skip to main content

Abnormal electronic transport in disordered four-terminal graphene nanodevice



AbstractIn this paper, a numerical study of quantum transport in a disordered four-terminal graphene nanodevice is investigated based on the Landauer approach. The effects of impurity on transmission coefficient of the electron injected into the system are studied using tight-binding model. In this manner, we emphasize that when the disorder density is sufficiently large, the transmission coefficients and the current reduce due to multiscattering phenomenon. We have found that the perfectly conducting channel develops in four-terminal device in its zigzag edge if the range of impurity gets exponentially wider. The theoretical results obtained can be a base for the development in designing graphene nanodevice.