skip to main content

The effect of mixed electric field on characteristic of ozone generation in a DBD plasma source



AbstractIn this paper, we have presented a new power supply structure for ozone generation in a dielectric barrier discharge reactor, so that a high-frequency pulse electric field is applied on the reactor simultaneously with a low-frequency sinusoidal electric field, referred as mixed electric field. In this study, the effect of mixed electric field variation on ozone production efficiency has been investigated and increasing effects on ozone production have been observed when the reactor temperature decreases. This performance has been achieved by modifying the mechanism of electrical discharge and decrease in filamentary discharge in plasma. By examining the spectral lines of atomic emission spectroscopy, the highest peak of the oxygen (O I) spectral lines was observed in the spectrum of the mixed electric field structure. Also by qualitative comparison of the spectral lines, the lowest intensity for the oxygen (O II) spectral lines was observed in this spectrum. Practically, this technique allows us to achieve higher ozone efficiency with less electrical power. Eventually, with the electric field mixing, we were able to achieve a 4.5% efficiency with 7.7 g/h of ozone generation at 2 kW/m2 with 2 L/min injector oxygen. In addition, by electric field mixing, we were able to reduce the reactor temperature from 66 to 41 °C.