skip to main content

Investigation on the production of copper nitride (copper azide) thin films and their nanostructures



AbstractCopper thin films of 80-nm thickness were deposited on glass substrate using electron beam deposition at two different deposition angles of 0° and 40°, and they were post-annealed under flow of nitrogen at different temperatures. The structure of the films was analyzed using X-ray diffraction, atomic force microscope, and scanning electron microscope. Investigation on the copper nitride phase formation showed that this phase was not formed in the samples produced at 0°, while those prepared at oblique angle of 40° clearly showed the formation of copper azide phase. This is related to the porosity of the film structure, hence increased surface area for the reaction of nitrogen with copper atoms. Therefore, this is a simple method for preparation of copper nitride films that are not usually formed due to low reactivity of copper (as transition metal) with nitrogen. The results showed that the crystallite size (coherently diffracting domains), grain size, and surface roughness increase with annealing temperature.