skip to main content

Electron states in a sinusoidally deformed cylindrical quantum wire



AbstractElectron states in a sinusoidally deformed cylindrical nanowire are probed within the effective mass approximation. The nanowire is immersed in a homogeneous magnetic field applied parallel to the axis of the wire. The sinusoidal deformity affects quantum properties of electrons considerably. The deformity introduces energy dependence on the axial position, enhancing (decreasing) confinement energies in regions where the radius is narrower (wider). Analysis shows that the magnetic field attenuates these sinusoidal deformity-induced distortions on electron quantum properties