10.57647/j.ijc.2024.1404.37

An effective, novel, and recyclable γ-Fe2O3@MoS2@Znas magnetic nanocatalyst in the unprecedented synthesisof mono- and bis-triazoles

  1. Department of Chemistry, University Campus 2, University of Guilan, Rasht, Iran
  2. Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box 41335-1914, Rasht, Iran

Received: 2024-05-16

Revised: 2024-07-15

Accepted: 2024-09-08

Published 2024-11-23

How to Cite

Noohi, G., Mamaghani, M., Rezaei, I., & Hossein Nia, R. (2024). An effective, novel, and recyclable γ-Fe2O3@MoS2@Znas magnetic nanocatalyst in the unprecedented synthesisof mono- and bis-triazoles. Iranian Journal of Catalysis, 14(4), 1-12. https://doi.org/10.57647/j.ijc.2024.1404.37

PDF views: 75

Abstract

ABSTRACT

Triazoles are an important group that have active biological properties, and their synthetic platform and reactions have been fully investigated by many synthetic and medicinal chemists during the recent years. Magnetic nanocatalysts have recently been used in the design of many reactions, so in this method, an efficient, novel, and recyclable magnetic nanocatalyst γ-Fe2O3@MoS2@Zn was synthesized by the reaction of premade g-Fe2O3@MoS2 and ZnCl2 to furnish the desired nanocatalyst which was characterized by using FT-IR, XRD, SEM, EDX, TEM, mapping and VSM techniques. The catalyst was used in the synthesis of mono- and bis-triazoles by the reaction of thiosemicarbazide or butane-1,4-diyl-bis(hydrazinecarbimidothioate) with various arylaldehydes at room temperature and in ethanol/water (50:50) as solvent. This novel protocol gave the desired products excellent yields (92-96%) and lower reaction times (15-20 min). The synthesized magnetic nanoparticles were comfortability separated from the reaction mixture by means of an external magnet and employed in six consecutive runs without any significant changes in its catalytic activity. The advantages of this current method are short reaction time, excellent efficiency, use of green solvent, magnetic nanocatalyst, and cost-effectiveness.

Research Highlights

  • A novel Zn supported  magnetic nanocatalyst was synthesized.
  • The synthesized nanocatalyst was used in a benign and practical synthesis of a series of densely functionalized mono- and bis-triazoles.
  • The catalyst was recycled and reused in 6 consecutive runs without significant decrease in its catalytic activities.

Keywords

  • Bis-triazole,
  • Nanoparticle,
  • Triazole,
  • γ-Fe2O3,
  • MoS2,
  • Zinc

References

  1. I. A. Al-Masoudi, Y. A. Al-Soud, N. J. Al-Salihi and N. A. Al-Masoudi. Chem. Heterocycl. Compd. 42 (2006) 1377-1403, doi.org/10.1007/s10593-006-0255-3.
  2. M. M. Pearson, D. Rogers, J. D. Cleary and S. W. Chapman. Ann Pharmacother 37 (2003) 420-432, doi.org/10.1345/aph.1C261.
  3. N. D. Greer, Bayl. Uni. Med. Cent. 20 (2007) 188-196, doi.org/10.1080/08998280.2007.11928283.
  4. I. A. Gural’skiy, V. A. Reshetnikov, I. V. Omelchenko, A. Szebesczyk, E. Gumienna-Konteckac and I. O. Fritskya, J. Mol. Struct. 1127 (2017) 164-168, doi: 10.1016/j.molstruc.2016.07.094.
  5. Y. L. Fan, X. Ke and M. Liub, J. Heterocycl. Chem. 55 (2018) 791-802, doi.org/10.1002/jhet.3112.
  6. N. Süleymanoğlu, R. Ustabaş, S. Direkelc, Y. B. Alpasland and Y. Ünvere, J. Mol. Struct. 1150 (2017) 82-87, doi.org/10.1016/j.molstruc.2017.08.075.
  7. R. Kharb, P. C. Sharma and M. S. Yar, J. Enzyme. Inhib. Med. Chem. 26 (2017):1-21, doi.org/10.3109/14756360903524304.
  8. Y. Q. Hu, S. Zhang, Z. Xu, Z. S. Lv, M. L. Liu and L. S. Feng, Eur. J. Med. Chem. 140 (2017) 335-345, doi.org/10.1016/j.ejmech.2017.09.050.
  9. B. M. Chougala, S. Samundeeswari, M. Holiyachi, L. A. Shastri, S. Dodamani, S. Jalalpure, S. R. Dixit, S. D. Joshi and V. A. Sunagar, Eur. J. Med. Chem. 125 (2017) 101-116, doi.org/10.1016/j.ejmech.2016.09.021.
  10. N. Fu. S. Wang, Y. Zhang, C. Zhang, D. Yang, L. Weng, B. Zhao and L. Wang, Eur. J. Med. Chem. 136 (2017) 596-602, doi.org/10.1016/j.ejmech.2017.05.001.
  11. K. M. Banu, A. Dinakar and C. Ananthanarayanan, Indian J. Pharm. Sci. 61 (1999) 202-205.
  12. L. Z. Chen, W. W. Sun, L. Bo, J. Q. Wang, C. Xiu, W. J. Tang, J. B. Shi, H. P. Zhou and X. H. Liu, Eur. J. Med. Chem. 138 (2017) 170-181, doi.org/10.1016/j.ejmech.2017.06.044.
  13. J. Akhtar, A. A. Khan, Z. Ali, R. Haider and M. S. Yar, Eur. J. Med. Chem. 125 (2017) 143-189, doi.org/10.1016/j.ejmech.2016.09.023.
  14. R. Gujjar, A. Marwaha, J. White, L. White, S. Creason, D. M. Shackleford, J. Baldwin, W. N. Charman, S. Buckner, F. S. Charman, P. K. Rathod and M. A. Phillips, J. Med. Chem. 52 (2009) 1864-1872, doi.org/10.1021/jm801343r.
  15. Y. Q. Hu, C. Gao, S. Zhang, L. Xu, Z. Xu, L. S. Feng, X. Wu and F. Zhao, Eur. J. Med. Chem. 139 (2017) 22-47, doi.org/10.1016/j.ejmech.2017.07.061.
  16. A. Duran, H. N. Dogan and H. Rollas, Farmaco 57 (2002) 559-564, doi.org/10.1016/S0014-827X(02)01248-X.
  17. X. Wen, Y. Zhou, J. Zeng and X. Liu, Curr. Topics. Med. Chem. 20 (2020) 1441-1460, doi.org/10.2174/1568026620666200128143230.
  18. H. Wamhoff, Compr. Heterocycl. Chem. 5 (1984) 669-732.
  19. Y.M. Wu, J. Deng, X. Fang and Q.Y. Chen, J. Fluorine Chem. 125 (2004) 1415-1423, doi.org/10.1016/j.jfluchem.2004.02.016.
  20. M. Whiting, J. Muldoon, Y. C. Lin, S. M. Silverman, W. Lindstrom, A. J. Olson, H. C. Kolb, M. G. Finn. K. B. Sharpless, J. H. Elder and V. V. Fokin, Angew. Chem. 45 (2006) 1435-1439, doi.org/10.1002/anie.200502161.
  21. H. U. Reissig and F. Yu, Beilstein J. Org. Chem. 19 [2023], 1399–140, doi.org/10.3762/bjoc.19.101.
  22. C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem. 67 [2002], 3057–3064. doi:10.1021/jo011148j.
  23. V. V. Rostovtsev, L. G. Green, and. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed. 41 [2002], 2596–2599, https://doi.org/10.1002/1521-3773(20020715)41.
  24. K. K. Gangu, S. Maddila, S. N. Maddila and S. B. Jonnalagadda, Molecules 21 (2016) 1281, doi.org/10.3390/molecules21101281.
  25. I. Rezaei and M. Mamaghani, React. Kinet. Mech. Catal. 134 (2021) 385-400, doi.org/10.1007/s11144-021-02076-8.
  26. Z. Pourkarim and M. Nikpassand, J. Mol. Struct. 1217 (2020) 128433, doi.org/10.1016/j.molstruc.2020.128433.
  27. M. Nikpassand and M. J. Farshami, J. Clust. Sci. 32 (2020) 975–982, doi.org/10.1007/s10876-020-01855-y.
  28. J. D. Patil and D. M. Pore, RSC Adv. 4 (2014) 14314-14319, doi.org/10.1039/C3RA46916F.
  29. I. Rezaei and M. Mamaghani, Current. Chem. Lett. 10 (2021) 2220-2522.
  30. A. Abbas, K. M. Dawood, Adv Heterocycl.Chem.141 (2023), 209-273, doi.org/10.1016/bs.aihch.2023.04.002.
  31. N. Korol , O. M. Holovko-Kamoshenkova, M. Slivka, O. Pallah, M. Y. Onysko, A. Kryvovyaz, N. V. Boyko, O. V. Yaremko, R. Mariychuk, Adv. Appl. Bioinforma. Chem. 16 [2023], 93–102, doi.org/10.2147/AABC.S415961
  32. A. Alibi, N. Elleuch, M. B. Hassen, S. Shova, F. Chabchoub and M. Boujelbene, J. Mol. Struct. (2024) 139034, https://doi.org/10.1016/j.molstruc.2024.139034
  33. X. B. Yang, C. H. Jia, X. Y. Miao, Y. C. Li and S. P. Pang, RSC adv. 13 (2023) 2600-2610. doi.org/10.1039/D2RA06646G.
  34. M. Tapera, H. Kekeçmuhammed, C. U. Tunc, A. U. Kutlu, I. Çelik, Y. Zorlu, O. Aydin and E. Sarıpınar, New J. Chem. 24 (2023) 11602-11614, doi.org/10.1039/D3NJ01320K.
  35. Y. Cao, H. Huang, L. Wang, X. Lin and J. Yang, J. Org. Chem. 7 (2023) 4301-4308. doi.org/10.1021/acs.joc.2c02879
  36. M. Yin, Y. Wang, L. Yu, H. Wang, Y. Zhu and C. Li, J. Alloys. Compd. 829 (2020) 154471, doi.org/10.1016/j.jallcom.2020.154471.
  37. K. Uma, E. Muniranthinam, S. Chong, T. C. K. Yang and J. H. Lin, Crystals 10 (2020) 356-367, doi.org/10.3390/cryst10050356.
  38. X. Yang, H. Sun, L. Zhang, L. Zhao, J. Lian and Q. Jiang, Sci. Rep. 6 (2016) 31591, doi.org/10.1038/srep31591.
  39. F. Alavi, M. Mamaghani, M. Sheykhan Polycycl. Aromat. Comp., [2023], doi.org/10.1080/10406638.2023.2254905