10.57647/j.ijc.2024.1404.40

Anatase- Brookite Mixed Phase Tio2 Nanoparticles for The Photocatalytic Degradation of Methylene Blue

  1. Nanophotonics Laboratory, Department of Physics, Mar Ivanios College (Autonomous), Thiruvananthapuram, Kerala, India
Anatase- Brookite mixed phase TiO2 nanoparticles for the photocatalytic degradation of methylene blue

Received: 2024-05-29

Revised: 2024-08-15

Accepted: 2024-09-07

Published 2024-10-08

How to Cite

MONISHA , M. S., & Sreeja, R. (2024). Anatase- Brookite Mixed Phase Tio2 Nanoparticles for The Photocatalytic Degradation of Methylene Blue . Iranian Journal of Catalysis, 14(4), 1-17. https://doi.org/10.57647/j.ijc.2024.1404.40

PDF views: 66

Abstract

Herein, we report visible light active, efficient, simple, bi-phasic photocatalyst composed of anatase-brookite mixed phase, crystalline TiO2 nanoparticles synthesized through a simple sol-gel approach. The physicochemical characteristics of the nanoparticles were established through characterization tools such as XRD, FESEM, EDS, TEM, DRS, FT-IR, XPS, Raman, PL, and TGA.  Visible light-driven degradation of methylene blue (MB) dye was observed, which was confirmed through the improvement in the rate constant compared to that in UV exposure. This can be attributed to the prolonged charge separation resulting from the anatase-brookite junction effect. The free radicals generated (superoxide anions and hydroxyl radicals) after the incidence of light are responsible for the photocatalytic degradation of the MB, whose influence was validated through the scavenger method. The generation of degradation intermediates were verified through LC-MS-MS analysis. The nanoparticles showed maximum photocatalytic performance in the basic pH conditions. The recyclability of the photocatalyst was also established. The enhanced activity resulting from the combined effect of anatase-brookite phases of TiO2 in the nanoformulation will enable its potential use as a vital, visible light active, eco-friendly bi-phasic photo catalyst offering low-cost environment remediation in a short period of time using the minimum quantity of photocatalyst. 

Research Highlights

  • Sol gel derived, nano sized, visible light active, recyclable, anatase- brookite bi-phasic TiO2 photocatalyst
  • Enhanced activity resulting from brookite-anatase junction effect
  • Visible light driven photocatalytic decomposition of Methylene Blue dye
  • Highest photocatalytic performance in the basic pH condition
  • Low-cost environment remediation in a short period of time using minimum quantity of photocatalyst.

Keywords

  • Anatase- brookite mixed phase,
  • Methylene Blue,
  • Photocatalysis,
  • TiO2 nanoparticles,
  • Sol-gel method

References

  1. M.F. Hanafi, N. Sapawe, Mater. Today.31 (2020) A141-A150. doi: 10.1016/j.matpr.2021.01.258.
  2. M. Malhotra, K. Poonia, P. Singh, A.A.P. Khan, P. Thakur, P. Raizada, J. Taiwan Inst. Chem. Eng.158 (2024) 1876-1070. doi: 10.1016/j.jtice.2023.104945.
  3. A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. catal. 11(3) (2021) 247-259.
  4. G. M Meselhy, M. Y Nassar, I. M Nassar, & S. H. Seda, (2024). Materials Research Innovations, 1–9. doi:10.1080/14328917.2024.2304927
  5. H. Yousef, Benha J. appl. sci. 8(6) (2023) 49-60.doi: 10.21608/BJAS.2023.215490.1182.
  6. M. Y. Nassar, E. I. Alia and E. S. Zakaria, RSC Adv. 7 (2017) 8034-8050.
  7. M. Andrade-Guel, L. Diaz-Jimenez, D. Cortes-Hernandez, Bol. Soc. Esp. Ceram. Vidr. 58 (4) (2018) 171–177. doi: 10.1016/j.bsecv.2018.10.005.
  8. A. M. Alotaibi, S Sathasivam, B. A. D. Williamson, A. Kafizas, C. Sotelo-Vazquez, A.Taylor, D. O. Scanlon, I. P. Parkin, Chem. Mater. 30 4 (2018) 1353–1361. doi: 0.1021/acs.chemmater.7b04944.
  9. M. Honda, T. O. P. Listiani, Y. Yamaguchi and Y. Ichikawa, Materials 16(2) (2023) 639. doi :10.3390/ma16020639.
  10. R. Desai, S. K. Gupta, S. Mishra, P. K. Jha, and A. Pratap, Int. J. Nanosci 10(6) (2011) 1249–1256. doi :10.1142/S0219581X11008381.
  11. M. A. Behnajady, H. Eskandarloo, N. Modirshahla, and M. Shokri, Desalination. 278 (2011) 10–17. doi: 10.1016/j.desal.2011.04.019.
  12. D. K. Muthee, B. F. Dejene, Heliyon. 7 (2021). doi: 10.1016/j.heliyon. 2021.e07269.
  13. A. Purabgola, N. Mayilswamy, & B. Kandasubramanian, Environ Sci Pollut Res 29. (2022) 32305–32325. doi:10.1007/s11356-022-18983-9.
  14. P. Dhull, A. Sudhaik, V. Sharma, P. Raizada, V. Hasija, N. Gupta, T. Ahamad, V.H. Nguyen, A. Kim, M. Shokouhimehr, and S.Y. Kim, Mol. Catal. 539 (2023) 2468-8231. doi: 10.1016/j.mcat.2023.113013.
  15. A. Bembibre, M. Benamara, M. Hjiri, E. Gómez, H.R. Alamri, R. Dhahri, and A. Serra, J. Chem. Eng. 427 (13) (2006) 1385-8947. doi: 10.1016/j.cej.2021.132006.
  16. DR Eddy, MD Permana, LK Sakti, GAN Sheha, Solihudin, S Hidayat, T Takei, N Kumada, I. Rahayu, Nanomaterials. 2023; 13(4):704. doi:10.3390/nano13040704.
  17. G Nagaraj, R A Senthil and K Ravichandran, Mater. Res. Express. 6095049 (2019). doi:10.1088/2053-1591/ab2eec.
  18. T. Tio (2014) Chem. Rev. 9281–9282. doi:10.1021/cr500422r.
  19. L. A. Kolahalam, I. V. Kasi Viswanath, B. S. Diwakar, B. Govindh, V. Reddy, and Y. L. N. Murthy, Mater. Today Proc. 18 (2019) 2182–2190. doi: 10.1016/j.matpr.2019.07.371.
  20. M. T. Noman, M. A. Ashraf, and A. Ali, Environ. Sci. Pollut. Res. 26 (4) (2019) 3262–3291.
  21. M. A. Irshad, Ecotoxicol. Environ. Saf. 212 (2021) doi: 10.1016/j.ecoenv.2021.111978.
  22. T. Luttrell, S. Halpegamage, J. Tao, Sci Rep 4043 (2014) doi:10.1038/srep04043.
  23. P. Szoldra, M. Frac, R. Lach, L. Zych, M. Radecka, A. Trenczek-Zając, W. Pichor, Mater. Sci. Eng. B. 287 (2024) doi: 10.1016/j.mseb.2022.116104.
  24. A.A. Ismail, T.A. Kandiel, D.W. Bahnemann J. Photochem. Photobiol. A Chem. 216 (2010) 183-193. doi: 10.1016/j.jphotochem.2010.05.016.
  25. J.C. Yu, J. Yu, W. Ho, L. Zhang, Chem. Commun. (2001) doi:10.1039/B105471F.
  26. O. Toshiaki, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, and S. Ito, J. Colloid Interface Sci. 281.2 (2005) 510–13. doi: 10.1016/j.jcis.2004.08.137.
  27. A.D. Paola, M. Bellardita, L. Palmisano, Catalysts 3 (2013) 36-73. doi:10.3390/catal3010036.
  28. P.O. Oladoye, T.O. Ajiboye, E.O. Omotola, & O.J. Oyewola, Results Eng. (2022) 2590-1230. doi: 10.1016/j.rineng.2022.100678.
  29. W. Nachit, S. Touhtouh, Z. Ramzi, M. Zbair, A. Eddiai, M. Rguiti, A. Bouchikhi, 627 ICFPAM (2015). doi:10.1080/15421406.2015.1137135.
  30. M. A. Khan, M. S. Akhtar, O. B. Yang, Sol. Energy 84. (2010) 2195-2201. doi: 10.1016/j.solener.2010.08.008.
  31. J. J. Park, D. Y. Kim, J. G. Lee, Y. H. Cha, M. T. Swihart, S. S. Yoon, RSC Advances 4 (2014) 8661-8670. doi:10.1039/C3RA47998F.
  32. A. K. Tripathi, M. K. Singh, M. C. Mathpal, S. K. Mishra, A. Agarwal, J. Alloys Compd. 549 (2013) 114-120. doi: 10.1016/j.jallcom.2012.09.012.
  33. A. L. Patterson, Phys. Rev.56 (1939) 978-982. doi: 10.1103/PhysRev.56.978.
  34. P. Bindu, S. Thomas, J Theor Appl Phys 8 (2014) 123–134. doi: 10.1007/s40094-014-0141-9.
  35. M. Saleem, L. Fang, H.B. Ruan, F. Wu, Q.L. Huang, C.L Xu, C.Y Kong: Intl. J. Phy. Sci. 7(23) (2012) 2971–2979. doi: 10.5897/IJPS12.219.
  36. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104 (2000) 3481–3487.doi :10.1021/jp000499j.
  37. G. K. Williamson and W. H. Hall, Acta Metall. 1 (1953) 22-31. doi: 10.1016/0001-6160(53)90006-6.
  38. V. D. Mote, Y. Purushotham, B. N. Dole, J. Theor. Appl. Phys. 6:6 (2012). doi:10.1186/2251-7235-6-6.
  39. G. Rajender, P.K. Giri, J. Alloys Compd. 676 (2016) 591-600. doi: 10.1016/j.jallcom.2016.03.154.
  40. A. Maurya, P. Chauhan, S. K. Mishra, R. K. Srivastava, J. Alloys Compd. 509 (2011) 8433- 8440. doi: 10.1016/j.jallcom.2011.05.108.
  41. B. Choudhury and A. Choudhury, Int. Nano Lett. 3 (2013) 3-55. doi:10.1186/2228-5326-3-55.
  42. M.K. Hossain, M.F. Pervez, M.N.H. Mia, S. Tayyaba, M.J. Uddin, R. Ahamed, Mater. Sci. 35 (2017) 868–877. doi: 10.1515/msp-2017-0082.
  43. A. Sharma, R.K. Karn, and S. K. Pandiyan, J Basic Appl Eng Res.1(9) (2014) 1–5.
  44. P. Kubelka, Josa. 38(5) (1948) 448-457. doi:10.1364/JOSA.38.000448.
  45. B. D. Viezbicke, S. Patel, B. E. Davis, D. P. Birnie III, Physica status solidi (b). 252(8) (2015) 1700-1710. doi:10.1002/pssb.201552007.
  46. A. Kubiak, K. Siwińska-Ciesielczyk, Z. Bielan, et al. Adsorption 25, 309–325 (2019). doi:10.1007/s10450-019-00011-x.
  47. J. Coates, EAC. 12, (2000) 10815-10837.
  48. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, J. Alloys Compd. 553 (2013) 19–29. doi: 10.1016/j.jallcom.2012.10.038.
  49. M. Ruidiaz-Martinez, M.A. Alvarez, M.V. LOpez-RamOn, G. Cruz-Quesada, J. Rivera-Utrilla, M. Sanchez-Polo, Catalysts 2020, 10, 520. doi:10.3390/catal10050520.
  50. M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7 (2012) 4871- 4888. doi:10.1016/S1452-3981(23)19588-5.
  51. V. K. S. Rhatigan, S. Mathew, M. C. Michel, J. Bartlett, M. Nolan, S. J. Hinder, A. Gasco, C. Ruiz-Palomar, D. Hermosilla, JPhys Materials, 3(2) (2020). doi:10.1088/2515-7639/ab749c.
  52. C. C. Mercado, F. J. Knorr, J. L. McHale, S. M. Usmani, A. S. Ichimura and L. V. Saraf, J. Phys. Chem. C. 116 (2012) 10796-10804. doi:10.1021/jp301680d.
  53. M. S. F.A. Zamri, N. Sapawe, Mater. Today: Proc. 19 (2019) 1321–1326. doi:10.1016/j.matpr.2019.11.144.
  54. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79 (1996) 7983-7990. doi:10.1063/1.362349.
  55. T. Ohsaka, J. Phys. Soc. Jpn. 48 (1980) 1661–1668. doi:10.1143/JPSJ.48.1661.
  56. C.A Chen , A. Korotcov, Ying-Sheng Huang, W. H. Chung, D. S. Tsai, K. K. Tiong, J. Mater. Sci.: Mater. Electron. 20 (2009) 332-335. doi:10.1007/s10854-008-9611-7
  57. C. A. Chen, Y.S. Huang, W.H. Chung, J. Mater. Sci.: Mater. Electron. 20 (2009) 303-306. doi:10.1007/s10854-008-9595-3.
  58. M. Rezaee, S Mohammad, M. Khoie and K. H. Liub, Cryst Eng Comm 13(16) (2011) 5055-5061. doi:10.1039/C1CE05185G.
  59. R. Desai, S. K. Gupta, S. Mishra, P. K. Jha, and A. Pratap, Int. J. Nanosci.10(6) (2011) 1249–1256. doi:10.1142/S0219581X11008381.
  60. S. Gayathri, M. Kottaisamy, V Ramakrishnan, AIP Adv. 5. 127219 (2015). doi: 10.1063/1.4938544.
  61. W. Xie, R. Li, & Q. Xu, Sci. Rep. 8, 8752 (2018). doi:10.1038/s41598-018-27135-4.
  62. T. Park, W.C. Back, S.S. Mitchel, S. Kim, J. Elhamri, S.B. Boeckl, R. Fairchild, R. Naik and A. A. Voevodin, Sci. Rep 5 (2015) 14374. doi:org/10.1038/srep14374.
  63. K. Song, J. Gou, L. Yang and C. Zeng, Catal Lett 153, (2023) 534–543. doi:10.1007/s10562-022-03997-2.
  64. N. Nasikhudin, M. Diantoro, A. Kusumaatmaja, K. Triyana. IOP Conf. Series: JPCS 1011 (2018) 012069. doi: 10.1088/1742-6596/1011/1/012069.
  65. N. U. Saqib, R. Adnan, and I. Shah, Environ. Sci. Pollut. Res. 23(16) (2016) 15941–15951. doi:10.1007/s11356-016-6984-7.
  66. A. Trenczek-Zajac, M. Synowiec, K. Zakrzewska, K. Zazakowny, K. Kowalski, A. Dziedzic & M. Radecka, M, ACS Appl. Mater. Interfaces., 14(33) (2022) 38255-38269. doi: 10.1021/acsami.2c06404.
  67. M.V.D. Liz, R.M.D. Lima, B.D. Amaral, B.A. Marinho, J.T. Schneider, N. Nagata, & P. Peralta-Zamora, J. Braz. Chem. Soc., 29(2) (2017) 380-389. doi:10.21577/0103-5053.20170151.
  68. M K Kesir, Z Biyiklioglu, Journal of Organometallic Chemistry, Volume 1005, 2024, 122969, ISSN 0022-328X,https://doi.org/10.1016/j.jorganchem.2023.122969.
  69. H. D. Tran, D. Q. Nguyen, P. T. Do and U. N. P. Tran, RSC Adv 13 (2023) 16915-16925. doi:10.1039/D3RA01970E.
  70. S. Singh, G. K. Sidhu, H. Singh, Indian Chem. Eng. 61 (2019) 28-39. doi: 10.1080/00194506.2017.1408431.
  71. D. Hai. Tran, D. Dinh Quan Nguyen, T. Phuong T. N.P. Do and Uyen, T. Tran, RSC Adv 13 (2023) 16915-16925.
  72. S.A. Mirsalari, & A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 122 (2021) 105455.doi: 10.1016/j.mssp.2020.105455.
  73. Z. Wang, Y. Song, X. Cai, J. Zhang, T. Tang, and S. Wen, R. Soc. Open Sci. 6(10) (2019) 191077. doi: org/10.1098/rsos.191077.
  74. T.A. Kandiel, L. Robben, A. Alkaima, D. Bahnemann, Photochem. Photobiol. Sci. 12 (2013) 602-609. doi: 10.1039/c2pp25217a.
  75. A. Kumar, M. Khan, J. He, I. M.C. Lo, Water Res. 170 (2020) 115356. doi: 10.1016/j.watres.2019.115356.
  76. O.A. Arotiba, B.O. Orimolade, Babatunde A. Koiki, Curr. Opin. Electrochem. 22 (2020) 25-34. doi: 10.1016/j.coelec.2020.03.018.
  77. J. W. Ha, T. P. A. Ruberu, R. Han, B. Dong, J. Vela, and N. Fang, J. Am. Chem. Soc 136(4) (2014) 1398–1408. doi: 10.1021/ja409011y.
  78. L. Zhu, A. S. Poyraz, C. H. Kuo, R. Miao, Y. Meng, S. Y. Chen, Chem. Mater. 27(1) (2015) 6–17. doi: 10.1021/cm5035112.
  79. C. Konstantina, F. Guo, S. Elouatik, and G. P. Demopoulos, Catalysts, 10(4) (2020) 407. doi: 10.3390/catal10040407.
  80. S. Vaclav, K. Daniela, Mater. Chem. Phys. 129 (2011) 794-801. doi: 10.1016/j.matchemphys.2011.05.006.
  81. P. Bansal, D. Singh& D. Sud, Sep. Purif. Technol. 72(3) (2010) 357-365. doi: 10.1016/j.seppur.2010.03.005.
  82. Yang, Chuanxi & Dong, Wenping & Cui, Guanwei & Zhao, Yingqiang & Shi, Xifeng & Xia, Xinyuan & Tang, Bo & Wang, Weiliang. (2017). Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO 2 nanocomposite due to the photosensitization synergetic effect of TiO 2 and P2ABSA. RSC Adv.. 7. 23699-23708. 10.1039/C7RA02423A
  83. M.F. Hanafi & N. Sapawe, Mater. Today 31(1) (2020) 260-262. doi: 10.1016/j.matpr.2020.05.746.
  84. S. Gorduk, O. Avciata & U. Avciata, Inorganica Chimica Acta 471(2018) 137-147. https://doi.org/10.1016/j.ica.2017.11.004.