10.57647/j.ijc.2024.1404.38

Sulfuric Acid-Activated Indonesian Natural Bentonite as Solid Acid Catalysts in Microwave-Protocol Nitrobenzene Synthesis

  1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
  2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
  3. Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  4. Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN), Bandung, Indonesia
  5. Research Center for Chemistry, National Research and Innovation Agency (BRIN), The B. J. Habibie Science and Technology Area, South Tangerang, Banten, Indonesia
Sulfuric Acid-Activated Indonesian Natural Bentonite as Solid Acid Catalysts in Microwave-Protocol Nitrobenzene Synthesis

Received: 2024-01-30

Revised: 2024-04-07

Accepted: 2024-09-22

Published 2024-10-08

How to Cite

Ardelia, Z. L., Saviola, A. J., Wijaya, K., Pradipta, M. F., Ismail, H., Budhijanto, B., Saputri, W. D., Hauli, L., & Amin, A. K. (2024). Sulfuric Acid-Activated Indonesian Natural Bentonite as Solid Acid Catalysts in Microwave-Protocol Nitrobenzene Synthesis . Iranian Journal of Catalysis, 14(4), 1-9. https://doi.org/10.57647/j.ijc.2024.1404.38

PDF views: 63

Abstract

Research has been conducted on activating Indonesian natural bentonite using sulfuric acid to produce solid acid catalysts for nitrobenzene synthesis in a batch microwave reactor that is in line with green chemistry principles. Indonesian natural bentonite was refluxed with sulfuric acid at various concentrations of 0, 1, 2, 3, and 4 M, followed by calcination with N2 gas flow to obtain NB, SNB-1, SNB-2, SNB-3, and SNB-4. The results showed that activation of natural bentonite by sulfuric acid can change its physochemical properties. SNB-2 (sulfated natural bentonite 2 M) is the best catalyst with the highest acidity value compared to other concentration variations. The synthesis of nitrobenzene was carried out in an 800-watt microwave oven at 60 °C for 2.5 hours with stirring at 600 rpm. We obtained the highest benzene conversion of 33.6% over the SNB-2 catalyst with nitrobenzene selectivity of 100%. Sulfuric acid-activated bentonite has good stability for three consecutive runs, so in the future, we can apply this material as a catalyst candidate for the greener nitrobenzene industry.

Research Highlights

  • Adding H2SO4 to natural bentonite causes changes in its physicochemical properties.
  • SNB-2 is the best catalyst in microwave-assisted nitrobenzene synthesis.
  • SNB-2 catalyst has good stability for three consecutive runs.

Keywords

  • Bentonite,
  • Microwave-assisted synthesis,
  • Nitrobenzene,
  • Nitration,
  • Sulfuric acid activation

References

  1. VAR Villegas, JIDL Ramírez, EH Guevara, SP Sicairos, LAH Ayala, and BL Sanchez. “Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene.” J. Saudi Chem. Soc., 24 (2020):223–235. DOI: https://doi.org/10.1016/j.jscs.2019.12.004
  2. S Zhou, K You, Z Yi, P Liu, and H Luo. “Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene”. Front. Chem. Sci. Eng., 11 (2017):205–210. DOI: https://doi.org/10.1007/s11705-017-1625-3
  3. R Joncour, A Ferreira, N Duguet, and M Lemaire. “Preparation of para -Aminophenol from Nitrobenzene through Bamberger Rearrangement Using a Mixture of Heterogeneous and Homogeneous Acid Catalysts.” Org. Process Res. Dev. 22 (2018):312–320. DOI: https://doi.org/10.1021/acs.oprd.7b00354
  4. PA Quadros, NMC Oliveira, and CMSG Baptista. “Continuous adiabatic industrial benzene nitration with mixed acid at a pilot plant scale”. Chem. Eng. J., 108 (2005):1–11. DOI: http://dx.doi.org/10.1016/j.cej.2004.12.022
  5. AP Koskin, RV Kenzhin, AA Vedyagin, and IV Mishakov. ”Sulfated perfluoropolymer-CNF composite as a gas-phase benzene nitration catalyst”. Catal. Commun., 53 (2014):83–86. DOI: https://doi.org/10.1016/j.catcom.2014.04.026
  6. S Gong, L Liu, Q Cui, and J Ding. “Liquid Phase Nitration of Benzene over Supported Ammonium Salt of 12-Molybdophosphoric Acid Catalysts Prepared by Sol–Gel Method”. J. Hazard. Mater., 178 (2010):404–408. DOI: https://doi.org/10.1016/j.jhazmat.2010.01.095
  7. R Agustriyanto, L Sapei, G Rosaline, and R Setiawan. “The Effect of Temperature on the Production of Nitrobenzene”. IOP Conf. Ser. Mater. Sci. Eng., 172 (2017):012045. DOI: https://doi.org/10.1088/1757-899X/172/1/012045
  8. SM Mathew, AV Biradar, SB Umbarkar, and MK Dongare. ”Regioselective nitration of cumene to 4-nitro cumene using nitric acid over solid acid catalyst”. Catal. Commun., 7 (2006):394–398. DOI: https://doi.org/10.1016/j.catcom.2005.12.022
  9. S Zhou, K You, H Gao, R Deng, F Zhao, P Liu, Q Ai, and H Luo. “Mesoporous silica-immobilized FeCl3 as a highly efficient and recyclable catalyst for the nitration of benzene with NO2 to nitrobenzene”. Mol. Catal., 433 (2017):91–99. DOI: https://doi.org/10.1016/j.mcat.2016.12.001
  10. VSP Ganjala, CKP Neeli, CV Pramod, M Khagga, KSR Rao, and DR Burri. “Eco-friendly nitration of benzenes over zeolite-β- SBA-15 composite catalyst”. Catal. Commun., 49 (2014):82–86. DOI: https://doi.org/10.1016/j.catcom.2014.02.006
  11. AB Kulal, MK Dongare, and SB Umbarkar. ” Hydrophobic WO3/SiO2 catalyst for the nitration of aromatics in liquid phase”. App. Catal. B Environ., 182 (2016):142–152. DOI: https://doi.org/10.1016/j.apcata.2019.02.002
  12. VF Zhilin, VL Zbarskii, and NV Yudin. “Kinetics of 2,4-dihydro-1,2,4-triazol-3-one nitration in nitric acid”. Kinet. Catal., 47 (2006):846–849. DOI: https://doi.org/10.1134/S002315840606005X
  13. AP Koskin, IV Mishakov, and AA Vedyagin. ”In search of efficient catalysts and appropriate reaction conditions for gas phase nitration of benzene”. Resour. Technol., 2 (2016):118–125. DOI: https://doi.org/10.1016/j.reffit.2016.07.004
  14. J Liu, Y Wang, S Gong, W Duan, and X Huang. “Liquid phase nitration of benzene catalyzed by a novel salt of molybdovanadophosphoric hetero polyacid.” J. Braz. Chem. Soc., 32 (2021):1270–1276. DOI: http://dx.doi.org/10.21577/0103-5053.20210029
  15. S Sadjadi, and F Koohestani. “Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidinones”. J. Mol. Liq., 319 (2020):114393. DOI: https://doi.org/10.1016/j.molliq.2020.114393
  16. D Gandhi, R Bandyopadhyay, and B Soni. “Naturally occurring bentonite clay: Structural augmentation, characterization and application as catalyst”. Mater. Today Proc., 57 (2022):194–201. DOI: https://doi.org/10.1016/j.matpr.2022.02.346
  17. K Sanavada, M Shah, D Gandhi, A Unnarkat, and P Vaghasiya. “A systematic and comprehensive study of Eco-friendly bentonite clay application in esterification and wastewater treatment” 20 (2023):100784. DOI: https://doi.org/10.1016/j.enmm.2023.100784
  18. K Amri, A Sabilladin, RA Pratika, A Sudarmanto, H Ismail, Budhijanto, MF Lestari, W-C, Oh, K Wijaya. “Nanosulfated Silica as a Potential Heterogeneous Catalyst for the Synthesis of Nitrobenzene”. Korean J. Mater. Res., 33 (2023):265–272. DOI: https://doi.org/ 10.3740/MRSK.2023.33.7.265
  19. AJ Saviola, K Wijaya, WD Saputri, L Hauli, AK Amin, H Ismail, B Budhijanto, W-C Oh, W Wangsa, P Prastyo. “Microwave-assisted green synthesis of nitrobenzene using sulfated natural zeolite as a potential solid acid catalyst”. Appl. Nanosci., 13 (2023):6575–6589. DOI: http://dx.doi.org/10.1007/s13204-023-02941-z
  20. K Wijaya, AD Ariyanti, I Tahir, A Syoufian, A Rachmat, and Hasanudin. “Synthesis of Cr/Al2O3-Bentonite Nanocomposite as the Hydrocracking Catalyst of Castor Oil”. Nano Hybrids Compos., 19 (2018):46–54. DOI: https://doi.org/10.4028/www.scientific.net/NHC.19.46
  21. K Wijaya, MA Kurniawan, WD Saputri, W Trisunaryanti, M Mirzan, PL Hariani, and AD Tikoalu. “Synthesis of nickel catalyst supported on ZrO2/SO4 pillared bentonite and its application for conversion of coconut oil into gasoline via hydrocracking process”. J. Environ. Chem. Eng., 9 (2021):105399. DOI: https://doi.org/10.1016/j.jece.2021.105399
  22. ON Kovalenko, II Simentsova, VN Pachenko, and MN Timofeeva. “Effect of the Structure and Acidity of Zeolites on the Synthesis of Solketal from Glycerol and Acetone”. Catal. Ind. 15 (2023):410–419. DOI: https://doi.org/10.1134/S207005042304013X
  23. M Thommes, K Kaneko, AV Neimark, JP Olivier, F Rodriguez-Reinoso, J Rouquerol, and KSW Sing. “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”. Pure Appl. Chem. 87 (2015):1051–1069. DOI: https://doi.org/10.1515/pac-2014-1117
  24. H Hasanudin, WR Asri, QU Putri, Z Fanani, D Bahrin, TE Agustina, and K Wijaya. “Montmorillonite-Zirconium Phosphate Catalysts for Methanol Dehydration”. Iranian J. Catal., 12 (2022):389–397. DOI: https://doi.org/10.30495/IJC.2022.1960655.1942
  25. N Rinaldi, NDE Purba, A Kristiani, E Agustian, RR Widjaya, and AA Dwiatmoko. “Bentonite pillarization using sonication in a solid acid catalyst preparation for the oleic acid esterification reaction”. Catal. Commun., 174 (2023):106598. DOI: https://doi.org/10.1016/j.catcom.2022.106598
  26. Muzakky, and C. Supriyanto. “Modification of Three Types of Bentonite with Zirconium Oxide Chloride (ZOC) of Local Products Using Intercalation Process”. Indones. J. Chem., 16 (2016):14–19. DOI: https://doi.org/10.22146/ijc.21171
  27. P Wahyuningsih, T Harmawan, and Halimatussakdiah. “Synthesis and characterization of acid-activated bentonite from Aceh Tamiang”. IOP Conf. Series: Materials Science and Engineering, 725 (2020):012050. DOI: https://doi.org/10.1088/1757-899X/725/1/012050
  28. RR Pawar, KA Gosai, AS Bhatt, S Kumaresan, SM Lee, and HC Bajaj. “Clay catalysed rapid valorization of glycerol towards cyclic acetals and ketals”. RSC Adv., 5 (2015):83985–83996. DOI: https://doi.org/10.1039/C5RA15817F
  29. AA Kulkarni. “Continuous flow nitration in miniaturized devices”. Beilstein J. Org. Chem., 10 (2014):405–424. DOI: https://doi.org/10.3762%2Fbjoc.10.38
  30. DM Badgujar, MB Talawar, and PP Mahulikar. “Recent Advances in Safe Synthesis of Energetic Materials: An Overview”. Combust Explos Shock Waves, 55 (2019):245–257. DOI: https://doi.org/10.1134/S0010508219030018
  31. MA Surati, S Jauhari, and KR Desak. “A brief review: Microwave assisted organic reaction”. Appl. Sci. Res., 4 (2012):645–661.
  32. A Sabilladin, AJ Saviola, K Wijaya, AS Hutama, MF Pradipta, WD Saputri, H Ismail, B Budhijanto, W-C Oh, and B Ravindran. “Optimizing Nitrobenzene Synthesis Catalyzed by Sulfated Silica (SO4/SiO2) through Response Surface Methodological Approach”. Korean J. Mater. Res., 34 (2024):341–354. DOI: https://doi.org/10.3740/MRSK.2024.34.7.341