10.57647/j.ijc.2024.1404.35

Recent advances of functionalized Fe3O4 as nanocatalyst in carbon-carbon coupling reaction: A review

  1. Savitribai Phule Pune University, Dada Patil Mahavidyalaya, Maharashtra, India
Recent advances of functionalized Fe3O4 as nanocatalyst in carbon-carbon coupling reaction: A review

Received: 2024-05-28

Revised: 2024-08-24

Accepted: 2024-09-07

Published 2024-10-08

How to Cite

Patil, S. M. (2024). Recent advances of functionalized Fe3O4 as nanocatalyst in carbon-carbon coupling reaction: A review. Iranian Journal of Catalysis, 14(4), 1-14. https://doi.org/10.57647/j.ijc.2024.1404.35

PDF views: 101

Abstract

Green Chemistry is the design of chemical products and processes that reduce or eliminate the use of hazardous substances. The benefits of green chemistry include safe food, clean water, clean air, less exposure to toxins, and safer consumer goods of all kinds. This approach is effective in safeguarding our ecosystem from harmful and poisonous materials. Scientists are becoming more interested in nanocatalysis since these processes are environmentally benign and safe. In the past ten years, magnetic nanoparticles have demonstrated remarkable efficacy as catalysts due to their ease of synthesis, modification, and enormous surface area ratio. Several of the most important features of these nanocatalysts are their high selectivity, excellent yields, and short reaction times, so these catalysts provide economical synthetic routes to target products. Organic reactions, including oxidation, hydrogenation, coupling, condensation, esterification, photocatalysis, and biocatalysts, ferrite nanocatalysts are coated with silica and are capable of catalyzing industrially. It is possible to synthesize transformations with excellent yields and selectivity using these nanocatalysts in a simple and eco-friendly manner. The catalytic activity of these catalysts can be reused for many repeated cycles as the magnetic properties enable easy separation after the reaction is complete by applying external magnetic fields. In this review, we focus on the synthesis of novel iron oxide nanoparticles using various synthetic methods. These catalysts are applicable in organic reactions such as Suzuki, Heck, Sonogashira, and A3 coupling reactions. Also, we discuss the recyclability and re-utilization of these nanoparticles.

Research Highlights

  • In this review, the biodegradable catalysts were investigated.
  • Iron oxide nanoparticle and silica-coated iron oxide nanoparticles were reviewed in different reaction.
  • Bond forming reaction and multicomponent reaction reviewed for lastly years.
  • Recyclability and re-utilization of the catalysts were investigated.

Keywords

  • Coupling reactions,
  • Iron oxide nanocatalyst,
  • Recyclability,
  • Re-utilization,
  • Silica-coated iron oxide

References

  1. V. Polshettiwar, R. Varma, Chem. Soc. Rev. 37 (2008), 1546. https://doi.org/10.1039/B716534J
  2. P. Anastas, J. Warner, Green Chemistry Theory and Practice; Oxford University Press: Oxford, 1998.
  3. A. Matlack Introduction to Green Chemistry; Marcel Dekker: New York, 2001.
  4. J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology; Blackwell Publishing: Abingdon, 2002.
  5. M. Lancaster, Green Chemistry: An Introductory Text; RSC Editions: Cambridge, 2002.
  6. M. Poliakoff, J. Fitzpatrick, T. Farren, P. Anastas Science 297, (2002), 807. 10.1126/science.297.5582.807
  7. M. Trost, Science, 1991, 254, 1471. https://doi.org/10.1126/science.1962206
  8. V. Polshettiwar, R. Varma, Aqueous Microwave Chemistry; RSC Publishing: Cambridge, 2010.
  9. V. Polshettiwar, R. Varma, Acc. Chem. Res. 41, (2008), 629. https://doi.org/10.1021/ar700238s
  10. M. Benaglia, Recoverable, and Recyclable Catalysts; John Wiley & Sons: Chichester, 2009.
  11. S. Wittmann, A. Sh€atz, R. Grass, W. Stark, O. Reiser, Angew. Chem., Int. Ed. 49, (2010), 1867. DOI: 10.1002/anie.201604349
  12. C. Coperet, M. Chabanas, R. Saint-Arroman, J. Basset, Angew. Chem., Int. Ed. 42, (2003), 156. https://doi.org/10.1002/anie.200390072
  13. J. Basset, C. Coperet, D. Soulivong, M. Taoufik, J. Thivolle-Cazat, J. Acc. Chem. Res. 43, (2010), 323. https://doi.org/10.1021/ar900203a
  14. A. Fonseca, F. Monte, M. da C. F. de Oliveira, M. de Mattos, G. Cordell, R. Braz-Filho and T. Lemos, J. Mol Catal. B Enzym. 57, (2009), 78-82. http://dx.doi.org/10.1016/j.molcatb.2008.06.022
  15. B. Saikia, P. Borah and N. Barua, Green Chem., 17, (2015), 4533-4536. https://doi.org/10.1039/C5GC01404B
  16. N. Singh, R. Nongrum, C. Kathing, J. Rani and R. Nongkhlaw, Green Chem Lett. Rev., 7, (2014), 137-144. https://doi.org/10.1080/17518253.2014.902506
  17. J. Sangshetti, N. Kokare, S. Kotharkar, D. Shinde. J. Chem. Sci. 120, (2008), 463-467. https://doi.org/10.1007/s12039-008-0072-6
  18. K. Doefman, Chemical Review 113, (2013) 2584. https://doi.org/10.1021/cr3002142
  19. H. Lu E. Salabas, F. Schuth, Angew. Chem. Int. Ed. 46, (2007) 1222-1244. DOI: 10.1002/anie.200602866
  20. V. Shubayev, T Pisanic, S. Jin, Adv. Drug. Deliv. Rev. (2009) 467-477. https://doi.org/10.1016/j.addr.2009.03.007
  21. J. Mc Carthy, R. Weissleder, Adv. Drug. Deliv. Rev. 60, (2008) 1241-1251. https://doi.org/10.1016%2Fj.addr.2008.03.014
  22. J. Aphestequy, S. Jacobo N. Schegoleva G. Kurlyandskaya. Alloy compound. 2009; 10: 037. Doi: 10.1016/j.jallcom.2009.10.037.
  23. C. Bergmann, D. Muller-Schulte, J. Oster, L. Brassard, A. Luubbe, J. Magn. Mat, 1999; 194: 45. https://ui.adsabs.harvard.edu/link_gateway/1999JMMM..194...45B/doi:10.1016/S0304-8853(98)00554-X
  24. S. Chaki Tasmira J Malek, M D Chaudhary, J P Tailor , and M P Deshpande Adv. Nat. Sci. Nano. Sci. Nano Technol. 6 (2015), 035009. DOI: 10.1088/2043-6262/6/3/035009
  25. Y. Kang, S. Rishbud, J. Rabolt, P. Stroeve Chem Mater, 8 (1996), 2209. http://dx.doi.org/10.1021/cm960157j
  26. M. Nasr-Esfahani, S. J. Hoseini, F. Mohammadi Chin. J. Catal., 32, (2011), 32, 1484-1489. DOI: 10.1016/S1872-2067(10)60263-X
  27. S. Bankar and S. Shelke Rev. Chem. Intermed. 44, (2018), 3507-3521. https://link.springer.com/article/10.1007/s11164-018-3321-4
  28. B. Vaddula, R. Saha, J. Varma, P. Veiga, S Branco Green Chem. 14, (2012) 8, 2133. https://doi.org/10.1039/C2GC35673B
  29. S. Sa, M. Gawande, A. Velhinho, J. Veiga, P. Branco Green Chem. 204, 16, (2004) 3494. http://dx.doi.org/10.1039/c4gc00558a
  30. A. Neto, L. Nascimento, M. Correa, F. Bohn, M.R.D. Bomio, F.V. Motta Materials Chemistry and Physics 2020, 242, 122489. https://doi.org/10.1016/j.matchemphys.2019.122489
  31. D. Petrov, R. Ivantsov, S. Zharkov, D. Velikanov, M. Molokeev, C. Lin, C. Tso, H.su, Y. Tseng, E. Lin, I. Edelman J. Magnetism Magnetic Mater. 493, (2020), 165692. http://dx.doi.org/10.1016/j.jmmm.2019.165692
  32. Yanting Yang, Kaidi Jiang, Jia Guo, Jing Li, Xiaoling Peng, Bo Hong, Xinqing Wang, Hongliang Ge. Chem. Eng. J. 381, (2020), 122596. https://doi.org/10.1016/j.cej.2019.122596
  33. Eman Alzahrani Current Anal. Chemist, 5, (2016), 465. http://dx.doi.org/10.2174/1573412912666160104234348
  34. R. Yang, X. Yu, H. Li, C. Wang, C. Wu, W. Zhang, W. Guo J. Alloy and Comp. 851, (2020), 156907. http://dx.doi.org/10.1016/j.jallcom.2020.156907
  35. A. Mohamed, N. Salama, A. Sultan, F. Manie, M. Abou El-Alamin Micro chemical Journal 159, (2020), 105424. https://doi.org/10.1016/j.microc.2020.105424
  36. S. Rather, O. Lemine J. Alloy and Comp. 812, (2020), 152058. https://doi.org/10.1016/j.jallcom.2019.152058
  37. K. Ishaq, A.Saka, A.Kamardeen, A. Ahmed, M.Alhassan, H. Abdullahi Eng. Sci. and Tech. Inter. Journal 20, (2017), 563-569.
  38. P. Komal, T. Kang, B. Randhawa J. Alloy and Compound. 701, (2017), 788-796. https://doi.org/10.1016/j.jallcom.2017.01.138
  39. Y. Zhang, B. Zhen, H. Li, Y. Feng App. Catal. A: General 453, (2013), 327-333. http://dx.doi.org/10.1016/j.cjche.2017.05.017
  40. M. Dewan, A. De, S. Mozumdar Inorg. Chem. Comm. 53, (2015), 92-96. https://doi.org/10.1016/j.inoche.2015.01.027
  41. B. Thangaraj, Z. Jio, L. Dai, D. Liu and W. Du Arabian J. Chem. 12, (2016), 4694-4706. https://doi.org/10.1016/j.arabjc.2016.09.004
  42. T. Gad-Allah, S. Kato, S. Satokawa, and T. Kojima, "Roll of core diameter and silica content in photo catalytic activity of TiO2/SiO2/Fe3O4 composite.” Solid-state science 9, (2007), 737-743. https://doi.org/10.1016/j.solidstatesciences.2007.05.012
  43. Suh Cem Pang, Sze Yun Kho and Suk Fun Chin J. Nanomater. 13, (2012), 427310. https://doi.org/10.1155/2012/427310
  44. E. Beyers, E. Biermans, S. Ribbens, et al. "Combined TiO2/SiO2 mesoporous photo catalyst with location and phase controllable TiO2 nanoparticle” Appl. Catal. B 88, (2009), 515-524. https://doi.org/10.1016/j.apcatb.2008.10.009
  45. A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, "Titania coating on monodisperses silica spheres (characterization using 2-propanol dehydration and TEM)" Langmuir 12, (1996), 3173-3179. https://doi.org/10.1021/la950808a
  46. T. Gad-Allah, S. Kato, S. Satokawa, and T. Kojima, "Role of core diameter and silica content in photo catalytic activity of TiO2/SiO2/Fe3O4 composite,” Solid-state science 9, (2007), 737-743. https://doi.org/10.1016/j.solidstatesciences.2007.05.012
  47. M. Gawande, P. Branco, I. Nogueira, C. Ghumman, N. Bundaleski, A, Santos, Teodoro O.M.N.D, Luque R Catalytic applications of a versatile Magnetically separatable Fe-Mo (Nanocat-Fe-Mo) Nanocatalyst Green Chem. 15, (2013), 682-689. https://doi.org/10.1039/C3GC36844K
  48. N. Azizi N, Mirmashhori B, Saidi MR Catal Commun 8, (2007), 2198-2203. http://dx.doi.org/10.1016/j.catcom.2007.04.032
  49. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42:3371-3393. https://doi.org/10.1039/C3CS35480F
  50. M. Nazish, S. Saravanan, N. Khan, P. Kumari, R. Kureshy, S. Abdi, H. Bajaj Chem-PlusChem 79, (2014) 1753-1760. https://doi.org/10.1002/cplu.201402191
  51. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. Basset 111, (2011) Chem Rev. 3036-3063. 10.12691/wjoc-4-1-1
  52. K. Azizi, A. Heydari A RSC Adv. 4, (2014) 8812-8816. https://doi.org/10.1039/C3RA46437G
  53. N. Geetmani Singh, M. Lily, S. Premila Devi, N. Rahman, A. Ahmed, A. Chandra, R. Nongkhlaw Green Chem. 18 (2016), 4216-4227. https://doi.org/10.1039/C6GC00724D
  54. M. Jin and D. Lee, Angew. Chem. Int. Ed. 49, (2010) 1119-1122. http://dx.doi.org/10.1002%2Fanie.200905626
  55. C. Safak and R. Simsek, Mini. Rev. Med. Chem. 7, (2006), 747-755. https://doi.org/10.2174/138955706777698606
  56. V. Grushin, H. Alper in S. Murai (Ed), Activation of unreactive bonds and organic synthesis Springer Berlin, 199, 193.
  57. M. Karak, L. Barbosa, RSC Adv. 4, (2014), 53442-53466. https://doi.org/10.1039/C4RA09105A
  58. H. Yang, Y. Wang, Y. Qin, Y. Chong, Q. Yong, L. Zhang, W. Li. Green chem. 13, (2011), 644-650. https://doi.org/10.1039/C0GC00541J
  59. C. Venkatesan, A. Sing J. Catal. 227, (2004), 148. https://doi.org/10.1016/j.jcat.2004.06.026
  60. C. Gonalez-Arellano, A. Corma, M. Iglesias, F. Sanchez, Adv. Synth. Catal. 346, (2004), 1758. DOI: 10.1002/adsc.200404119
  61. N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun. 11, (1981), 513. http://hdl.handle.net/2115/44302
  62. N. Miyaura, A. Suzuki, A. Chem. Rev. 95, (1995), 2457. http://hdl.handle.net/2115/44007
  63. N. Miyaura, Cross-Coupling Reactions: A Practical Guide; Springer: New York, 2002
  64. N. Pham, M. Van Der Sluys, M.; C. Jones, Adv. Synth. Catal. 2006, 348, 609. https://doi.org/10.1002/adsc.200505473
  65. O. Baudoin, M. Cesario, D. Guenard, F. Gueritte, J. Org. Chem. 65, (2000), 9268. https://doi.org/10.1021/jo005663d
  66. S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633. https://doi.org/10.1016/S0040-4020(02)01188-2
  67. J. Albaneze-Walker, J. Murry, A. Soheili, S. Ceglia, S. Springfield, C. Bazaral, D. Dormer, L. Hughes, Tetrahedron 61, (2005), 6330. https://doi.org/10.1016/j.tet.2005.03.143
  68. M. Kertesz, C. Choi, S. Yang, Chem. Rev. 105, (2005), 3448. 10.1021/cr990357p
  69. D. Horton, M. Bourne, M. Smythe, Chem. Rev. 103, (2003), 893. https://doi.org/10.1021/cr020033s
  70. G. Bringmann, C. Gunther, M. Ochse, O. Schupp, S. Tasler, Biaryls in Nature: A Multi-Faceted Class of Stereochemically, Biosynthetically, and Pharmacologically Intriguing Secondary Metabolites, Springer-Verlag, New York, 2001.
  71. P. Hajduk, M. Bures, J. Praestgaard, S.W. Fesik, J. Med. Chem. 43, (2000), 3443. https://doi.org/10.1021/jm000164q
  72. G. Bemis, M. Murcko, J. Med. Chem. 39, (1996), 2887. https://doi.org/10.1021/jm9602928
  73. S.P. Vibhute et al. Tetrahedron Lett. 61, (2020), 151594. http://dx.doi.org/10.1016/j.tetlet.2020.151944
  74. A. Dewan, U. Bora, G. Borah, Tetrahedron Lett. 55, (2014), 1689-1692. https://doi.org/10.1016/j.tetlet.2014.01.041
  75. N. Shahnaz, B. Banik, P. Das, Tetrahedron Lett. 54, (2013), 2886-2889. https://doi.org/10.1016/j.tetlet.2013.03.115
  76. S. Patil, C. Weng, P. Huang, F. Hong, Tetrahedron 65, (2009), 2889-2897. https://doi.org/10.1016/j.tet.2009.02.017
  77. Y. Lai, H. Chen, W. Hung, C. Lin, F. Hong, Tetrahedron 61, (2005), 9484-9489. https://doi.org/10.1016/j.tet.2005.08.005
  78. A. Naghipour and A. Fakhir Cat. Commun. 73, (2016), 39-45. 10.14311/NNW.2016.26.003
  79. V. Sinha, A. K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan. Int. J. Pharm. 274, (2004), 1-33. https://doi.org/10.1016/j.ijpharm.2003.12.026
  80. E. Guibal. Prog. Polym. Sci. 30, (2005), 71-109. https://doi.org/10.1016/j.progpolymsci.2004.12.001
  81. M. Bodnar, J. F. Hartmann, J. Borbely. Biomacromolecules 6, (2005), 2521-2527. https://doi.org/10.1021/bm0502258
  82. S. H. Lim, S. M. Hudson. Carbohydr. Res. 339, (2004), 313-319. https://doi.org/10.1016/j.carres.2003.10.024
  83. K.K. Senapati, S. Roy, C. Borgohain, P. Phukan, J. Mol. Catal. A: Chem. 352, (2012), 128-134. doi:10.1016/j.molcata.2011.10.022
  84. L.J. Goossen, K. Ghosh, Angew. Chem. Int. Ed. 40, (2001), 3458. https://doi.org/10.1002/1521-3773(20010917)40:18%3C3458::aid-anie3458%3E3.0.co;2-0
  85. Zhengping Dong and Jiantai Ma Appl. Catal. B: Environ. 162, (2015), 372-380. https://doi.org/10.1016/j.apcatb.2014.07.009
  86. W. Li, B. Zhang, X. Li, H. Zhang, Q. Zhang, Appl. Catal. A: General 459, (2013), 65-72. https://doi.org/10.1016/j.apcata.2013.04.010
  87. A. Khazaei, M. Khazaei, M. Nasrollahzadeh, Tetrahedron 05, (2017), 054. https://doi.org/10.1016/j.tet.2017.05.054
  88. K.C. Nicolaou, P.G. Bulger, D. Sarlah, Angew. Chem., Int. Ed. 44, (2005), 4442-4489. https://doi.org/10.1002/anie.200500368
  89. J. Magano, J.R. Dunetz, Chem. Rev. 111, (2011), 2177–2250. https://doi.org/10.1021/cr100346g
  90. A. Molna, Chem. Rev. 111, (2011), 2251-2320. https://doi.org/10.1021/acs.chemrev.7b00443
  91. C. Gonzalez-Arellano, A. Corma, M. Iglesias, F. Sanchez, Adv. Synth. Catal. 346, (2004), 1758. https://doi.org/10.1002/adsc.200404119
  92. V. Polshettiwar, A. Molnar, Tetrahedron 63, (2007), 6949. https://doi.org/10.1016/j.tet.2007.04.023
  93. M. Shanmugasundaramet, A. Senthilvelan, A. Kore Tetrahedron Lett. 61, (2020), 151801. https://doi.org/10.1016%2Fj.tetlet.2020.152464
  94. R. Rudge, E. Scholten, J. Dijksman. Colloids and Surfaces A: Physicochem. Eng. Aspects 27, (2019), 90-97. https://doi.org/10.1016/j.cofs.2019.06.011
  95. S. Singh, B. Patil, M. Nagarkar Catal. Commun. 35, (2013), 11-16. https://doi.org/10.1016/j.catcom.2013.02.003
  96. Maiyong Zhu and Guowang Diao J. Phys. Chem. C 115, (2011), 24743-24749. https://doi.org/10.1021/jp206116e
  97. Z. Zhang, H. Duan, S. Li, Y. Lin, Langmuir Russian J. Gen. Chem. 26, (2010), 6676. https://doi.org/10.1134/S1070363216070276
  98. K. Nicolaou, R. Zipkin, R. Dolle, B. Harris, J. Am. Chem. Soc. 106, (1984), 3548-3551. doi:10.1016/j.tet.2010.04.008
  99. K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 16, (1975), 4467. https://doi.org/10.1016/S0040-4039(02)00393-3
  100. A. Hay, J. Org. Chem. 27, (1962), 3320. https://doi.org/10.1021/jo01056a511
  101. H. FirouzabadI and N. Iranpour Adv. Synth. Catal. 353, (2011), 125-132. https://doi.org/10.1016/j.molcata.2011.08.010
  102. G. Jadhav, A. Sarode, M. Nagarkar. Tetrahedron Lett. 14, (2015), 1771. https://doi.org/10.1016/j.tetlet.2015.02.029
  103. N.T.S. Phan, H.V. Le J. Mol. Catal. A: Chem. 134, (2011), 130-138. 10.7508/jns.2015.03.009
  104. W. J. Yoo, L. Zhao, C. J. Li, Aldrichimica Acta 44, (2011), 43-51. https://doi.org/10.1039/C2SC20590D
  105. L. Kantam, J. Yadav, S. Laha, S. Jha, Synlett 11, (2009), 1791-1794. 10.1055/s-0029-1217362
  106. A. Nguyen, L. Pham, N. Phan, T. Truong, Catal. Sci. Technol. 4, (2014), 4281-4288. https://doi.org/10.1039/C4CY00753K
  107. F. Nemati, A. Elhampour, H. Farrokhi and M. Natanzi Catal. Commun. 66, (2015), 15-20. https://doi.org/10.1016/j.catcom.2015.03.009
  108. Gonghua Song and Chao-Jun Li Green Chem. 12, (2010), 570-573. https://doi.org/10.1039/B920000B
  109. H. Alinezhad, K. Pakzad, M. Nasrollahzadeh. Appl. Organometal. Chem. 01, (2020), 5473. https://doi.org/10.1002/aoc.5473
  110. K. F. Shelke, S. B Sapkal, M. S. Shingare, Ultra-sound-assisted one-pot synthesis of 2, 4, 5- triarylimidazole derivatives catalyzed by Cerric ammonium nitrate in an aqueous medium, Chin. Chem. Lett. 20, (2009), 283-287. https://doi.org/10.1016/j.cclet.2008.11.033
  111. V. V Grushin, H. Alper Chem. Rev. 94, (1994), 1041. https://doi.org/10.1070/RC1995v064n01ABEH000136
  112. R. Chinchilla, C. Nájera, Chem. Rev. 107, (2007), 874−922. https://doi.org/10.1021/cr050992x
  113. K. Sonogashira, J. Organomet. Chem. 46, (2002), 653. https://doi.org/10.1016/S0022-328X(02)01158-0
  114. K. Sonogashira, In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.; Stang, P. J.; Eds.; Wiley-VCH: Weinheim, 1998, 203.
  115. K. Nicolaou, P. Bulger, D. Sarlah, Angew. Chem., Int. Ed. 2005, 44, 4442. https://doi.org/10.1002/anie.200500368
  116. A. Hay, J. Org. Chem. 27, (1962), 3320. https://doi.org/10.1021/jo01056a511
  117. C. Glaser Ber. Dtsch. Chem. Ges. 2 (1869), 422. https://doi.org/10.1002/cber.186900201183
  118. C. Glaser Ann. Chem. Pharm. 154, (1870) 137. http://dx.doi.org/10.1002/anie.201208597