED light irradiation, Res. Chem. 4(2022) 100530.
  236. https://doi.org/10.1016/j.rechem.2022.100530
  237. M. Honarmand, M. Golmohammadi, A. Naeimi, Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes. Advanced Powder Technology 30 (2019) 1551–1557. https://doi.org/10.1016/j.apt.2019.04.033
  238. I. Buniyamin, K. Alvin Eswar, N. Asnida Asli, M. Faizal Abd Halim, Z. Khusaimi, M.Rusop Mahmood, Bio-synthesized Tin Oxide Nanoparticles (SnO2 NPs) as a Photocatalyst Model, Malaysia Journal of Invention and Innovation (MJII) 2 ( 3)(2023). DOI: 10.5281/zenodo.7800382
  239. A. Diallo, E. Manikandan, V. Rajendran, M. Maaza, Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis, Journal of Alloys and Compound 681 (2016) 561-570.
  240. https://doi.org/10.1016/j.jallcom.2016.04.200
  241. E. Haritha, Selvaraj Mohana Roopan, G. Madhavi, G. Elango,Naif Abdullah Al-Dhabi, Mariadhas Valan Arasu,Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies Journal of Photochemistry & Photobiology, B: Biology 162 (2016) 441–447.
  242. http://dx.doi.org/10.1016/j.jphotobiol.2016.07.010
  243. J. Wang, H. Fanand H. Yu, Synthesis of Hierarchical SnO2 Microflowers Assembled by Nanosheets and Their Enhanced Photocatalytic Properties. Materials Transactions (2015).
  244. doi:10.2320/matertrans.M2015287
  245. A. Phuruangrat, S. Thongtem, T.Thongtem, Microwave-assisted hydrothermal synthesis and characterization of CeO2 nanowires for using as a photocatalytic material. Mater. Lett. 196 (2017) 61–63.
  246. DOI: 10.1016/j.matlet.2017.03.013
  247. S. Tambat, S. Umale, S. Sontakke, Photocatalytic degradation of Milling Yellow dye using sol-gel synthesized CeO2. Mater. Res. Bull. 76 (2016) 466–472.
  248. https://doi.org/10.1016/j.materresbull.2016.01.010
  249. M. Aslam, M.T. Qamar, M.T. Soomro, I.M.I. Ismail, N. Salah, T. Almeelbi, M.A. Gondal, A. Hameed, The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives. Appl. Catal. B Environ. 180 (2016) 391–402.
  250. DOI: 10.1016/j.apcatb.2015.06.050
  251. X. Zheng, S. Huang, D. Yang, H. Zhai, Y. You, X. Fu, J. Yuan, X. Zhou, J. Wen, Y. Liu, Synthesis of X-architecture CeO2 for the photodegradation of methylene blue under UV-light irradiation. J. Alloys Compd. 705 (2017) 131–137.
  252. DOI: 10.1016/j.jallcom.2017.02.110
  253. Á. Guzmán Aponte, M. A Llano Ramírez, Y. Cadavid Mora, J. F Santa Marín and R. Buitrago Sierra, Cerium oxide nanoparticles for color removal of indigo carmine andmethylene blue solutions, AIMS Materials Science, 7(4) (2020) 468–485.
  254. DOI: 10.3934/matersci.2020.4.468
  255. K. Milenova, K. Zaharieva, I. Stambolova, V. Blaskov, A. Eliyas, L. Dimitrov, Photocatalytic performance of TiO2, CeO2, ZnO AND TiO2-CeO2-ZnO in the cource of Methyl orange dye de’gradation, Journal of Chemical Technology and Metallurgy 52 (1) ( 2017) 13-19.
  256. G. Ramanathan, S. Vinoth Rathan, K. R. Murali, Photocatalytic activity of biosynthesized CeO2 nano particles,
  257. SN Applied Sciences 1 (2019)116. https://doi.org/10.1007/s42452-018-0103-y
  258. P.K. Sane, S.Tambat, S. Sontakke, P. Nemade,Visible light removal of reactive dyes using CeO2 synthesized by precipitation, Journal of Environmental Chemical Engineering 6 (2018) 4476–4489 https://doi.org/10.1016/j.jece.2018.06.046
  259. R.A. C. Amoresi, R. C. Oliveira, N. L. Marana, P. B. de Almeida, P.S. Prata, M. A. Zaghete, E. Longo, J.R. Sambrano,and A. Z. Simões, CeO2 Nanoparticle Morphologies and Their Corresponding Crystalline Planes for the Photocatalytic Degradation of Organic Pollutants, ACS Appl. Nano Mater. 2 (2019) 6513−6526. https://doi.org/10.1021/acsanm.9b01452