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Abstract:
Due to the growing popularity of microgrids in buildings, the foreseeable electricity demand
for a building draws the attention of many researchers. The precise short-term demand forecast
efficiently directs building managers and operators for interactions with electrical distribution
systems, daily operational decisions, and energy conservation. This research proposes a hybrid
optimization-based deep learning (DL) approach to increase the accuracy of short-term forecasts.
The present work employs the Bilateral Long Short-Term Memory (BiLSTM) network-based
DL technique because the BiLSTM technique has an exceptional ability to manage nonlinear
interactions in data and learn the temporal dependencies. The performance of the BiLSTM
technique is improved using the optimally determined hyperparameters via a hybrid optimization
algorithm that combines particle swarm optimization (PSO) and grey wolf optimization (GWO).
The exploration ability of GWO and exploitation ability of PSO are effectively combined in the
hybrid optimization GWO-PSO. The performance of the recommended approach is assessed using
a case study of an educational building. The performance of the proposed model is compared to
existing nonoptimal BiLSTM and single optimization-based BiLSTM for short-term load forecast.

Keywords: Short-term load forecast; Buildings; Bilateral long-short-term memory; GWOPSO; Hyperparameter optimiza-
tion

1. Introduction

In recent years, the concern for energy conservation has
been growing. Buildings worldwide account for one-third
of total energy consumption and 55% of total electricity
consumption [1, 2]. Buildings are also account for 27%
of global operational CO2 emissions [3]. Accurate elec-
tricity demand prediction of buildings helps the operators
to take mandatory energy management actions, leading to
considerable cost and energy savings. The uncertainties in
demand at the building level make demand prediction much
more challenging than on a traditional grid demand forecast.
Factors like the purpose of the building, weather conditions,
people’s lifestyle, and technological advancements affect
the consumption pattern in buildings, leading to continuous
fluctuations in demand [4]. Thus, recent research is becom-
ing more attentive to building demand forecasts. Building

categories include residential, educational, office, hospital,
hotel, and industrial, and their consumption patterns vary
depending on the building’s intended use [5]. The demand
prediction for educational buildings is the subject of the
current effort.
Load forecasting is divided into very short-term load fore-
cast (VSTLF), short-term load forecast (STLF), medium-
term load forecast (MTLF), and long-term load forecast
(LTLF) based on forecast time horizon. The forecasting
period for VSTLF is from a few minutes to a few hours,
and for STLF is from one day to one week. An MTLF
considers the period from weeks to a few months, while
the LTLF period is up to 10 years from a year [6]. STLF
is fruitful for demand management, market decisions, unit
commitment, and economic scheduling [7]. The researchers
developed different forecast technologies for STLF, which
are classified into statistical and artificial intelligence. Sta-
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tistical methods, like auto regression integrated moving
average (ARIMA) and exponential smoothing, which are
fast, simple, and straightforward, have become apparent
and are based on the linear relations between variables [8].
As power consumption patterns have become more volatile,
statistical approaches’ ability to predict outcomes has de-
clined. Artificial intelligence (AI) techniques are becoming
increasingly popular because of their ability to understand
nonlinear data, robust computation capabilities, and meth-
ods for processing data in forecasting applications.

1.1 Literature review

Over the past thirty years, many Machine Learning (ML)
and Deep Learning (DL) techniques have been developed
for load forecasting. Various machine learning (ML) mod-
els like multiple regression and genetic programming [20],
Multiple Linear Regression (MLR), Multilayer Perceptron
(MLP) and Support Vector Regression (SVR) [21], artificial
neural networks (ANN) [22, 23] and adaptive neuro-fuzzy
inference system (ANFIS) [24] have been used to estimate
short term electricity demand in various types of buildings.
Seven ML techniques have been compared to calculate the
next hour’s residential energy consumption [25]. A two-
step hybrid ML approach using extreme gradient boosting
(XGBoost), random forest (RF), CATBoost, Light gradient-
boosting machine (LGBM), MLP, and Long Short-Term
Memory (LSTM) has been proposed to forecast net zero
building load [26]. ML approaches have the significant
drawback of dealing with each instant independently, dis-
regarding the relationships between the time instants. The
deep learning (DL) techniques have outstanding capabilities
to handle nonlinear relations of data and better account for
the connection among time instances, leading to a surge
in their usage in forecast applications. The work in [27]
combined Recurrent Neural Networks (RNN) with wavelets
(WT) to develop self-recurrent wavelet-based neural net-
works for forecasting the energy demand of educational
buildings.
Cai et al. proposed two DL models, gated RNN and gated
convolution neural networks (CNN). They compared their
performance with the Seasonal Auto-Regressive Integrated
Moving Average with Exogenous Variables (SARIMAX)
model for the case of an academic building, a school build-
ing, and a grocery store time horizon of 1-h and 24-h ahead
forecast. In contrast, the main disadvantage of the work
is the neglected forecast during weekends [28]. After ex-
perimenting with various combinations of deep learning
models on household electricity consumption, Sajjad et al.
proposed a hybrid technique based on the CNN and the
gated recurrent unit (GRU) approach [29]. Koukaras et al.
proposed a hybrid strategy by the ensemble with weightage
to each method to predict an intelligent home’s next step
energy load forecast [30]. Using appliance data, Kong et
al. addressed the residential load forecast problem with
Long Short-Term Memory (LSTM) [31]. They also showed
that the addition of Feed-Forward Neural Networks (FFNN)
to LSTM has improved prediction accuracy by continuing
their work for case studies of Smart Grid Smart City (SGSC)
data [32]. The work in [33] developed two different struc-

tures using LSTM and MLP neural networks to estimate
the electricity load in medium- and long-term time horizons
with manual neural network hyperparameters optimization.
The self-attention-based LSTM network is developed to
forecast Baghdad city electricity demand [34].
The aforementioned methods and approaches for predicting
electrical consumption in buildings and home loads had cho-
sen hyperparameters manually. It would help if the user or
developer were an expert in the subject to improve forecast
accuracy using the manual set of hyperparameters. Some
researchers have developed automatic parameter tweaking
using optimization methods to solve this issue. Different
variations of Particle Swarm Optimization (PSO) have been
applied to determine the optimal parameters of ANN [9],
Back Propagation Neural Networks (BPNN) [10], LSTM
[11], and CNN and LSTM [12] techniques to estimate the
electricity demand and prices in the grid and buildings and
electricity markets. A modified JAYA optimization algo-
rithm has been proposed to optimize the XGBoost param-
eters, which has improved the prediction performance for
cooling and heating loads in a building [13]. J. Wang et al.
developed employed Adaptive Particle Swarm Optimization
(APSO) to determine the model weights of a hybrid model
of Seasonal Auto-Regressive Integrated Moving Average
(SARIMA), Exponential smoothing, and weighted support
vector machine (SVM) to predict the weekdays’ electrical
demand of New South Wales [35].
The Grey Wolf Optimization (GWO) was used to determine
the optimal ANN structure to predict long-term demand in
Iran [14]. The work [15] used grasshopper optimization
(GHO) to determine the parameters of the ANN structure
to estimate the intelligent grid from Australia. Tayab et al.
addressed the short-term load forecast problem using Har-
ris Hawks optimization (HHO) and FFNN and compared
its performance with PSO-based FFNN [16]. Panda et al.
compared the Bat algorithm (BA) over the Cuckoo search
(CSO) to determine the ANN network weights for obtaining
a better network to forecast the load on the power plant [17].
A hybrid DL technique based on CNN-BiGRU supported
by XGBoost is developed to predict the residential building
loads in Mashhad city. The parameters of CNN and GRU
networks are optimized using the PSO technique [18]. An
optimized ML model is developed for a residential building
using different ML techniques using a biogeography opti-
mization algorithm (BBO) [19].
A comparison of related works is presented in Table. 1 The
research gaps observed from the study are as follows:
• The DL approaches are more effective at extracting tempo-
ral connections. Their use in prediction is currently on the
rise. Yet the utilization of bidirectional LSTM (BiLSTM)
is not up to mark in use for forecast, which overcomes the
overfitting problem of the LSTM technique.
• The researchers have ascertained the optimum values of
the forecast network parameters by employing various sin-
gle metaheuristic optimization methods, including PSO,
JAYA, HHO, BA, BBO, and GWO. The single optimization
methods may be subject to local optimum. PSO, HHO, and
BA methods suffer from premature convergence, requiring
more iterations, increasing population, and increasing com-
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Table 1. Summary of the related works.

Ref (Year) Method Optimal parameter Load or demand No. of iterations, population Findings and gaps

[9](2015) ANN-PSO- Weights and Energy Prediction Shootout 10, 20 No DL technique, Single

PCA threshold values Contest I and a campus optimization method, considered MTLF,

building in East China may not be suitable for STLF.

[10](2023) FFNN-PSO Weights Ghana grid -,- No DL technique, Single

optimization method, MTLF, no

comparison with other optimization

techniques.

[11](2021) LSTM-PSO Weights of the Electricity price - Single optimization method, no

LSTM units comparison with other optimization

techniques.

[12](2019) CNN-LSTM- Learn rate, Residential -, 270 Single optimization method, no

PSO-Genetic no. of filters, comparison with other optimization

algorithm filter size, drop models, higher population.

factor, layer size,

learn rate, cell

type, pool size

[13](2022) XGBoost- N-rounds, Residential 30, 50 No DL technique,

JAYA max. depth, eta, γ , Single optimization method,

colsample bytree, min.

Child weight, sub-sample.

[14](2023) ANN-GWO ANN parameters Iraq grid demand -, - No DL technique,

Single optimization method,

Long Term forecast

[15](2020) ANN-GHO ANN parameters Smart grids of 100, 200 There is no DL technique,

Victoria and Single optimization method,

New South Wales or comparison with other optimization

techniques.

[16](2020) FFNN-HHO Weights and Queensland -, - No DL technique, Single

biases of ANN Electrical grid optimization method,

Compared with PSO

[17](2023) ANN-CSO Weights of neurons Power plant load in MW - CSO, BA has its specific

-BA parameters, No DL technique,

and a Single optimization method

[18](2024) CNN-BiGRU No. of BiGRU layers, Residential loads -, 20 Single optimization technique,

-PSO hidden neurons, learn rate, of a city, data of grid-level data, more population of

train epochs, CNN filters, 5 years optimization technique.

activation function, dropout.

[19](2024) ANN, MLP, Parameters of ML Residential load 1000, - Single optimization,

RBF, -BBO techniques No DL technique.

Proposed BILSTM- No. of layers, hidden College Building– 10, 10 Applied Hybrid Optimization,

GWOPSO units in first, second, Commercial load executed with fewer iterations,

and third layers, max. made a comparison with other

Epochs, minibatch size, optimization methods.

learn rate, drop rate.

putation cost. Even though the GWO algorithm is simple
and requires no parameter setting, it suffers from slow con-
vergence.
• Despite the increased concern about building electricity
forecasts in recent years, most research has concentrated on
residential building consumption forecasts, with very little

research on college electricity usage.
Major contributions of the present research are to demon-
strate the performance of hybrid optimization GWO-PSO
based DL technique as a new model as follows:
• A college electricity consumption is considered as a case
study with more non-uniformity than residential and indus-
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trial consumption profiles to address this problem.
• The DL-based BiLSTM networks have been used rarely,
yet the technique has better learning capability than other
DL and ML techniques. The BiLSTM technique learns
the data in the forward and backward directions, enhancing
prediction performance.
• The hybrid optimization technique based on GWO and
PSO has been used to determine the optimal hyperparame-
ters of the BiLSTM network. The hybridization of GWO
and PSO effectively balances exploitation and exploration.
The algorithm is simple to implement, like PSO and GWO,
and overcomes the limitations of local optima problem.
• A comparison is made of the performance of the proposed
hybrid optimization technique against state-of-the-art tech-
niques such as PSO, GWO, and JAYA optimization.

2. Materials and methods
The two techniques of the proposed methodology are dis-
cussed in the present section. They are the BiLSTM tech-
nique, which works on the DL concept for forecast, and
the hybrid optimization technique based on GWO-PSO to
optimize the hyperparameters.

2.1 Bilateral long short-term memory
Although McCulloch and Pitts proposed the concept of
deep learning in 1943 [36], the idea roved over decades
due to a lack of adequate training algorithms and computing
resources. A better understanding of the techniques and sub-
stantial growth in the electronic industry has improved com-
puting capabilities. A particular version of RNN, known
as the LSTM approach, was proposed by Hochreiter and
Schmidhuber. It uses a forget gate and memory cell to solve
the vanishing gradient problem [37, 38]. LSTM preserves
the internal memory cell state throughout the life cycle to
set up temporal connections. The LSTM network comprises
four gates: input gate, forget gate, cell candidate, and output
gate. The input sequence to the LSTM unit is x1, x2,. . . ..
xt-1, xt, xt+1,. . . .. xn. The input weights are Wfh, Wih, Wgh,
Woh, Wfx, Wix, Wgx, Wox and the bias are bf, bi, bg, bo.
The sigmoid function is

∑(x) =
1

1+ e-x (1)

The hyperbolic tangent function is

tanh(x) =
ex− e-x

ex + e-x =
e2x−1
e2x +1

(2)

The forget gate is

F t = σ(W fhht-1 +W fxxt +bf) (3)

The input gate is

It = σ(W ihht-1 +W ixxt +bi) (4)

Gt = tanh
(
W ghht-1 +W gxxt +bg

)
(5)

The output gate is

Ot = σ(W ohht-1 +W oxxt +bo) (6)

Ct =Ct-1
⊙

F t + It
⊙

Gt (7)

ht = tanh(Ct)
⊙

Ot (8)

The LSTM commonly starts with zero initialization, i.e., h0
= 0, C0 = 0. It consists of a sigmoid and tanh function to
process the data. The sigmoid function that transforms the
input values into a range of 0 to 1, acts as a soft switch and
blocks the signal if the gate value is 0.
Otherwise, it will pass. The previous cell state Ct-1 interacts
with the transitional output ht-1 and current input xt. The
interaction controls which components should be improved,
removed, and kept. The input gate signal controls internal
state preservation. Forget gate contains the data that is to
be omitted from the previous state Ct-1 and the output gate
decides which cell state Ct should pass to LSTM output.
The proposed research uses BiLSTM, an improved network
of LSTM where the information flows in both directions
to learn the long-term dependencies in both forward and
backward directions, i.e., it learns from past and future
values [42]. Yet, both layers take input states the same. The
BiLSTM has a double memory cell due to two LSTM cells.
The functional diagram of BiLSTM is shown in Fig. 1. The
information of the forward LSTM and backward LSTM
units is stored as hidden states

−→
ht and

←−
ht respectively, at

a time, ’t’. The final hidden state will be computed by
concatenating two hidden states.

ht = ∂ (
−→
ht ,
←−
ht ) (9)

Concatenation can be an average function, addition, or mul-
tiplication.

2.2 GWO and PSO-based hybrid optimization
GWO serves as the initial phase for the hybrid optimization
to get better positions, and the next phase is followed by
the PSO algorithm, which serves the function of position
updating. A GWO algorithm based on the hunting behaviors
of grey wolves covers the gang hunts and how leadership
is exercised. It includes wolves tracking down, encircling,
and attacking their prey to catch them successfully. In this
process, grey wolves use leadership skills at different levels,
such as alpha, beta, delta, and omega [43]. The hierarchy of
the wolf’s leadership is shown in Fig. 2. The initial step of
hunting is encircling the prey and mathematically modeling
it as at the current time step is

D = |C×Zp(t)−Z(t)| (10)

The positions are updated using the

Z(t +1) = Zp(t)−A×D (11)

The determination of A and C vectors using

A = (2×a)• r1−a;C = 2• r2 (12)

A & C are coefficient vectors, and the components of vector
’a’ are decreased linearly from 2 to 0 to attain optima over
the iterations. The ZP and Z indicates the position vector of
the prey and grey wolves. For the mathematical model, the
alpha, beta, and delta positions are in better places, and the
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Figure 1. (a) LSTM and (b) BiLSTM architectures [32, 39, 40].

remaining update their positions within the circle, yet the
updating concerns the alpha, beta, and delta locations. The
leader alpha guides the hunting, and the alpha’s location is
considered the final best solution.

Dα =|C1 •Zα −Z|;
Dβ =|C2 •Zβ −Z|;
Dδ =|C3 •Zδ −Z|

(13)

Z1 = Zα−A1Dα ; Z2 = Zβ −A2Dβ ; Z3 = Zδ −A3Dδ (14)

The final stage in the hunting of grey wolves is attacking
the prey. This stage is mathematically modeled using the
variable ’a’ by decreasing the value to zero. After determin-
ing the positions Z1, Z2 and Z3 in response to alpha, beta,
and delta positions, the updated positions are calculated us-
ing the PSO method rather than the usual GWO technique,

which uses the average of three positions [44].
Kennedy and Eberhart devised the PSO method to optimize
linear and nonlinear functions. PSO is based on how birds
move, eat, and rest and the underlying concept of informa-
tion sharing amongst the birds to reach the target [45]. Each
position is represented with a particle in the algorithm and
considered to move with specific velocities. The associ-
ated velocities in N-dimensional space are defined as vi =
(vi1, vi2,......, vin) where (i=1, 2, 3......p) of ’p’ number of
particles [35]. Velocity update equation:

vnew = w
(

vold +C1r1(Z1− xij)+C2r2(Z2− xij)+

C3r3(Z3− xij)

) (15)

Figure 2. Grey wolves hierarchy[41].
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The use of local best Pbest and global best gbest in the veloc-
ity update equation is replaced with alpha, beta, and delta
in the hybrid optimization. Where r1, 2 and r3 denotes the
random numbers between 0 and 1. The velocities update of
the traditional PSO algorithm is improved using weighted
velocities to obtain new velocities of particles.

w = wmax− (wmax−wmin)×
it

itmax
(16)

Where W, Wmin and Wmax represent inertia weight, min-
imum, and maximum inertia weight coefficients, respec-
tively. it and itmax indicate the current iteration and maxi-
mum iteration number, respectively. The new position has
been calculated using the following:

xij,new = xij,old + vnew (17)

3. Methodology for short-term load forecast
This section describes the case study and the proposed
methodology for predicting load. The method includes data
processing and follows the optimized BiLSTM structure.

3.1 Case study description
The work considers hourly college building consumption
data over a year to examine the performance of the pro-
posed method. The data belongs to one of the six reference
buildings of EnergyPlus, which are publicly available. The
average campus consumption is 12958.6626 kW, and the
standard deviation is 2453.6136 kW [46].

3.2 Methodology
The research proposes a new methodology for an improved
BiLSTM network, which is divided into three parts. The

first part is the data processing phase, followed by optimiz-
ing the BiLSTM network during training, which will be
used in the next stage, and executing the optimized BiL-
STM network for the final forecast in the third part. The
functional flowchart of the proposed methodology indicates
the execution of a hybrid optimization GWO-PSO-based
BiLSTM network in Fig. 3. The data is processed for better
accuracy after importation. The research employs a data
standardization mechanism that converts the unprocessed
electrical data to Z-score scaling with a zero mean and one
standard deviation. This modification reduces the computa-
tional time required to handle data quickly during training
and lessens the impact of outliers. The formula for data
standardization is :

xi,standard =
xi− x̄

σx
(18)

where xi,x̄ and σx represent the data sequence, the mean,
and the standard deviation of data, respectively.
The second phase is the execution of the hybrid optimiza-
tion algorithm. The objective function of the optimization
technique used in the present investigation, mean square
error (MSE), was chosen to find the BiLSTM network’s
optimal parameters. Table. 2. indicates the considered up-
per and lower boundaries of BiLSTM network parameters
for optimization. After the initialization of the developed
hybrid optimization algorithm, the fitness values of the pa-
rameters are estimated using the BiLSTM network with the
training data. A simple BiLSTM network has a sequence
of steps through the electricity consumption data flows to
predict the demand. It contains four layers; the first is the
input sequence layer to create the given input size. The

Figure 3. Generalized flow chart for the optimization of BILSTM network parameters.
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Table 2. Investigation span of hyperparameter for BiLSTM network optimization.

Parameters Lower Limit Upper Limit

Number of hidden Units in the first layer 175 225

Number of hidden units in the second layer 75 125

Number of hidden units in the third layer 25 75

Number of layers 1 3

Number of Epochs 100 200

Initial learn rate 10−5 10−3

Minibatch size 16 256

Learn rate drop factor 0.1 0.4

second and third layers are the BiLSTM layer, and the fully
connected layer predicts the demand for assigned hidden
units. The regression layer calculates the half mean square
error for the regression job [37].
After executing the developed GWO-PSO hybrid optimiza-
tion, the optimal parameters are given to the BiLSTM net-
work for final training and forecast using test data. The
forecasted data is compared with actual data to evaluate the
performance in terms of performance metrics. The number
of iterations and population size remains equal for all opti-
mization strategies to reasonably contrast the performance
of the suggested GWO-PSO-based hybrid optimization BiL-
STM techniques with single optimization-based models like
PSO-BiLSTM, JAYA-BiLSTM, and GWO-BiLSTM. The
number of iterations is 10, and the population size is 10. The
JAYA and GWO algorithms do not have algorithm-specific
parameters like PSO.
The main influencing parameters of RNN techniques are
the numbers of layers and hidden units in the layers. The
remaining parameters are the number of epochs, minibatch
size, learning rate, and drop rate, and the corresponding
values for the simulation are 300, 64, 0.005, and 0.2, respec-
tively, for the traditional BiLSTM network.

3.3 Evaluation metrics

Five performance evaluation measures are used to show
the suggested technique performance. Such as Root Mean
Square Error (RMSE), Normalized Root Mean Square Er-

ror (NRMSE), Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), and MSE. The aforemen-
tioned performance metrics’ formulas are [39]

MAE =
Σn

i=1| Y real−Y pred|
n

(19)

MSE =
Σn

i=1(Y real−Y pred)
2

n
(20)

MAPE =
1
n

Σ
n

i=1|
Y real−Y pred

Y real
| (21)

RMSE =

√
Σn

i=1(Y real−Y pred)2

n
(22)

NRMSE =

Σn
i=1(Y real−Y pred)

2

n
Σn

i=1Y real
n

(23)

Where ’n’ indicates forecasted time horizon lead steps.

4. Results and discussions
The observations and analysis of the proposed model are
done in the form of evaluation metrics and errors per sam-
ple. The proposed hybrid optimization model’s results are
compared with developed models such as the BiLSTM
technique without optimization and single optimization-
based BiLSTM techniques such as PSO-BiLSTM, JAYA-
BiLSTM, and GWO-BiLSTM. The comparison is done for

Table 3. One-day performance metrics.

Technique/ metrics BiLSTM PSO BiLSTM JAYA BiLSTM GWO BiLSTM GWOPSO BiLSTM

MAE (kW) 6.24959 5.94820 5.43241 3.87060 2.89009

MAPE (%) 0.06091 0.05833 0.05308 0.03896 0.03017

MSE 49.7936 41.7683 36.2988 18.8344 13.0243

RMSE (kW) 7.05646 6.46284 6.02484 4.33986 3.60892

NRMSE 7.08E-04 6.48E-04 6.04E-04 4.35E-04 3.62E-04
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Figure 4. One-day forecast error magnitude comparison.

one-day and one-week forecasts. The MATLAB environ-
ment tool is used on an Intel i5 core processor and 16GB
RAM system.

4.1 One-day forecast
Simulation results for one-day forecasts are shown in Fig. 4,
which compares all considered techniques in terms of the er-
ror magnitude concerning time. The error values are within
10 kW. The suggested method’s error magnitude is rarely
greater than 5kW but is frequently close to zero. Further,
the quantification of error in terms of performance metrics
is demonstrated in Table. 3. It can be clearly observed from
Table. 3 that the performance of the BiLSTM technique had
been improved by optimally calculated hyperparameters
using metaheuristic algorithms. The parameter values of the
BiLSTM, which several researchers have considered, were
randomly chosen. Results of the proposed optimization
techniques are compared with existing parameter values
in the literature, and it is observed that all the optimized
models reduce the error. The best results were obtained by
GWO-PSO-BiLSTM, which is given in Table. 3. This im-
provement is due to the addition of exploitation capability
of PSO with GWO. The PSO-BiLSTM, JAYA-BiLSTM,
and GWO-BiLSTM outperformed traditional BiLSTM by
4.82%, 13.08%, and 38.07% in MAE, respectively. Com-
pared to PSO-BiLSTM and JAYA-BiLSTM, the prediction
ability of GWO-BiLSTM is better due to its exploration ca-
pabilities. The performance of various forecast techniques
in terms of MAPE and RMSE is also shown by the bar
graph in Fig. 5, which also indicates that the error is dras-

Figure 5. Performance metrics representation for the one-
day forecast.

Figure 6. One-day forecast comparison.

tically reduced in the proposed GWO-PSO-BiLSTM tech-
nique. It demonstrates that its MAE is almost half that of
a non-optimized BiLSTM. In MAE, MAPE, and RMSE,
respectively, the recommended GWO-PSO-BiLSTM strat-
egy outperforms PSO-BiLSTM by 51.41%, 48.28%, and
44.16%. In terms of MAE, MAPE, and RMSE, it also leads
GWO-BiLSTM by 25.33%, 22.56%, and 16.84%, respec-
tively.
A comparison of forecast demand against actual demand
has also been made and is given in Fig. 6. The curves
show that all considered methods closely follow actual con-
sumption. Due to the changing hours in the morning and
evening between classrooms, offices, and hostels and higher
gym usage, security, and cleaning services, the fluctuations
particularly tended to be more significant. BiLSTM per-
formance is good during load fall, but prediction errors are
more than other techniques during load rise at hours 3, 8,
13, 15, and 18. The standard BiLSTM, PSO-BiLSTM, and
JAYA-BiLSTM errors are positive every instant, indicating
that the anticipated values are lower than the actual demand.
While the errors from the GWO-BiLSTM and proposed
GWO-PSO-BiLSTM are positive and negative, they are
trying to trace the rise and fall patterns more precisely.

4.2 One week forecast
A comparison of error magnitudes at each time instant is
shown in Fig. 7, and it reveals that the maximum error mag-
nitudes of all models are higher than the maximum error of
the day forecast. The error magnitudes are less than 10 kW,

Figure 7. One-week forecast error magnitudes.
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which is a minimal amount concerning actual demand.
Except for the proposed technique, all approaches perform
slightly better for a one-week forecast than a one-day fore-
cast. Still, the predictions of the proposed method are more
accurate, and its error levels are lower than those of other
developed models, as shown in Table. 4. The proposed
method and other developed models perform similarly to
one-day projections, such as the optimization-based BiL-
STM networks, which are superior to the traditional BiL-
STM technique for over a week forecast.
The performance metrics for the week forecast are shown in
Fig. 8 and reveal that the proposed model metrics are almost
half of the non-optimized BiLSTM network error metrics
when comparing models of MAPE and RMSE. The forecast
comparison of the models against actual demand is shown
in Fig. 9. Even though the proposed GWO-PSO-BiLSTM
technique has a little more discrepancy during a drop in
consumption between 20 and 60 hours, it still works well.
However, it better interpreted the rising demand and peak
conditions over 120 to 168 hours.
The day-wise performance of all models, including the pro-
posed model, are compared and shown in Table. 5. The
prediction accuracy of all models during the weekend is
slightly less than on weekdays and the overall week fore-
cast due to the high amplitudes of consumption swings.
Among the weekdays, starting and ending weekdays (Mon-
day and Friday) have a slightly higher forecast error than
mid-weekdays. During mid-weekdays, the performance of
the traditional BiLSTM is much better over weekends and
slightly outperforms the PSO-BiLSTM in terms of MAE

Figure 8. Performance metrics comparison for one week
forecast.

and MAPE. In contrast to the above, the PSO-BiLSTM per-
formance during weekends is much better than traditional
BiLSTM and thus improved overall week forecast com-
pared to traditional BiLSTM. Even though the performance
of the PSO-BiLSTM is better than the BiLSTM technique,
accuracy improvement is less. The JAYA-BiLSTM and
GWO-BiLSTM approaches outperform the PSO-BILSTM
in one-day and one-week forecasts. The one-week fore-
cast also proves that the optimal set of hyperparameters
improves the forecast accuracy.

5. Conclusions
This paper proposed an improved BiLSTM technique to en-
hance the accuracy of a one-day and one-week forecast for
a college building’s electricity consumption. The BiLSTM
network performance has been enhanced by determining its
optimal values for hyperparameters using GWO-PSO-based
hybrid optimization. The BiLSTM prediction-based MSE is
considered as an objective function of the optimization tech-
nique. The performance of the proposed model is validated
using metrics MAE, MSE, MAPE, RMSE, and NRMSE
against BiLSTM without optimization. Simulation results
indicate that the proper tuning of hyperparameters using op-
timization algorithms outperformed the traditional BiLSTM
network, improving accuracy by minimizing errors. The
proposed method is flexible and reduces the data collection
requirement. The work can be extended to other commer-
cial buildings, like hospitals, restaurants, office buildings,
and grocery stores, using a hybrid DL technique optimized
by a hybrid optimization technique.

Figure 9. One-week forecast comparison.

Table 4. One-week forecast performance metrics.

Technique/ metrics BiLSTM PSO BiLSTM JAYA BiLSTM GWO BiLSTM GWOPSO BiLSTM

MAE (kW) 5.96250 5.70425 5.18374 3.85568 2.95618

MAPE (%) 0.05771 0.05582 0.05035 0.03864 0.03085

MSE 47.08273 38.83751 34.20738 18.79067 13.25987

RMSE (kW) 6.86168 6.23197 5.84870 4.33481 3.64141

NRMSE 6.86E-04 6.23E-04 5.84E-04 4.33E-04 3.64E-04
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Table 5. Day-wise performance comparison.

Day Technique/metrics BiLSTM PSO BiLSTM JAYA BiLSTM GWO BiLSTM GWOPSO BiLSTM

Monday MAE 6.24 5.94 5.43 3.87 2.89

MAPE 0.060 0.058 0.053 0.038 0.030

MSE 49.7 41.7 36.2 18.8 13.02

RMSE 7.05 6.46 6.02 4.33 3.608

NRMSE 7.08E-04 6.48E-04 6.04E-04 4.35E-04 3.62E-04

Tuesday MAE 5.27 4.89 4.38 4.95 4.25

MAPE 0.052 0.048 0.043 0.051 0.045

MSE 41.6 33.4 29.2 28.1 25.66

RMSE 6.45 5.78 5.40 5.30 5.06

NRMSE 6.65E-04 5.96E-04 5.57E-04 5.47E-04 5.22E-04

Wednesday MAE 4.78 4.94 4.28 3.62 3.59

MAPE 0.047 0.049 0.042 0.037 0.038

MSE 33.4 30.3 24.9 19.0 18.2

RMSE 5.78 5.50 4.99 4.35 4.27

NRMSE 5.97E-04 5.68E-04 5.15E-04 4.50E-04 4.41E-04

Thursday MAE 5.39 5.70 4.91 2.80 2.56

MAPE 0.053 0.056 0.048 0.028 0.026

MSE 39.1 36.9 30.1 11.8 9.12

RMSE 6.26 6.07 5.49 3.44 3.02

NRMSE 6.36E-04 6.17E-04 5.57E-04 3.50E-04 3.07E-04

Friday MAE 6.20 5.69 5.37 3.98 2.67

MAPE 0.058 0.054 0.050 0.038 0.027

MSE 50.2 38.0 35.7 19.1 11.0

RMSE 7.08 6.172 5.98 4.37 3.32

NRMSE 6.92E-04 6.02E-04 5.83E-04 4.27E-04 3.24E-04

Saturday MAE 7.09 6.57 6.11 3.72 2.18

MAPE 0.067 0.063 0.058 0.035 0.02

MSE 59.0 47.4 42.7 16.3 6.73

RMSE 7.68 6.88 6.53 4.04 2.59

NRMSE 7.47E-04 6.70E-04 6.36E-04 3.93E-04 2.52E-04

Sunday MAE 6.72 6.16 5.76 4.03 2.52

MAPE 0.063 0.059 0.054 0.039 0.025

MSE 56.2 43.8 40.3 18.1 8.98

RMSE 7.49945 6.62210 6.34895 4.26018 2.99682

NRMSE 7.28E-04 6.43E-04 6.16E-04 4.14E-04 2.91E-04

2345-3796[https://dx.doi.org/10.57647/j.mjee.2024.1802.32]

https://dx.doi.org/10.57647/j.mjee.2024.1802.32


Sekhar & Dahiya MJEE18 (2024) -182432 11/13

Authors Contributions
All the authors have participated sufficiently in the
intellectual content, conception and design of this
work or the analysis and interpretation of the data
(when applicable), as well as the writing of the
manuscript.

Availability of data and materials
Data presented in the manuscript are available via
request.

Conflict of Interests
The authors declare that they have no known com-
peting financial interests or personal relationships
that could have appeared to influence the work
reported in this paper.

Open Access
This article is licensed under a Creative Commons
Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as
you give appropriate credit to the original author(s)
and the source, provide a link to the Creative
Commons license, and indicate if changes were
made. The images or other third party material in
this article are included in the article’s Creative
Commons license, unless indicated otherwise in
a credit line to the material. If material is not
included in the article’s Creative Commons license
and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will
need to obtain permission directly from the OICC
Press publisher. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0.

References
[1] I. Hamilton and O. Rapf. “Executive summary of

the 2020 global status report for buildings and con-
struction.”. United Nations Environment Programme,
, 2020. DOI: https://doi.org/20.500.11822/34572.

[2] M. Santamouris and K. Vasilakopoulou. “Present
and future energy consumption of buildings: chal-
lenges and opportunities towards decarbonisa-
tion.”. e-Prime, 1(8):pp. 100002, 2021. DOI:
https://doi.org/10.1016/j.prime.2021.100002.

[3] Inger Andersen. “Global status report for build-
ings and construction: towards a zero-emission,
efficient and resilient buildings and construction
sector.”. United Nations Environment Programme, ,
2022.

[4] N. Amjady, F. Keynia, and H. Zareipour. “Short-
term load forecast of microgrids by a new
bilevel prediction strategy.”. IEEE Trans.
Smart Grid, 1(3):pp. 286–294, 2010. DOI:
https://doi.org/10.1109/TSG.2010.2078842.

[5] EIA. “CBECS 2018 building characteristics flip-
book.”. EIA, , 2018.

[6] L. Hernandez et al. “A survey on electric power
demand forecasting: future trends in smart grids,
microgrids and smart buildings.”. IEEE Commun.
Surv. Tutorials, 16.
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