10.57647/j.ijc.2024.1404.36

Facile Synthesis of Waste Tire Scrap Derived Activated Carbon-ZnO Nanocomposite for the Photodegradation of Malachite Green and Antibacterial Activity

  1. State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China AND Department of Basic Science and Humanities, Dawood University of Engineering and Technology, Karachi, Sindh, 74800 Pakistan
  2. Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan
  3. Department of Environmental Sciences, University of Sindh Jamshoro, 76080, Pakistan
  4. State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
  5. Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Sindh, 74800 Pakistan
  6. University of Sindh, Jamshoro, Pakistan
  7. Department of Microbiology, University of Karachi, Karachi, Pakistan8
Facile Synthesis of Waste Tire Scrap Derived Activated Carbon-ZnO Nanocomposite for the Photodegradation of Malachite Green and Antibacterial Activity

Received: 2024-06-25

Revised: 2024-08-01

Accepted: 2024-08-23

Published 2024-10-08

How to Cite

Shah Bukhari, S. N. U., Shah, A. A., Bhatti, M. A., Liu, W., Shah, A. K., Ibhupoto, Z. H., & Naqvi, A. Z. (2024). Facile Synthesis of Waste Tire Scrap Derived Activated Carbon-ZnO Nanocomposite for the Photodegradation of Malachite Green and Antibacterial Activity. Iranian Journal of Catalysis, 14(4). https://doi.org/10.57647/j.ijc.2024.1404.36

PDF views: 124

Abstract

Wastewater containing toxic compounds poses health hazards to living beings. Current research focuses on the degradation of malachite green (MG) as a hazardous pollutant dye by using tire scrap-derived activated carbon (AC) to develop nanocomposites with ZnO by hydrothermal method. The morphology, crystal quality, electrochemical active surface area (ECSA), EIS, antibacterial activity, and optical and photo luminance aspects were studied. The morphology was studied by SEM. The crystalline and elemental composition study was performed using XRD and FTIR, respectively. UV-visible spectroscopy and photoluminescence were employed for optical studies. The ZnO@C nanocomposite exhibited a nanorod-like shape and hexagonal phase. The role of AC in ZnO@C composite was investigated for the removal of MG under UV illumination. Results exhibited that the degradation rate for MG was highly dependent upon dye concentration and pH. Furthermore, an antibacterial study was performed on the nanocomposites. A significant reduction in the band gap (12.6%) was achieved with excellent degradation efficiency of 100%. These results suggest that tire scrap waste could produce a new class of carbon materials for various applications, especially in the energy, environment, and biomedical sectors.

Research Highlights

  • Synthesis of ZnO@C nanocomposites via simple hydrothermal method.
  • XRD, SEM, EDS, FTIR and TEM exhibited structural and compositional characterization.
  • The photocatalytic performance and band gaps were measured using UV-Vis and PL spectroscopy analyses of the fluorescence of the photocatalyst.
  • ECSA analysis demonstrated a specific capacitance of 7.822 μFcm-2 at 130 mVs-1, indicating charge storage capability.
  • CV and EIS results provided the quantified measurement of resistance to charge transfer 2.875 Ω.
  • This study addresses the ability and capability towards photocatalytic degradation using novel scrap tire-derived Activated Carbon-based ZnO@C nanocomposites.

Keywords

  • Activated Carbon (AC),
  • Antibacterial Activity,
  • Malachite Green,
  • Photodegradation,
  • Tire Scrap,
  • ZnO Nanocomposite

References

  1. Nyika, Joan, and Megersa Dinka. J. Water Health 20(2) (2022), 329-343. DOI: https://doi.org/10.2166/wh.2022.228
  2. Afkhami, Maryam, Banafsheh Zahraie, and Mehdi Ghorbani. J Arid Environ. 199 (2022), 104715. DOI: https://doi.org/10.1016/j.jaridenv.2022.104715
  3. Al-Tohamy, Rania, Sameh S. Ali, Fanghua Li, Kamal M. Okasha, Yehia A-G. Mahmoud, Tamer Elsamahy, Haixin Jiao, Yinyi Fu, and Jianzhong Sun. Ecotoxicol. Environ. Saf. 231 (2022), 113160. DOI: https://doi.org/10.1016/j.ecoenv.2021.113160
  4. Shah, Aqeel Ahmed, Muhammad Ali Bhatti, Aneela Tahira, Ali Dad Chandio, Iftikhar A. Channa, Ali Ghulam Sahito, Ebrahim Chalangar, Magnus Willander, Omer Nur, and Zafar Hussain Ibupoto. Ceram. Inter. 46(8) (2020), 9997-10005. DOI: https://doi.org/10.1016/j.ceramint.2019.12.024
  5. Hasan, Md Khalid, Abrar Shahriar, and Kudrat Ullah Jim. Heliyon 5(8) (2019). DOI: https://doi.org/10.1016/j.heliyon.2019.e02145
  6. Sachidhanandham A, Periyasamy A P. Environmentally friendly wastewater treatment methods for the textile industry. In Handbook of nanomaterials and nanocomposites for energy and environmental applications[M]. Springer, 2021, 2269-2307. DOI: https://doi.org/10.1007/978-3-030-36268-3_54
  7. Samsami, Shakiba, Maryam Mohamadizaniani, Mohammad-Hossein Sarrafzadeh, Eldon R. Rene, and Meysam Firoozbahr. Process safety and environmental protection 143 (2020), 138-163. DOI: https://doi.org/10.1016/j.psep.2020.05.034
  8. Bhatti, Muhammad Ali, Aneela Tahira, Ali dad Chandio, Khalida Faryal Almani, Adeel Liaquat Bhatti, Baradi Waryani, Ayman Nafady, and Zafar Hussain Ibupoto. Res. Chem. Intermed. 47 (2021): 1581-1599. DOI: https://doi.org/10.1007/s11164-020-04391-6
  9. Bhatti, Muhammad Ali, Aqeel Ahmed Shah, Khalida Faryal Almani, Aneela Tahira, Seyed Ebrahim Chalangar, Ali dad Chandio, Omer Nur, Magnus Willander, and Zafar Hussain Ibupoto. Ceramics Inter. 45(17) (2019), 23289-23297. DOI: https://doi.org/10.1016/j.ceramint.2019.08.027
  10. Ujjan, Zaheer Ahmed, Muhammad Ali Bhatti, Aqeel Ahmed Shah, Aneela Tahira, Nek Muhammad Shaikh, Shusheel Kumar, Abdul Qayoom Mugheri et al. Ceram. Inter. 48(4) (2022), 5535-5545. DOI: https://doi.org/10.1016/j.ceramint.2021.11.098
  11. Chawla, Akshay, Anita Sudhaik, Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Tansir Ahamad, Van-Huy Nguyen, Rangabhashiyam Selvasembian, Ajeet Kaushik, and Pardeep Singh. J. Environ. Chem. Eng. (2024), 113125. DOI: https://doi.org/10.1016/j.jece.2024.113125
  12. Banerjee, Swagata, Suresh C. Pillai, Polycarpos Falaras, Kevin E. O’shea, John A. Byrne, and Dionysios D. Dionysiou. J. Physic. Chem. Lett. 5(15) (2014), 2543-2554. DOI: https://doi.org/10.1021/jz501030x
  13. Bhatti, Muhammad Ali, Aneela Tahira, Aqeel Ahmed Shah, Umair Aftab, Brigitte Vigolo, Amira R. Khattab, Ayman Nafady, Imran Ali Halepoto, Matteo Tonezzer, and Zafar Hussain Ibupoto. RSC Adv. 12(39) (2022), 25549-25564. DOI: https://doi.org/10.1039/D2RA04749G
  14. Bhatti, Muhammad Ali, Aqeel Ahmed Shah, Khalida Faryal Almaani, Aneela Tahira, Ali Dad Chandio, Magnus Willander, Omer Nur, et al. J. Nanosci. Nanotech. 21(4) (2021), 2511-2519. DOI: https://doi.org/10.1166/jnn.2021.19107
  15. Karthikeyan, C., Prabhakarn Arunachalam, Kaliappan Ramachandran, Abdullah M. Al-Mayouf, and S. J. J. O. A. Karuppuchamy. J. Alloy. Comp. 828 (2020), 154281. DOI: https://doi.org/10.1016/j.jallcom.2020.154281
  16. Soni, Vatika, Pardeep Singh, Sourbh Thakur, Tansir Ahamad, Van-Huy Nguyen, Vishal Chaudhary, Naveen Kumar, Savas Kaya, Chaudhery Mustansar Hussain, and Pankaj Raizada. J. Taiwan Instit. Chem. Eng. 159 (2024), 105419. DOI: https://doi.org/10.1016/j.jtice.2024.105419
  17. Derikvandi, Hadis, and Alireza Nezamzadeh-Ejhieh. J. Hazard. Mater. 321 (2017): 629-638. DOI: https://doi.org/10.1016/j.jhazmat.2016.09.056
  18. Patial, Shilpa, Rohit Kumar, Anita Sudhaik, Sourbh Thakur, Naveen Kumar, Tansir Ahamad, Savas Kaya, Chaudhery Mustansar Hussain, Pardeep Singh, and Pankaj Raizada. Solid State Sci. 153 (2024): 107576. DOI: https://doi.org/10.1016/j.solidstatesciences.2024.107576
  19. Sharma, Simran, Anita Sudhaik, Pankaj Raizada, Tansir Ahamad, Sourbh Thakur, Quyet Van Le, Rangabhashiyam Selvasembian, Van-Huy Nguyen, Ajay Kumar Mishra, and Pardeep Singh. J. Environ. Chem. Eng. (2024), 112984. DOI: https://doi.org/10.1016/j.jece.2024.112984.
  20. Ghumro, Seema Sarwar, Bhajan Lal, and Tajnees Pirzada. ACS Omega 7(5) (2022), 4333-4341. DOI: https://doi.org/10.1021/acsomega.1c06112
  21. Patila, Dinesh, M. B. Sridharaa, J. Manjannaa, and Sandip Sabaleb. Iran. J. Catal. 13(2) (2023), 157-167. https://journals.iau.ir/article_704536_73bc2b57e18790494582fe7050663cec.pdf
  22. M.A. Bhatti, K.F. Almaani, A.A. Shah, A. Tahira, A.D. Chandio, A.Q. Mugheri, A.l. Bhatti, B. Waryani, S.S. Medany, A.J.J.o.C.S. Nafady, (2022) 1-12. DOI: https://doi.org/10.1007/s10876-021-02069-6
  23. Shah, Aqeel Ahmed, Ali Dad Chandio, and Asif Ahmed Sheikh. "Boron doped ZnO nanostructures for photo degradation of methylene blue, methyl orange and rhodamine B." J. Nanosci. Nanotech. 21(4) (2021), 2483-2494. DOI: https://doi.org/10.1166/jnn.2021.19315
  24. Amani-Beni, Zahra, and Alireza Nezamzadeh-Ejhieh. Analytica chimica acta 1031 (2018), 47-59. DOI: https://doi.org/10.1016/j.aca.2018.06.002
  25. M. Mariana, A.K. HPS, E. Mistar, E.B. Yahya, T. Alfatah, M. Danish, M.J.J.o.W.P.E. Amayreh, 43 (2021), 102221. DOI: https://doi.org/10.1016/j.aca.2018.06.002
  26. Bhatti, Muhammad Ali, Khalida Faryal Almani, Aqeel Ahmed Shah, Aneela Tahira, Iftikhar Ahmed Chana, Umair Aftab, Mazhar Hussain Ibupoto et al. Nanotechnology 34(3) (2022): 035602. DOI: https://doi.org/10.1088/1361-6528/ac98cc
  27. Sirelkhatim, Amna, Shahrom Mahmud, Azman Seeni, Noor Haida Mohamad Kaus, Ling Chuo Ann, Siti Khadijah Mohd Bakhori, Habsah Hasan, and Dasmawati Mohamad. Nano-Micro Lett. 7 (2015), 219-242. DOI: https://doi.org/10.1007/S40820-015-0040-X
  28. Padmavathy, Nagarajan, and Rajagopalan Vijayaraghavan, Sci. Tech. Advan. Mater. (2008). DOI: https://doi.org/10.1088/1468-6996/9/3/035004
  29. Buşilă, Mariana, Viorica Muşat, Torsten Textor, and Boris Mahltig. Rsc Adv. 5(28) (2015), 21562-21571. DOI: https://doi.org/10.1039/C4RA13918F
  30. Aditya, Anusha, Sabyasachi Chattopadhyay, Diksha Jha, Hemant K. Gautam, Souvik Maiti, and Munia Ganguli. ACS Appl. Mater. Interfac. 10(18) (2018), 15401-15411. DOI: https://doi.org/10.1021/acsami.8b01463
  31. Banyal, Rahul, Pankaj Raizada, Tansir Ahamad, Savaş Kaya, Mikhail M. Maslov, Vishal Chaudhary, Chaudhery Mustansar Hussain, and Pardeep Singh. J. Physic. Chem. Solids (2024): 112132. DOI: https://doi.org/10.1016/j.jpcs.2024.112132
  32. Čepin, Marjeta, Vasko Jovanovski, Matejka Podlogar, and Zorica Crnjak Orel. J. Mater. Chem. B 3(6) (2015): 1059-1067. DOI: https://doi.org/10.1039/C4TB01300J
  33. Özbaşa, E. Elmaslar, B. Balçıkb, and H. K. Ozcana. Desalin Water Treat 172 (2019), 78-85. https://www.deswater.com/DWT_articles/vol_172_papers/172_2019_78.pdf
  34. Muttil, Nitin, Saranya Jagadeesan, Arnab Chanda, Mikel Duke, and Swadesh Kumar Singh. Appl. Sci. 13(1) (2022), 257. DOI: https://doi.org/10.3390/app13010257
  35. Chan, Yu Bin, Mohammod Aminuzzaman, Md Khalilur Rahman, Yip Foo Win, Sabiha Sultana, Shi-Yan Cheah, Akira Watanabe et al. Green Processing and Synthesis 13(1) (2024), 20230251. DOI: https://doi.org/10.1515/gps-2023-0251
  36. Selvanathan, Vidhya, Mohammod Aminuzzaman, Lee Xian Tan, Yip Foo Win, Eddy Seong Guan Cheah, Mei Hsuan Heng, Lai-Hock Tey et al. J. Mater. Res. Tech. 20 (2022), 2931-2941. DOI: https://doi.org/10.1016/j.jmrt.2022.08.028
  37. Shaikh, Benazir, Muhammad Ali Bhatti, Aqeel Ahmed Shah, Aneela Tahira, Abdul Karim Shah, Azam Usto, Umair Aftab et al. Nanomaterials 12(21) (2022), 3754. DOI: https://doi.org/10.3390/nano12213754.
  38. Bukhari, Syed Nizam Uddin Shah, Aqeel Ahmed Shah, Muhammad Ali Bhatti, Aneela Tahira, Iftikhar Ahmed Channa, Abdul Karim Shah, Ali Dad Chandio et al. Nanomaterials 12(20) (2022): 3568. DOI: https://doi.org/10.3390/nano12203568
  39. Norouzi, Abbas, Alireza Nezamzadeh-Ejhieh, and Razieh Fazaeli. Mater. Sci. Semiconduct. Processing 122 (2021): 105495. DOI: https://doi.org/10.1016/j.mssp.2020.105495
  40. Prasad, Neena, Saipavitra VM M, Hariharan Swaminathan, Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, and Karthikeyan Balasubramanian. Appl. Physic. A 122 (2016), 1-12. DOI: https://doi.org/10.1007/s00339-016-0121-9
  41. Kamaraj, M., N. R. Srinivasan, Gizachew Assefa, Amare T. Adugna, and Muluken Kebede. "Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: extended application in tannery industrial wastewater." Environmen. Tech. Innov. 17 (2020), 100540. DOI: https://doi.org/10.1016/j.eti.2019.100540
  42. Senthilkumaar, S., K. Rajendran, S. Banerjee, T. K. Chini, and VJMSiSP Sengodan. Mater. Sci. Semiconduct. Processing 11(1) (2008), 6-12. DOI: https://doi.org/10.1016/j.mssp.2008.04.005
  43. Zandi, S., P. Kameli, H. Salamati, H. Ahmadvand, and M. Hakimi. Physica B: Condensed Matter 406(17) (2011), 3215-3218. DOI: https://doi.org/10.1016/j.physb.2011.05.026
  44. Aminu, Idris, Sani M. Gumel, Wasila A. Ahmad, and Adamu A. Idris. Amer. J. Anal. Chem. 11(01) (2020), 47. DOI: https://doi.org/10.4236/ajac.2020.111004
  45. Mehrabanpour, Najme, Alireza Nezamzadeh-Ejhieh, Shirin Ghattavi, and Ali Ershadi. Appl. Surf. Sci. 614 (2023), 156252. DOI: https://doi.org/10.1016/j.apsusc.2022.156252
  46. Zhao, Si-Wei, Hong-Fen Zuo, Yuan-Ru Guo, and Qing-Jiang Pan. J. Alloy. Comp. 695 (2017), 1029-1037. DOI: https://doi.org/10.1016/j.jallcom.2016.10.226
  47. Lee, Ching-Ting. Materials 3(4) (2010), 2218-2259. DOI: https://doi.org/10.3390/ma3042218
  48. Yousefi, Ailin, and Alireza Nezamzadeh-Ejhieh. Iran. J. Catal. 11(3) (2021), 247-259. https://journals.iau.ir/article_684355_ba281a758a9084e2a3f2d3bf091152da.pdf
  49. Rezaei, Mahdieh, and Alireza Nezamzadeh-Ejhieha. Inter. J. Hyd. Ener. 45(46) (2020), 24749-24764. DOI: https://doi.org/10.1016/j.ijhydene.2020.06.258
  50. Jing, Huan-Ping, Chong-Chen Wang, Yi-Wen Zhang, Peng Wang, and Ran Li. Rsc Adv. 4(97) (2014), 54454-54462. DOI: https://doi.org/10.1039/C4RA08820D
  51. Molla, Md Ashraful Islam, Ikki Tateishi, Mai Furukawa, Hideyuki Katsumata, Tohru Suzuki, and Satoshi Kaneco. Open J. Inorg. Non-metal. Mater. 7(1) (2017), 1-7. DOI: https://doi.org/10.4236/ojinm.2017.71001
  52. Ramamoorthy, M., S. Ragupathy, D. Sakthi, V. Arun, and N. Kannadasan. Results in Materials 8 (2020), 100144. DOI: https://doi.org/10.1016/j.rinma.2020.100144
  53. Karthik, K. V., A. V. Raghu, Kakarla Raghava Reddy, R. Ravishankar, M. Sangeeta, Nagaraj P. Shetti, and Ch Venkata Reddy. Chemosphere 287 (2022), 132081. DOI: https://doi.org/10.1016/j.chemosphere.2021.132081
  54. Yang, Tangtao, Junmin Peng, Yun Zheng, Xuan He, Yidong Hou, Ling Wu, and Xianzhi Fu. Appl. Catal. B: Environ. 221 (2018), 223-234. DOI: https://doi.org/10.1016/j.apcatb.2017.09.025
  55. Rezaei, Mahdieh, Alireza Nezamzadeh-Ejhieh, and Ahmad Reza Massah. Ecotoxic. Environ. Saf. 269 (2024): 115927. DOI: https://doi.org/10.1016/j.ecoenv.2024.115927
  56. Meena, S., Dipti Vaya, and B. K. Das. Bullet. Mater. Sci. 39 (2016): 1735-1743. DOI: https://doi.org/10.1007/s12034-016-1318-4
  57. Aminuzzaman, Mohammod, Pei Sian Ng, Wee-Sheng Goh, Sayaka Ogawa, and Akira Watanabe. Inorg. Nano-Metal Chem. 49(11) (2019), 401-411. DOI: https://doi.org/10.1080/24701556.2019.1661464
  58. Rezaei, Mahdieh, Alireza Nezamzadeh-Ejhieh, and Ahmad Reza Massah. Energy & Fuels 38, no. 9 (2024): 7637-7664. DOI: https://doi.org/10.1021/acs.energyfuels.4c00325
  59. Aminuzzaman, Mohammod, Lim Poh Ying, Wee-Shenog Goh, and Akira Watanabe. Bullet. Mater. Sci. 41 (2018): 1-10. DOI: https://doi.org/10.1007/s12034-018-1568-4
  60. Arunkumar, Manasai, Arputharaj Samson Nesaraj, Clementz Edwardraj Freeda Christy, and Chinnappan Joseph Kennady. Nanotech. Environ. Eng. 8(3) (2023), 643-654. DOI: https://doi.org/10.1007/s41204-022-00300-x
  61. Babajani, N., and S. Jamshidi. J. Alloy. Comp. 782 (2019), 533-544. DOI: https://doi.org/10.1016/j.jallcom.2018.12.164
  62. Meena, Parmeshwar Lal, Krishna Poswal, and Ajay Kumar Surela. Water Environ. J. 36(3), (2022) 513-524. DOI: https://doi.org/10.1111/wej.12783
  63. Saad, Alaa Magdy, Mostafa R. Abukhadra, Sayed Abdel-Kader Ahmed, Ali M. Elzanaty, Amr H. Mady, Mohamed A. Betiha, Jae-Jin Shim, and Abdelrahman M. Rabie. J. Environ. Manag. 258 (2020), 110043. DOI: https://doi.org/10.1016/j.jenvman.2019.110043
  64. Rout, Dibya Ranjan, Shivam Chaurasia, and Hara Mohan Jena. J. Environ. Manag. 318 (2022), 115449. DOI: https://doi.org/10.1016/j.jenvman.2022.115449
  65. Yadav, Renu, Tejpal S. Chundawat, Pooja Rawat, Gyaneshwar K. Rao, and Dipti Vaya. Bullet. Mater. Sci. 44 (2021), 1-8. DOI: https://doi.org/10.1007/s12034-021-02533-z
  66. Loo, Wei Wen, Yean Ling Pang, Steven Lim, Kam Huei Wong, Chin Wei Lai, and Ahmad Zuhairi Abdullah. Chemosphere 272 (2021), 129588. DOI: https://doi.org/10.1016/j.chemosphere.2021.129588
  67. S. Sukri, E. Isa, K. Shameli, Photocatalytic degradation of malachite green dye by plant-mediated biosynthesized zinc oxide nanoparticles, in: IOP conference series: materials science and engineering, IOP Publishing, 2020, pp. 012034. DOI: https://doi.org/10.1088/1757-899X/808/1/012034
  68. Tiwari, Nitika, Sankha Chakrabortty, Kundan Samal, Sanjib Moulick, Benu Gopal Mohapatra, Sasmita Samanta, P. K. Mohapatra et al. J. Taiwan Instit. Chem. Eng. 145 (2023), 104800. DOI: https://doi.org/10.1016/j.jtice.2023.104800
  69. Yulizar, Yoki, Iman Abdullah, Rizki Marcony Surya, and Naya Luvy Alifa. J. Environ. Manag. 342 (2023), 118139. DOI: https://doi.org/10.1016/j.jenvman.2023.118139
  70. Zhang, Yue, Bin Liu, Ning Chen, Yanping Du, Tao Ding, Yunfeng Li, and Wei Chang. Optical Materials 133 (2022), 112978. DOI: https://doi.org/10.1016/j.optmat.2022.112978
  71. Madhushree, R., Jadan Resnik Jaleel Uc, Dephan Pinheiro, N. K. Renuka, Sunaja Devi Kr, Juhyeon Park, Sivakumar Manickam, and Myong Yong Choi. Environ. Res. 214 (2022), 113742. DOI: https://doi.org/10.1016/j.envres.2022.113742
  72. Wang, Shuo, Zhenke Chen, Ying Zhao, Chenlu Sun, and Jianye Li. J. Rare Earths 39(7) (2021), 772-780. DOI: https://doi.org/10.1016/j.jre.2020.04.009
  73. Ebrahimi, Roya, Khosro Hossienzadeh, Afshin Maleki, Reza Ghanbari, Reza Rezaee, Mahdi Safari, Behzad Shahmoradi et al. J. Environ. Health Sci. Eng. 17 (2019), 479-492. DOI: https://doi.org/10.1007/s40201-019-00366-x
  74. Van Hung, Nguyen, Bui Thi Minh Nguyet, Bui Thi Thuy Linh, Nguyen Huu Nghi, Nguyen Thanh Tuoi, and Nguyen Anh Tien. Vietnam J. Catal. Adsorp. 9(3) (2020), 1-8. DOI: https://doi.org/10.51316/jca.2020.041
  75. Taha, Amel, Melek Ben Aissa, and Enshirah Da’na. Molecules 25(7) (2020), 1586. DOI: https://doi.org/10.3390/molecules25071586
  76. Menazea, A. A., and Nasser S. Awwad. J. Mater. Res. Tech. 9(4) (2020), 9434-9441. DOI: https://doi.org/10.1016/j.jmrt.2020.05.103
  77. Wang, Yuzheng, Xiangxin Xue, and He Yang. Vacuum 101 (2014), 193-199. DOI: https://doi.org/10.1016/j.vacuum.2013.08.006
  78. Kaviyarasu, K., N. Geetha, K. Kanimozhi, C. Maria Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, and M. Maaza. Mater. Sci. Eng. C 74 (2017), 325-333. DOI: https://doi.org/10.1016/j.msec.2016.12.024
  79. Albukhaty, Salim, L. Al-Bayati, H. Al-Karagoly, and S. Al-Musawi. Animal Biotech. 33(5) (2022), 864-870. DOI: https://doi.org/10.1080/10495398.2020.1842751
  80. Nguyen, Van Thang, Viet Tien Vu, The Huu Nguyen, Tuan Anh Nguyen, Van Khanh Tran, and Phuong Nguyen-Tri. J. Comp. Sci. 3(2) (2019), 61. DOI: https://doi.org/10.3390/jcs3020061