Recent advances of functionalized Fe3O4 as nanocatalyst in carbon-carbon coupling reaction: A review
- Savitribai Phule Pune University, Dada Patil Mahavidyalaya, Maharashtra, India
Received: 2024-05-28
Revised: 2024-08-24
Accepted: 2024-09-07
Published 2024-10-08
Copyright (c) 2024 @Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 101
Abstract
Green Chemistry is the design of chemical products and processes that reduce or eliminate the use of hazardous substances. The benefits of green chemistry include safe food, clean water, clean air, less exposure to toxins, and safer consumer goods of all kinds. This approach is effective in safeguarding our ecosystem from harmful and poisonous materials. Scientists are becoming more interested in nanocatalysis since these processes are environmentally benign and safe. In the past ten years, magnetic nanoparticles have demonstrated remarkable efficacy as catalysts due to their ease of synthesis, modification, and enormous surface area ratio. Several of the most important features of these nanocatalysts are their high selectivity, excellent yields, and short reaction times, so these catalysts provide economical synthetic routes to target products. Organic reactions, including oxidation, hydrogenation, coupling, condensation, esterification, photocatalysis, and biocatalysts, ferrite nanocatalysts are coated with silica and are capable of catalyzing industrially. It is possible to synthesize transformations with excellent yields and selectivity using these nanocatalysts in a simple and eco-friendly manner. The catalytic activity of these catalysts can be reused for many repeated cycles as the magnetic properties enable easy separation after the reaction is complete by applying external magnetic fields. In this review, we focus on the synthesis of novel iron oxide nanoparticles using various synthetic methods. These catalysts are applicable in organic reactions such as Suzuki, Heck, Sonogashira, and A3 coupling reactions. Also, we discuss the recyclability and re-utilization of these nanoparticles.
Research Highlights
- In this review, the biodegradable catalysts were investigated.
- Iron oxide nanoparticle and silica-coated iron oxide nanoparticles were reviewed in different reaction.
- Bond forming reaction and multicomponent reaction reviewed for lastly years.
- Recyclability and re-utilization of the catalysts were investigated.
Keywords
- Coupling reactions,
- Iron oxide nanocatalyst,
- Recyclability,
- Re-utilization,
- Silica-coated iron oxide
References
- V. Polshettiwar, R. Varma, Chem. Soc. Rev. 37 (2008), 1546. https://doi.org/10.1039/B716534J
- P. Anastas, J. Warner, Green Chemistry Theory and Practice; Oxford University Press: Oxford, 1998.
- A. Matlack Introduction to Green Chemistry; Marcel Dekker: New York, 2001.
- J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology; Blackwell Publishing: Abingdon, 2002.
- M. Lancaster, Green Chemistry: An Introductory Text; RSC Editions: Cambridge, 2002.
- M. Poliakoff, J. Fitzpatrick, T. Farren, P. Anastas Science 297, (2002), 807. 10.1126/science.297.5582.807
- M. Trost, Science, 1991, 254, 1471. https://doi.org/10.1126/science.1962206
- V. Polshettiwar, R. Varma, Aqueous Microwave Chemistry; RSC Publishing: Cambridge, 2010.
- V. Polshettiwar, R. Varma, Acc. Chem. Res. 41, (2008), 629. https://doi.org/10.1021/ar700238s
- M. Benaglia, Recoverable, and Recyclable Catalysts; John Wiley & Sons: Chichester, 2009.
- S. Wittmann, A. Sh€atz, R. Grass, W. Stark, O. Reiser, Angew. Chem., Int. Ed. 49, (2010), 1867. DOI: 10.1002/anie.201604349
- C. Coperet, M. Chabanas, R. Saint-Arroman, J. Basset, Angew. Chem., Int. Ed. 42, (2003), 156. https://doi.org/10.1002/anie.200390072
- J. Basset, C. Coperet, D. Soulivong, M. Taoufik, J. Thivolle-Cazat, J. Acc. Chem. Res. 43, (2010), 323. https://doi.org/10.1021/ar900203a
- A. Fonseca, F. Monte, M. da C. F. de Oliveira, M. de Mattos, G. Cordell, R. Braz-Filho and T. Lemos, J. Mol Catal. B Enzym. 57, (2009), 78-82. http://dx.doi.org/10.1016/j.molcatb.2008.06.022
- B. Saikia, P. Borah and N. Barua, Green Chem., 17, (2015), 4533-4536. https://doi.org/10.1039/C5GC01404B
- N. Singh, R. Nongrum, C. Kathing, J. Rani and R. Nongkhlaw, Green Chem Lett. Rev., 7, (2014), 137-144. https://doi.org/10.1080/17518253.2014.902506
- J. Sangshetti, N. Kokare, S. Kotharkar, D. Shinde. J. Chem. Sci. 120, (2008), 463-467. https://doi.org/10.1007/s12039-008-0072-6
- K. Doefman, Chemical Review 113, (2013) 2584. https://doi.org/10.1021/cr3002142
- H. Lu E. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, (2007) 1222-1244. DOI: 10.1002/anie.200602866
- V. Shubayev, T Pisanic, S. Jin, Adv. Drug. Deliv. Rev. (2009) 467-477. https://doi.org/10.1016/j.addr.2009.03.007
- J. Mc Carthy, R. Weissleder, Adv. Drug. Deliv. Rev. 60, (2008) 1241-1251. https://doi.org/10.1016%2Fj.addr.2008.03.014
- J. Aphestequy, S. Jacobo N. Schegoleva G. Kurlyandskaya. Alloy compound. 2009; 10: 037. Doi: 10.1016/j.jallcom.2009.10.037.
- C. Bergmann, D. Muller-Schulte, J. Oster, L. Brassard, A. Luubbe, J. Magn. Mat, 1999; 194: 45. https://ui.adsabs.harvard.edu/link_gateway/1999JMMM..194...45B/doi:10.1016/S0304-8853(98)00554-X
- S. Chaki Tasmira J Malek, M D Chaudhary, J P Tailor , and M P Deshpande Adv. Nat. Sci. Nano. Sci. Nano Technol. 6 (2015), 035009. DOI: 10.1088/2043-6262/6/3/035009
- Y. Kang, S. Rishbud, J. Rabolt, P. Stroeve Chem Mater, 8 (1996), 2209. http://dx.doi.org/10.1021/cm960157j
- M. Nasr-Esfahani, S. J. Hoseini, F. Mohammadi Chin. J. Catal., 32, (2011), 32, 1484-1489. DOI: 10.1016/S1872-2067(10)60263-X
- S. Bankar and S. Shelke Rev. Chem. Intermed. 44, (2018), 3507-3521. https://link.springer.com/article/10.1007/s11164-018-3321-4
- B. Vaddula, R. Saha, J. Varma, P. Veiga, S Branco Green Chem. 14, (2012) 8, 2133. https://doi.org/10.1039/C2GC35673B
- S. Sa, M. Gawande, A. Velhinho, J. Veiga, P. Branco Green Chem. 204, 16, (2004) 3494. http://dx.doi.org/10.1039/c4gc00558a
- A. Neto, L. Nascimento, M. Correa, F. Bohn, M.R.D. Bomio, F.V. Motta Materials Chemistry and Physics 2020, 242, 122489. https://doi.org/10.1016/j.matchemphys.2019.122489
- D. Petrov, R. Ivantsov, S. Zharkov, D. Velikanov, M. Molokeev, C. Lin, C. Tso, H.su, Y. Tseng, E. Lin, I. Edelman J. Magnetism Magnetic Mater. 493, (2020), 165692. http://dx.doi.org/10.1016/j.jmmm.2019.165692
- Yanting Yang, Kaidi Jiang, Jia Guo, Jing Li, Xiaoling Peng, Bo Hong, Xinqing Wang, Hongliang Ge. Chem. Eng. J. 381, (2020), 122596. https://doi.org/10.1016/j.cej.2019.122596
- Eman Alzahrani Current Anal. Chemist, 5, (2016), 465. http://dx.doi.org/10.2174/1573412912666160104234348
- R. Yang, X. Yu, H. Li, C. Wang, C. Wu, W. Zhang, W. Guo J. Alloy and Comp. 851, (2020), 156907. http://dx.doi.org/10.1016/j.jallcom.2020.156907
- A. Mohamed, N. Salama, A. Sultan, F. Manie, M. Abou El-Alamin Micro chemical Journal 159, (2020), 105424. https://doi.org/10.1016/j.microc.2020.105424
- S. Rather, O. Lemine J. Alloy and Comp. 812, (2020), 152058. https://doi.org/10.1016/j.jallcom.2019.152058
- K. Ishaq, A.Saka, A.Kamardeen, A. Ahmed, M.Alhassan, H. Abdullahi Eng. Sci. and Tech. Inter. Journal 20, (2017), 563-569.
- P. Komal, T. Kang, B. Randhawa J. Alloy and Compound. 701, (2017), 788-796. https://doi.org/10.1016/j.jallcom.2017.01.138
- Y. Zhang, B. Zhen, H. Li, Y. Feng App. Catal. A: General 453, (2013), 327-333. http://dx.doi.org/10.1016/j.cjche.2017.05.017
- M. Dewan, A. De, S. Mozumdar Inorg. Chem. Comm. 53, (2015), 92-96. https://doi.org/10.1016/j.inoche.2015.01.027
- B. Thangaraj, Z. Jio, L. Dai, D. Liu and W. Du Arabian J. Chem. 12, (2016), 4694-4706. https://doi.org/10.1016/j.arabjc.2016.09.004
- T. Gad-Allah, S. Kato, S. Satokawa, and T. Kojima, "Roll of core diameter and silica content in photo catalytic activity of TiO2/SiO2/Fe3O4 composite.” Solid-state science 9, (2007), 737-743. https://doi.org/10.1016/j.solidstatesciences.2007.05.012
- Suh Cem Pang, Sze Yun Kho and Suk Fun Chin J. Nanomater. 13, (2012), 427310. https://doi.org/10.1155/2012/427310
- E. Beyers, E. Biermans, S. Ribbens, et al. "Combined TiO2/SiO2 mesoporous photo catalyst with location and phase controllable TiO2 nanoparticle” Appl. Catal. B 88, (2009), 515-524. https://doi.org/10.1016/j.apcatb.2008.10.009
- A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, "Titania coating on monodisperses silica spheres (characterization using 2-propanol dehydration and TEM)" Langmuir 12, (1996), 3173-3179. https://doi.org/10.1021/la950808a
- T. Gad-Allah, S. Kato, S. Satokawa, and T. Kojima, "Role of core diameter and silica content in photo catalytic activity of TiO2/SiO2/Fe3O4 composite,” Solid-state science 9, (2007), 737-743. https://doi.org/10.1016/j.solidstatesciences.2007.05.012
- M. Gawande, P. Branco, I. Nogueira, C. Ghumman, N. Bundaleski, A, Santos, Teodoro O.M.N.D, Luque R Catalytic applications of a versatile Magnetically separatable Fe-Mo (Nanocat-Fe-Mo) Nanocatalyst Green Chem. 15, (2013), 682-689. https://doi.org/10.1039/C3GC36844K
- N. Azizi N, Mirmashhori B, Saidi MR Catal Commun 8, (2007), 2198-2203. http://dx.doi.org/10.1016/j.catcom.2007.04.032
- Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42:3371-3393. https://doi.org/10.1039/C3CS35480F
- M. Nazish, S. Saravanan, N. Khan, P. Kumari, R. Kureshy, S. Abdi, H. Bajaj Chem-PlusChem 79, (2014) 1753-1760. https://doi.org/10.1002/cplu.201402191
- V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. Basset 111, (2011) Chem Rev. 3036-3063. 10.12691/wjoc-4-1-1
- K. Azizi, A. Heydari A RSC Adv. 4, (2014) 8812-8816. https://doi.org/10.1039/C3RA46437G
- N. Geetmani Singh, M. Lily, S. Premila Devi, N. Rahman, A. Ahmed, A. Chandra, R. Nongkhlaw Green Chem. 18 (2016), 4216-4227. https://doi.org/10.1039/C6GC00724D
- M. Jin and D. Lee, Angew. Chem. Int. Ed. 49, (2010) 1119-1122. http://dx.doi.org/10.1002%2Fanie.200905626
- C. Safak and R. Simsek, Mini. Rev. Med. Chem. 7, (2006), 747-755. https://doi.org/10.2174/138955706777698606
- V. Grushin, H. Alper in S. Murai (Ed), Activation of unreactive bonds and organic synthesis Springer Berlin, 199, 193.
- M. Karak, L. Barbosa, RSC Adv. 4, (2014), 53442-53466. https://doi.org/10.1039/C4RA09105A
- H. Yang, Y. Wang, Y. Qin, Y. Chong, Q. Yong, L. Zhang, W. Li. Green chem. 13, (2011), 644-650. https://doi.org/10.1039/C0GC00541J
- C. Venkatesan, A. Sing J. Catal. 227, (2004), 148. https://doi.org/10.1016/j.jcat.2004.06.026
- C. Gonalez-Arellano, A. Corma, M. Iglesias, F. Sanchez, Adv. Synth. Catal. 346, (2004), 1758. DOI: 10.1002/adsc.200404119
- N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun. 11, (1981), 513. http://hdl.handle.net/2115/44302
- N. Miyaura, A. Suzuki, A. Chem. Rev. 95, (1995), 2457. http://hdl.handle.net/2115/44007
- N. Miyaura, Cross-Coupling Reactions: A Practical Guide; Springer: New York, 2002
- N. Pham, M. Van Der Sluys, M.; C. Jones, Adv. Synth. Catal. 2006, 348, 609. https://doi.org/10.1002/adsc.200505473
- O. Baudoin, M. Cesario, D. Guenard, F. Gueritte, J. Org. Chem. 65, (2000), 9268. https://doi.org/10.1021/jo005663d
- S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633. https://doi.org/10.1016/S0040-4020(02)01188-2
- J. Albaneze-Walker, J. Murry, A. Soheili, S. Ceglia, S. Springfield, C. Bazaral, D. Dormer, L. Hughes, Tetrahedron 61, (2005), 6330. https://doi.org/10.1016/j.tet.2005.03.143
- M. Kertesz, C. Choi, S. Yang, Chem. Rev. 105, (2005), 3448. 10.1021/cr990357p
- D. Horton, M. Bourne, M. Smythe, Chem. Rev. 103, (2003), 893. https://doi.org/10.1021/cr020033s
- G. Bringmann, C. Gunther, M. Ochse, O. Schupp, S. Tasler, Biaryls in Nature: A Multi-Faceted Class of Stereochemically, Biosynthetically, and Pharmacologically Intriguing Secondary Metabolites, Springer-Verlag, New York, 2001.
- P. Hajduk, M. Bures, J. Praestgaard, S.W. Fesik, J. Med. Chem. 43, (2000), 3443. https://doi.org/10.1021/jm000164q
- G. Bemis, M. Murcko, J. Med. Chem. 39, (1996), 2887. https://doi.org/10.1021/jm9602928
- S.P. Vibhute et al. Tetrahedron Lett. 61, (2020), 151594. http://dx.doi.org/10.1016/j.tetlet.2020.151944
- A. Dewan, U. Bora, G. Borah, Tetrahedron Lett. 55, (2014), 1689-1692. https://doi.org/10.1016/j.tetlet.2014.01.041
- N. Shahnaz, B. Banik, P. Das, Tetrahedron Lett. 54, (2013), 2886-2889. https://doi.org/10.1016/j.tetlet.2013.03.115
- S. Patil, C. Weng, P. Huang, F. Hong, Tetrahedron 65, (2009), 2889-2897. https://doi.org/10.1016/j.tet.2009.02.017
- Y. Lai, H. Chen, W. Hung, C. Lin, F. Hong, Tetrahedron 61, (2005), 9484-9489. https://doi.org/10.1016/j.tet.2005.08.005
- A. Naghipour and A. Fakhir Cat. Commun. 73, (2016), 39-45. 10.14311/NNW.2016.26.003
- V. Sinha, A. K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan. Int. J. Pharm. 274, (2004), 1-33. https://doi.org/10.1016/j.ijpharm.2003.12.026
- E. Guibal. Prog. Polym. Sci. 30, (2005), 71-109. https://doi.org/10.1016/j.progpolymsci.2004.12.001
- M. Bodnar, J. F. Hartmann, J. Borbely. Biomacromolecules 6, (2005), 2521-2527. https://doi.org/10.1021/bm0502258
- S. H. Lim, S. M. Hudson. Carbohydr. Res. 339, (2004), 313-319. https://doi.org/10.1016/j.carres.2003.10.024
- K.K. Senapati, S. Roy, C. Borgohain, P. Phukan, J. Mol. Catal. A: Chem. 352, (2012), 128-134. doi:10.1016/j.molcata.2011.10.022
- L.J. Goossen, K. Ghosh, Angew. Chem. Int. Ed. 40, (2001), 3458. https://doi.org/10.1002/1521-3773(20010917)40:18%3C3458::aid-anie3458%3E3.0.co;2-0
- Zhengping Dong and Jiantai Ma Appl. Catal. B: Environ. 162, (2015), 372-380. https://doi.org/10.1016/j.apcatb.2014.07.009
- W. Li, B. Zhang, X. Li, H. Zhang, Q. Zhang, Appl. Catal. A: General 459, (2013), 65-72. https://doi.org/10.1016/j.apcata.2013.04.010
- A. Khazaei, M. Khazaei, M. Nasrollahzadeh, Tetrahedron 05, (2017), 054. https://doi.org/10.1016/j.tet.2017.05.054
- K.C. Nicolaou, P.G. Bulger, D. Sarlah, Angew. Chem., Int. Ed. 44, (2005), 4442-4489. https://doi.org/10.1002/anie.200500368
- J. Magano, J.R. Dunetz, Chem. Rev. 111, (2011), 2177–2250. https://doi.org/10.1021/cr100346g
- A. Molna, Chem. Rev. 111, (2011), 2251-2320. https://doi.org/10.1021/acs.chemrev.7b00443
- C. Gonzalez-Arellano, A. Corma, M. Iglesias, F. Sanchez, Adv. Synth. Catal. 346, (2004), 1758. https://doi.org/10.1002/adsc.200404119
- V. Polshettiwar, A. Molnar, Tetrahedron 63, (2007), 6949. https://doi.org/10.1016/j.tet.2007.04.023
- M. Shanmugasundaramet, A. Senthilvelan, A. Kore Tetrahedron Lett. 61, (2020), 151801. https://doi.org/10.1016%2Fj.tetlet.2020.152464
- R. Rudge, E. Scholten, J. Dijksman. Colloids and Surfaces A: Physicochem. Eng. Aspects 27, (2019), 90-97. https://doi.org/10.1016/j.cofs.2019.06.011
- S. Singh, B. Patil, M. Nagarkar Catal. Commun. 35, (2013), 11-16. https://doi.org/10.1016/j.catcom.2013.02.003
- Maiyong Zhu and Guowang Diao J. Phys. Chem. C 115, (2011), 24743-24749. https://doi.org/10.1021/jp206116e
- Z. Zhang, H. Duan, S. Li, Y. Lin, Langmuir Russian J. Gen. Chem. 26, (2010), 6676. https://doi.org/10.1134/S1070363216070276
- K. Nicolaou, R. Zipkin, R. Dolle, B. Harris, J. Am. Chem. Soc. 106, (1984), 3548-3551. doi:10.1016/j.tet.2010.04.008
- K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 16, (1975), 4467. https://doi.org/10.1016/S0040-4039(02)00393-3
- A. Hay, J. Org. Chem. 27, (1962), 3320. https://doi.org/10.1021/jo01056a511
- H. FirouzabadI and N. Iranpour Adv. Synth. Catal. 353, (2011), 125-132. https://doi.org/10.1016/j.molcata.2011.08.010
- G. Jadhav, A. Sarode, M. Nagarkar. Tetrahedron Lett. 14, (2015), 1771. https://doi.org/10.1016/j.tetlet.2015.02.029
- N.T.S. Phan, H.V. Le J. Mol. Catal. A: Chem. 134, (2011), 130-138. 10.7508/jns.2015.03.009
- W. J. Yoo, L. Zhao, C. J. Li, Aldrichimica Acta 44, (2011), 43-51. https://doi.org/10.1039/C2SC20590D
- L. Kantam, J. Yadav, S. Laha, S. Jha, Synlett 11, (2009), 1791-1794. 10.1055/s-0029-1217362
- A. Nguyen, L. Pham, N. Phan, T. Truong, Catal. Sci. Technol. 4, (2014), 4281-4288. https://doi.org/10.1039/C4CY00753K
- F. Nemati, A. Elhampour, H. Farrokhi and M. Natanzi Catal. Commun. 66, (2015), 15-20. https://doi.org/10.1016/j.catcom.2015.03.009
- Gonghua Song and Chao-Jun Li Green Chem. 12, (2010), 570-573. https://doi.org/10.1039/B920000B
- H. Alinezhad, K. Pakzad, M. Nasrollahzadeh. Appl. Organometal. Chem. 01, (2020), 5473. https://doi.org/10.1002/aoc.5473
- K. F. Shelke, S. B Sapkal, M. S. Shingare, Ultra-sound-assisted one-pot synthesis of 2, 4, 5- triarylimidazole derivatives catalyzed by Cerric ammonium nitrate in an aqueous medium, Chin. Chem. Lett. 20, (2009), 283-287. https://doi.org/10.1016/j.cclet.2008.11.033
- V. V Grushin, H. Alper Chem. Rev. 94, (1994), 1041. https://doi.org/10.1070/RC1995v064n01ABEH000136
- R. Chinchilla, C. Nájera, Chem. Rev. 107, (2007), 874−922. https://doi.org/10.1021/cr050992x
- K. Sonogashira, J. Organomet. Chem. 46, (2002), 653. https://doi.org/10.1016/S0022-328X(02)01158-0
- K. Sonogashira, In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang, P. J.; Eds.; Wiley-VCH: Weinheim, 1998, 203.
- K. Nicolaou, P. Bulger, D. Sarlah, Angew. Chem., Int. Ed. 2005, 44, 4442. https://doi.org/10.1002/anie.200500368
- A. Hay, J. Org. Chem. 27, (1962), 3320. https://doi.org/10.1021/jo01056a511
- C. Glaser Ber. Dtsch. Chem. Ges. 2 (1869), 422. https://doi.org/10.1002/cber.186900201183
- C. Glaser Ann. Chem. Pharm. 154, (1870) 137. http://dx.doi.org/10.1002/anie.201208597