skip to main content

Theoretical insights into the adsorption behavior of CO molecules on the pure and Vn-doped BN nanotubes



Interaction of pure and Vn-doped (8, 0), (12, 0) and (16, 0) boron nitride nanotubes with CO molecules was studied using B3LYP/6-311++G(d) theoretical level. Substituting V instead of B atoms, increased the reactivity of nanotube. From the results, the complex stability depends on the direction and the number of the CO molecules interacted with the nanotube. In this work, the quantum molecular descriptors were used for the investigation of boron nitride nanotube reactivity to CO molecules both in the gas phase and in the solution. Also, the influence of the diameter of the nanotube on the electronic properties of the complexes was investigated. The charge transfer in complexes was calculated with NBO analysis. It is expected that Vn-doped nanotubes can be considered as a detector of CO gas molecules.