10.57647/j.ijc.2024.1404.39

New Nanoparticles of NiFe2O4@SiO2 based Tungstate Interphase: a Highly Efficient and Selective Catalyst for the Oxidation of Sulfides to Sulfoxides

  1. Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
New nanoparticles of NiFe2O4@SiO2 based tungstate interphase: a highly efficient and selective catalyst for the oxidation of sulfides to sulfoxides

Received: 2024-01-31

Revised: 2024-08-31

Accepted: 2024-09-22

Published 2024-11-23

How to Cite

Mohammad Shafiee, M. R. ., Mirheidari, M. ., & Eilbeigi, , A. . (2024). New Nanoparticles of NiFe2O4@SiO2 based Tungstate Interphase: a Highly Efficient and Selective Catalyst for the Oxidation of Sulfides to Sulfoxides. Iranian Journal of Catalysis, 14(4), 1-12. https://doi.org/10.57647/j.ijc.2024.1404.39

PDF views: 55

Abstract

The study synthesized the novel recoverable alkyl ammonium tungstate (AAT) immobilized on the NiFe2O4@SiO2 solid phase (NiFe2O4@SiO2-AAT) for the selective oxidation of sulfide to sulfoxide. The catalyst has been characterized by different methods like XRD, FE-SEM, VSM, EDS, FT-IR, and TGA/DTA. The XRD pattern shows the distinctive peaks related to the cubic phase of NiFe2O4. The catalyst also shows good magnetic characteristics (Ms=2.5 emu/g) and thermal stability (up to 280°C). This protocol displays good activity as the catalyst leads to high yields of sulfoxides (85-99% yields) and performs the green metrics as the catalyst could be recovered 10 times.

Research Highlights

  • New nanoparticles of NiFe2O4@SiO2-based tungstate interphase were prepared.
  • The as-prepared nanoparticles were used for the selective oxidation of sulfides to sulfoxides.
  • The catalyst has been characterized by different methods like XRD, FE-SEM, VSM, EDS, and TGA/DTA.
  • The results revealed high-yield oxidation products up to 99%.

Keywords

  • Magnetic core-shell,
  • NiFe2O4@SiO2,
  • Oxidation of sulfide,
  • Sulfoxide,
  • Tungstate interphase catalyst

References

  1. D.Y. Lee, H. Li, H.J. Lim, H.J. Lee, R. Jeon, J.-H. Ryu, Anti-inflammatory activity of sulfur-containing compounds from garlic. J. Med. Food 15 (2012) 992-999. DOI: https://doi.org/10.1089/jmf.2012.2275.
  2. H. Lim, K. Kubota, A. Kobayashi, T. Seki, T. Ariga, Inhibitory effect of sulfur-containing compounds in Scorodocarpus borneensis Becc. on the aggregation of rabbit platelets. Biosci. Biotech. Biochem. 63 (1999) 298-301. DOI: https://doi.org/10.1271/bbb.63.298.
  3. E. Mukwevho, Z. Ferreira, A. Ayeleso, Potential Role of Sulfur-Containing Antioxidant Systems in Highly Oxidative Environments. Molecules 19 (2014) 19376-19389. DOI: https://doi.org/10.3390/molecules191219376.
  4. M.S. Subramanian, M.S.G. Nandagopal, S. Amin Nordin, K. Thilakavathy, N. Joseph, Prevailing Knowledge on the Bioavailability and Biological Activities of Sulphur Compounds from Alliums: A Potential Drug Candidate. Molecules 25 (2020) 4111. DOI: https://doi.org/10.3390/molecules25184111.
  5. I. Fernandez, N. Khiar, Recent Developments in the Synthesis and Utilization of Chiral Sulfoxides. Chem. Rev. 103 (2003) 3651-3706. DOI: https://doi.org/10.1021/cr990372u.
  6. K. Khosravi, S. Naserifar, A. Asgari, A Chemoselective Oxidation of Sulfides to Sulfoxides and Sulfones Using Urea-2,2-Dihydroperoxypropane as a Novel Oxidant. Lett. Org. Chem. 13 (2016) 749-756. DOI: DOI: 10.2174/1570178614666161123115100.
  7. A. Padwa, W.H. Bullock, A.D. Dyszlewski, Studies dealing with the alkylation-[1,3]-rearrangement reaction of some phenylthio-substituted allylic sulfones. J. Org. Chem. 55 (1990) 955-964. DOII: https://doi.org/10.1021/jo00290a029.
  8. R.V. Kupwade, A Concise Review on Synthesis of Sulfoxides and Sulfones with Special Reference to Oxidation of Sulfides. J. Chem. Rev. 1 (2019) 99-113. DOI: https://doi.org/10.33945/SAMI/JCR.2019.1.99113.
  9. A. Taketoshi, P. Concepción, H. Garcia, A. Corma, M. Haruta, Aerobic Oxidation of Sulfides to Sulfoxides Catalyzed by Gold/Manganese Oxides. Bull. Chem. Soc. Jap. 86 (2013) 1412-1418. DOI: https://doi.org/10.1246/bcsj.20130075.
  10. M.A. Zolfigol, A. Khazaei, M. Safaiee, M. Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri, H.G. Kruger, Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature. J. Mole. Catal. A Chem. 370 (2013) 80-86. DOI: https://doi.org/10.1016/j.molcata.2012.12.015.
  11. A. Rostami, J. Akradi, A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions. Tetrahedron Lett. 51 (2010) 3501-3503. DOI: https://doi.org/10.1016/j.tetlet.2010.04.103.
  12. A. Bravo, B. Dordi, F. Fontana, F. Minisci, Oxidation of Organic Sulfides by Br2 and H2O2. Electrophilic and Free-Radical Processes. J. Org. Chem. 66 (2001) 3232-3234. DOI: https://doi.org/10.1021/jo0017178.
  13. M.G. Kermanshahi, K. Bahrami, Fe3O4@BNPs@SiO2-SO3H as a highly chemoselective heterogeneous magnetic nanocatalyst for the oxidation of sulfides to sulfoxides or sulfones. RSC Adv. 9 (2019) 36103-36112. DOI: https://doi.org/10.1039/C9RA06221A.
  14. B. Maleki, S. Hemmati, A. Sedrpoushan, S.S. Ashrafi, H. Veisi, Selective synthesis of sulfoxides and sulfones from sulfides using silica bromide as the heterogeneous promoter and hydrogen peroxide as the terminal oxidant. RSC Adv. 4 (2014) 40505-40510. DOI: https://doi.org/10.1039/C4RA06132B.
  15. H. Golchoubian, F. Hosseinpoor, Effective Oxidation of Sulfides to Sulfoxides with Hydrogen Peroxide under Transition-Metal-Free Conditions. Molecules 12 (2007) 304-311. DOI: https://doi.org/10.3390/12030304.
  16. M.-S. Mashhoori, R. Sandaroos, A. Zeraatkar Moghaddam, Design of a New Poly Imidazolium-Tagged Cobalt (II) Schiff Base Complex for Selective Oxidation of Alcohols and Sulfides in a Water Solvent. Polycycl. Arom. Compd. 42 (2022) 5067-5085. DOI: https://doi.org/10.1080/10406638.2021.1922470.
  17. R. Sandaroos, B. Maleki, S. Naderi, S. Peiman, Efficient synthesis of sulfones and sulfoxides from sulfides by cobalt-based Schiff complex supported on nano cellulose as a catalyst and Oxone as the terminal oxidant. Inorg. Chem. Commun. 148 (2023) 110294. DOI: https://doi.org/10.1016/j.inoche.2022.110294.
  18. S.M. Khatami, M. Khalaj, M. Ghashang, Alkyl Ammonium Tungstate Bonded to Fe3O4@SiO2 Nanoparticles; a highly efficient Catalyst for the Oxidation of Symmetrical Sulfides to Symmetrical Sulfoxides. Iran. J. Catal. 13 (2023), 475-485. DOI: https://doi.org/10.30495/ijc.2023.1993331.2039.
  19. M. Dehbashi, M. Aliahmad, M.R.M. Shafiee, M. Ghashang, SnO2 Nanoparticles: Preparation and Evaluation of their Catalytic Activity in the Oxidation of Aldehyde Derivatives to their Carboxylic Acid and Sulfides to Sulfoxide Analogs. Phosphorus, Sulfur Relat. Elem. 188 (2013) 864-872. DOI: https://doi.org/10.1080/10426507.2012.717139.
  20. B. Karimi, M. Ghoreishi-Nezhad, J.H. Clark, Selective Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with a Recoverable Silica-Based Tungstate Interphase Catalyst. Org. Lett. 7 (2005) 625-628. DOI: https://doi.org/10.1021/ol047635d.
  21. C. Rajkumar, B. Thirumalraj, S.-M. Chen, P. Veerakumar, S.-B. Liu, Ruthenium Nanoparticles Decorated Tungsten Oxide as a Bifunctional Catalyst for Electrocatalytic and Catalytic Applications. ACS Appl. Mater. Interfaces 9 (2017) 31794-31805. DOI: https://doi.org/10.1021/acsami.7b07645.
  22. B. Karimi, M. Khorasani, Selectivity Adjustment of SBA-15 Based Tungstate Catalyst in Oxidation of Sulfides by Incorporating a Hydrophobic Organic Group inside the Mesochannels. ACS Catal. 3 (2013) 1657-1664. DOI: https://doi.org/10.1021/cs4003029.
  23. M. Dabiri, H. Esmaielie Tavil, N. Farajinia Lehi, S. Kazemi Movahed, A. Mnachekanian Salmasi, S. Souri, Tungstate supported on magnetic ionic liquid-modified graphene oxide as an efficient and recyclable catalyst for the selective oxidation of sulfides. J. Phys. Chem. Solids 162 (2022) 110497. DOI: https://doi.org/10.1016/j.jpcs.2021.110497.
  24. F. Rajabi, E. Vessally, R. Luque, L. Voskressensky, Highly efficient and selective aqueous aerobic oxidation of sulfides to sulfoxides or sulfones catalyzed by tungstate-functionalized nanomaterial. Mol. Catal. 515 (2021) 111931. DOI: https://doi.org/10.1016/j.mcat.2021.111931.
  25. M. Jin, J. Wang, B. Wang, Z. Guo, Z. Lv, Highly effective green oxidation of aldehydes catalysed by recyclable tungsten complex immobilized in organosilanes-modified SBA-15. Micropor. Mesopor. Mat. 277 (2019) 84-94. DOI: https://doi.org/10.1016/j.micromeso.2018.10.021.
  26. A. Sedrpoushan, F. Hosseini‐Eshbala, F. Mohanazadeh, M. Heydari, Tungstate supported mesoporous silica SBA‐15 with imidazolium framework as a hybrid nanocatalyst for selective oxidation of sulfides in the presence of hydrogen peroxide. Appl. Organomet. Chem. 32 (2018) e4004. DOI: https://doi.org/10.1002/aoc.4004.
  27. S.H. Hosseini, M. Tavakolizadeh, N. Zohreh, R. Soleyman, Green route for selective gram‐scale oxidation of sulfides using tungstate/triazine‐based ionic liquid immobilized on magnetic nanoparticles as a phase‐transfer heterogeneous catalyst. Appl. Organomet. Chem. 32 (2018) e3953. DOI: https://doi.org/10.1002/aoc.3953.
  28. N. Zohreh, S.H. Hosseini, A. Pourjavadi, R. Soleyman, C. Bennett, Immobilized tungstate on magnetic poly(2-ammonium ethyl acrylamide): A high loaded heterogeneous catalyst for selective oxidation of sulfides using H2O2. J. Indust. Eng. Chem. 44 (2016) 73-81. DOI: https://doi.org/10.1016/j.jiec.2016.08.011.
  29. C.M. Tressler, P. Stonehouse, K.S. Kyler, Calcium tungstate: a convenient recoverable catalyst for hydrogen peroxide oxidation. Green Chem. 18 (2016) 4875-4878. DOI: https://doi.org/10.1039/C6GC00725B.
  30. S. Iraqui, S.S. Kashyap, M.H. Rashid, NiFe2O4 nanoparticles: an efficient and reusable catalyst for the selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Nanoscal. Adv. 2 (2020) 5790-5802. DOI: https://doi.org/10.1039/D0NA00591F.
  31. L. Sun, R. Zhang, Z. Wang, L. Ju, E. Cao, Y. Zhang, Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol–gel auto-combustion method. J. Mag. Mag. Mater. 421 (2017) 65-70. DOI: https://doi.org/10.1016/j.jmmm.2016.08.003.
  32. R. Hajiarab, M.R. Mohammad Shafiee, M. Ghashang, Access to a Library of 3-(9-Methyl-9H-Carbazol-3-yl)-2-Arylthiazolidin-4-One Derivatives Using NiFe2O4@SiO2 Grafted Alkyl Sulfonic Acid as an Efficient Catalyst. Polycycl. Aromat. Compd. 43 (2023) 2032-2043. DOI: https://doi.org/10.1080/10406638.2022.2039231.
  33. R. Hajiarab, M.R. Mohammad Shafiee, M. Ghashang, Preparation of Thiazolidin-4-ones Using NiFe2O4@SiO2 Grafted Propylsulfonic Acid as an Efficient Catalyst. Org. Prep. Proced. Int. 54 (2022) 259-267. DOI: https://doi.org/10.1080/00304948.2022.2033064.
  34. F. Aminsharei, A. Lahijanian, A. Shiehbeigi, S.S. Beiki, M. Ghashang, Dual magnetization and amination of cellulosic chains for the efficient adsorption of heavy metals. Int. J. Biolog. Macromol. 276 (2024) 134004. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134004.
  35. F. Rezaei, H. Alinezhad, B. Maleki, Captopril supported on magnetic graphene nitride, a sustainable and green catalyst for one-pot multicomponent synthesis of 2-amino-4H-chromene and 1,2,3,6-tetrahydropyrimidine. Sci Rep 13 (2023) 20562. DOI: https://doi.org/10.1038/s41598-023-47794-2.
  36. H. Boroumand, H. Alinezhad, B. Maleki, S. Peiman, Triethylenetetramine-grafted magnetic graphene oxide (Fe3O4@ GO-NH2) as a reusable heterogeneous catalyst for the one-pot synthesis of 2-amino-4H-benzopyran derivatives. Polycyclic Aromatic Compounds 43 (2023) 7853-7869. DOI: https://doi.org/10.1080/10406638.2022.2140683.
  37. R.S. Varma, K.P. Naicker, The Urea-Hydrogen Peroxide Complex: Solid-State Oxidative Protocols for Hydroxylated Aldehydes and Ketones (Dakin Reaction), Nitriles, Sulfides, and Nitrogen Heterocycles. Org. Lett. 1 (1999) 189-191. DOI: https://doi.org/10.1021/ol990522n.
  38. Q. Wang, W. Ma, Q. Tong, G. Du, J. Wang, M. Zhang, H. Jiang, H. Yang, Y. Liu, M. Cheng, Graphene Oxide Foam Supported Titanium(IV): Recoverable Heterogeneous Catalyst for Efficient, Selective Oxidation of Arylalkyl Sulfides to Sulfoxides Under Mild Conditions. Sci. Rep. 7 (2017) 7209. DOI: https://doi.org/10.1038/s41598-017-07590-1.
  39. A. Bayat, M. Shakourian-Fard, N. Ehyaei, M. Mahmoodi Hashemi, A magnetic supported iron complex for selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide at room temperature. RSC Adv. 4 (2014) 44274-44281. DOI: https://doi.org/10.1039/C4RA07356H.
  40. Z. Yekke-Ghasemi, M.M. Heravi, M. Malmir, M. Mirzaei, Efficient oxidation of sulfides to sulfoxides catalyzed by heterogeneous Zr-containing polyoxometalate grafted on graphene oxide. Sci. Rep. 13 (2023) 16752. DOI: https://doi.org/10.1038/s41598-023-43985-z.