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Abstract:
As an emerging technology, reversible computing enables the development of high-performance
computing systems with low energy consumption. A residual number system (RNS) that performs
arithmetic operations in parallel with error tolerance and no carry propagation requires forward
and reverse converters to communicate with other digital circuits. Designing reversible forward
and reverse converters using new technologies is very important due to their wide applications in
implementing the RNS. These converters, which are the overhead of the system, increase energy
consumption. This study proposes a hybrid converter conforming to reversible logic for the RNS.
This hybrid converter unifies forward and reverse converters by sharing hardware and reversible
gates. By using the mixed-radix conversion (MRC), the reverse conversion arithmetic relations
adopt a similar format to that of the forward conversion arithmetic relations, and by adding a
number of Fredkin gates and modifying the inputs, the reverse converter hardware is used to
perform forward conversion. Based on the findings, the hybrid converter, which conformed to
reversible logic for the moduli set {22n, 2n−1, 2n+1−1} and {2n−1, 2n+1, 22n+1}, decreased
the quantum cost to 19.56% and 19.52%, respectively.

Keywords: Computer arithmetic; Arithmetic digital circuits; Residue number system (RNS); Forward converter; Reverse
converter; Moduli adder

1. Introduction

The embedded digital signal processing systems used cur-
rently require the use of minimum energy computing struc-
tures in hardware implementations of modern applications
such as deep learning and cryptography [1–3]. For hardware
implementation of applications such as convolutional neu-
ral networks, which have a very large number of additions
and multiplications, the design of special structures with
minimum energy consumption is necessary [1]. Also, due
to the reduction of power consumption and the increase in
the speed of computing circuits, the residual number system
(RNS) is the most common special-purpose numerical sys-
tem, which is widely used in the hardware implementation
of computing algorithms based on addition, subtraction, and
multiplication with limited and in-scale carry propagation,
including digital signal processing, and deep convolutional
neural networks [2, 4–6]. On the other hand, contrary to

what Moore had predicted about the development of semi-
conductors, even modern transistors are not significantly
more efficient than earlier ones [7]. Moreover, new tech-
nologies such as quantum circuit technology have been the
subject of wide investigations on the design and processing
of systems with ultra-low power consumption. Quantum
technology has many applications in optical computing and
Quantum-dot Cellular Automata (QCA), and one of its most
important applications includes reversible computing based
on reversible logic, which has the minimum energy loss
and prevents information loss [8]. Since adders and mul-
tipliers are widely used in RNSs, combining the features
of RNS with the structure of reversible circuits enables de-
veloping a new design in digital circuits [9]. In this article,
drawing on the main components of the RNS, including the
forward converter and the inverse converter, which convert
normal weighted binary numbers into the residual repre-
sented number and vice versa, and given that both the for-
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ward and inverse converters are made based on carry-save
adders (CSAs) and modular adders, a new computing unit
based on reversible logic is proposed, which can implement
both forward and inverse conversions. The most important
advantage of the proposed design is that the overhead is sig-
nificantly reduced as there are two separate designs for the
forward and reverse converters. In the hybrid converter pro-
posed, a single hardware generates both forward conversion
output (residuals) and reverse conversion output (binary
weighting number, which is handled by a control signal).
To achieve this goal using an alternative approach, the new
Chinese residual theorem (CRT) algorithm was used, which
converts the reverse conversion calculation relations into
forward conversion calculation relations.
Then, based on multiple multiplexers, the hardware will be
shared; thus, the correct input based on the control signal is
selected and applied to the internal adders of the circuit.
The results show that the use of the proposed circuit results
in a significant reduction of the chip area because rather
than using two separate converters, a single dual-purpose
converter is used. In section 2, the key concepts of RNS
and reversible logic will be reviewed. Then, in section 3,
direct and inverse conversion formulas for integration will
be rewritten. Section 4 presents the proposed design in
general, and the structure of the proposed reversible RNS
is described. Also, a special case of the proposed design
is presented for the modular set {22n, 2n −1, 2n +1} and
{2n + 1, 2n + 1, 2n − 1}. Finally, section 5 concludes the
paper, and the key findings are discussed.

2. An overview of the residual numbers system
and reversible logic

This section provides an overview of RNS followed by a
review of reversible logic and a detailed discussion of key
concepts underlying it.

2.1 Residue number system (RNS)
RNS includes a set of pairwise co-prime numbers called
moduli set, which is displayed as m1, m2,. . . , mn. Modular
multiplication indicates the number and range of numbers
that can be displayed in the system, which is called the
dynamic range of the RNS and is expressed as [0, M−1]
[10].

M = m1 ×m2 × ...mn (1)

In RNS, first, normal weighted binary numbers are divided
by the moduli set using the forward converter.
The obtained remainders are the remainder representation
of that number in RNS, which are shown as follows.

X RNS−−→ (x1,x2, ...,xn) where xi = |X |mi for i = 1, ...,n
(2)

Then arithmetic operations of moduli addition, subtraction,
or multiplication are implemented in parallel and without
carry propagation on the remainders, as follows:

X□Y RNS−−→ (|x1□y1|m1 , |x2□y2|m2 , ..., |xn□yn|mn) (3)

So
□ ε{+,−,×}

Finally, the result is a set of residual digits converted to a
weighted equivalent value using an inverse converter based
on inverse conversion algorithms such as CRT or mixed-
radix conversion (MRC) so that they can be understood and
processed by the remaining components of the system [11].

2.2 An overview of reversible logic

Reversible calculations are developed as a novel approach
to save energy, minimize energy loss, and optimize cir-
cuits compared to previous calculation methods. Reversible
computing circuits use computing systems with minimum
energy consumption and high efficiency. In classical calcu-
lations, where energy consumption can be minimized, some
parts will remain in the system due to the irreversibility of
the calculation. In irreversible logic circuits, the number
of circuit inputs outweighs the number of outputs, which
causes some bits containing information to be lost during
processing, and their electrical energy is released as heat
energy [14].
Research on reversible gates dates back to 1960. The mo-
tivation behind the studies was the minimum heat (or basi-
cally no heat) generation by these gates. The heat generated
by irreversible logic calculations per bit of information is
equal to KT× ln2, where K is Boltzmann’s constant and
T is the temperature. At room temperature, the amount of
heat consumed is low (2.9×10−21 joules) [15]. While this
amount seems very insignificant on a small scale, it cannot
be overlooked. Considering Moore’s law that the number
of transistors and elements in digital circuits increases by
100% every 18 months, it is not far from expected that the
loss of electrical energy and the resulting heat production
will become a serious challenge in the design of large-scale
integrated circuits [16]. The consumption of energy in con-
ventional irreversible circuits is due to information loss. In
1993, Bennet argued that by performing reversible calcu-
lations, the total energy consumed due to the loss of infor-
mation in the reversibility process is eliminated [17]. In
reversible circuits, thanks to the inverting circuit, the direc-
tion of calculations can be reversed so that the system can
be returned to its initial state or any point in the calculation
history. In a system, calculations are reversible if reversible
gates are used. Reversible bits create a one-to-one mapping
between input and output.
Information is lost when it is not possible to recover the
inputs from the outputs. Thus, the number of inputs and
the number of outputs are the same in reversible circuits.
In reversible logic, feedback from output to input is not
possible and there is no Fan out, so all reversible gates are
also invertible, that is, by using an inverted gate, the gate
inputs can be retrieved from the gate outputs. The evalua-
tion of quantum circuits is performed with different criteria,
defined as follows:
Definition 1: the quantum cost of a reversible gate is equal
to the number of quantum gates 1× 1 and 2× 2, used in
the implementation of the reversible gate. The quantum
cost of all 1×1 and 2×2 reversible gates equals 1 [18]. To
calculate the quantum cost, some gates can be used whose
quantum costs were pre-determined.
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Definition 2: garbage outputs are unwanted or unused out-
puts that, as primary output lines, are not always important
and are only added to keep the circuit’s reversibility [19].
Definition 3: the ancilla input is an input that must be held
constant at 0 or 1 for the circuit to operate properly. Garbage
outputs and ancilla inputs relate to each other as follows
[19]: Input + ancilla input = output + garbage output
Definition 4: hardware complexity refers to the total number
of logic operations obtained by calculating the number of
AND, NOT, and XOR operations used in the reversible cir-
cuit. The following parameters should be considered when
determining the hardware complexity of reversible circuits:
α = number of two-input XOR gates
β = number of two-input AND gates
δ = number of NOT gates
Definition 5: the maximum number of gates in a path from
each input line to each output line represents the delay of
the logic circuit. Based on this definition, calculations are
performed at each gate per unit of time, and before the cal-
culations begin, all inputs to the circuit are available.
Other reversible gates can be made using the primary gates.
For example, by setting the control inputs to a fixed value
of zero, two reversible gates, PG and HNG, can be made,
which are used as half adder (HA) and full adder (FA), re-
spectively, in quantum circuits [10, 12, 20–23]. Fig. 1(a)
and Fig. 1(b) demonstrate the symbols and quantum rep-
resentations of PG and HNG gates, respectively. It can be
seen that the quantum cost of these gates equals 4 and 6,
respectively. A further reversible gate used in quantum cir-
cuits is the Fredkin gate, referred to as a SWAP-controlled

gate. If the control input equals 1, the values of the target
signals are exchanged [13]. Fig. 1(c) shows the symbol for
Fredkin gate and its quantum implementation. As shown,
the quantum cost of Fredkin’s gate is 5.

3. Proposed integrated structure of forward
and reverse converter using reversible logic

gates

Due to no transmission of carry digits and the use of par-
allel calculations, calculations in RNS have a high speed
and the limited transmission of the transfer digit is done
limitedly within the scaled circuits. Since the forward and
reverse converters constitute system overhead and lead to
a reduction in the speed achieved due to the parallelization
of the moduli arithmetic circuits in the system, a wealth
of research has been done for the efficient design of these
converters.
In this section, the arithmetic relationships related to for-
ward and reverse converters are discussed separately for the
two moduli sets using conventional gates, and in the sub-
sequent section, the integration of the converters for each
module set using a reversible logic gate has been described
to achieve a composite integrated design.

3.1 Rewriting arithmetic relations of forward and re-
verse conversion

While designing the forward converter, first, the remainder
of the division of the input weighting operand on each of the
moduli is obtained; Thus, the forward converter possesses

Figure 1. Reversible gates and quantum representation of (a) Peres [12], (b) HNG [10], (c) Fredkin [13].
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a parallel and independent structure for each module. To
convert the weighted number X based on the moduli set m1,
m2,. . . , mnto the residuals (xi’s), the relation 4 can be used:

xi = |X |mi = |XMB−1...X1X0|mi for i = 1, ...,n (4)

where MB is the number of bits of the dynamic range (that
is, M), mi shows the target moduli [1] and Xi demonstrates
the i-th bit of the binary number X . Based on the number
of bits of the mi moduli expressed by mib, the operand bits
are divided into mib bit categories:

xi = |X |mi =

∣∣∣∣ 2MB(X2MB−1...XKmib)+ ...+
2mib(X2mib−1 ...Xmib)+(Xmib−1 ...X0)

∣∣∣∣
mi

(5)

Now there is no need to divide to calculate the remainder
and it is obtained by addition and multiplication. In other
words, relation (5) can be rewritten as follows:

xi = |
k

∑
j=0

fi|mi (6)

where binary vectors fi are defined as follows:

fi = 2 jmib(X( j+1)mib−1
...X jmib) (7)

Note that the moduli are often in power of 2 (such as 2n±1),
and thus the multiplications in (5) are eliminated (changed
to shifts). The number and type of moduli of a set directly
affect the performance of RNS-based arithmetic systems.
Some moduli sets enable straightforward formulations for
the reverse conversion and hence efficient converters, while
others yield more efficient RNS arithmetic units. By bal-
ancing the values of different moduli and using the moduli
sets of class c, for example by choosing the set of moduli
{22n, 2n −1, 2n +1} and {22n +1, 2n +1, 2n −1} as mod-
uli set number 1 and 2, respectively, as a case study, the
residuals are obtained as follows [24, 25]. Note that the
diagrams are easily generalizable. The set of moduli used
in this research, due to the large dynamic range of 4n+1
and 4n bits, as well as the use of well-formed moduli, yields
RNS with fairly high efficiency.
Rewriting the relations of forward and reverse converters in
moduli set 1:

xi = |X |mi =

∣∣∣∣22n(X3n−1...X2n)+ ...+22n(X2n−1...X2n)
+(Xn−1...X0)

∣∣∣∣
mi
(8)

Considering that |22n|2n = |2n|2n = 0, x1 is obtained as fol-
lows:

x1 = |X |2n = Xn−1...X0 (9)

On the other hand, considering that |22n|2n−1 = |2n|2n−1 = 1,
x2 is obtained as follows:

x2 = |X |2n−1 =
∣∣X3n−1...X2n︸ ︷︷ ︸

f2

+X2n−1...Xn︸ ︷︷ ︸
f1

+Xn−1...X0︸ ︷︷ ︸
f0

∣∣
2n−1

(10)

=
∣∣ f2 + f1 + f0

∣∣
2n−1

Finally, considering that |2n|2n+1 =−1and|22n|2n+1 = 1,x3
is obtained as follows:

x3 = |X |2n+1 =
∣∣X3n−1...X2n︸ ︷︷ ︸

f2

+X2n−1...Xn︸ ︷︷ ︸
f1

+Xn−1...X0︸ ︷︷ ︸
f0

∣∣
2n−1

=
∣∣ f2 − f1 + f0

∣∣
2n−1 (11)

The reverse conversion algorithm based on the set
{m1, m2, . . . , mn} and the following arithmetic relations
do the reverse conversion. In other words, it converts a
residual number such as {x1, x2, . . . , xn} into the ordinary
weighted equivalent of X [20].

X = vn

n−1

∏
i=1

mi + ...+ v3m2m1 + v2m1 + v1 (12)

Equation (12) is the basic formula of the permutation algo-
rithm, whose input is the residuals and the values obtained
in measurements, and the output is the calculated value of
the weighted number. The vi coefficients are obtained as
follows in terms of remainders and multiplicative inverses:

vn =
∣∣∣(xn−v1|m−1

1 |mn −v2)|m−1
2 |mn − ...−vn−1|m−1

n−1|mn

∣∣∣
mn

(13)
Now, the coefficients related to the MRC conversion are
rewritten as follows. It should be noted that ki means the
reverse of multiplication:

v2 =
∣∣∣ k1x2︸︷︷︸

v21

+(−k1v1)︸ ︷︷ ︸
v22

∣∣∣
m2

=
∣∣v21v22

∣∣
m2

=
∣∣∣ 2

∑
i=1

v2i

∣∣∣
m2

(14)

v3 =
∣∣∣k3k2x3︸ ︷︷ ︸

v31

+(−k3k2v1)︸ ︷︷ ︸
v32

+(−k3v2)︸ ︷︷ ︸
v33

∣∣∣
m3

=
∣∣v31v32v33

∣∣
m2

=
∣∣∣ 3

∑
i=1

v3i

∣∣∣
m3

(15)

vn =
∣∣∣(xn−v1|m−1

1 |mn −v2)|m−1
2 |mn − ...−vn−1|m−1

n−1|mn

∣∣∣
mn

(16)
Rewriting the relations of forward and reverse converters in
moduli set 2:

xi = |X |mi =

∣∣∣∣23n(X4n−1...X3n)+ ...+2n(X2n−1...Xn)
+(Xn−1...X0)

∣∣∣∣
mi
(17)

Considering that |2n|2n+1 = −1 and |22n|2n+1 = 1, x1 and
x2 are obtained as follows:

x1 = |X |2n+1 =

∣∣∣∣X4n−1...X2n+1 ×22n+1

+X2n...X0

∣∣∣∣
22n+1

=−2 f ′1 : f ′0

(18)

x2 = |X |22n+1 =

∣∣∣∣∣∣∣∣∣
X4n−1...X3n︸ ︷︷ ︸

f3

×23n +X3n−1...X2n︸ ︷︷ ︸
f2

×22n

+X2n−1...Xn︸ ︷︷ ︸
− f1

×2n +Xn−1...X0︸ ︷︷ ︸
f0

∣∣∣∣∣∣∣∣∣
2n+1
(19)

=
∣∣− f3 + f2 − f1 + f0

∣∣
2n+1
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On the other hand, considering that |22n|2n−1 = |2n|2n−1 = 1,
x3 is obtained as follows:

x3 = |X |2n−1 =

∣∣∣∣∣∣∣∣∣
X4n−1...X3n︸ ︷︷ ︸

f3

×23n +X3n−1...X2n︸ ︷︷ ︸
f2

×22n

+X2n−1...Xn︸ ︷︷ ︸
f1

×2n +Xn−1...X0︸ ︷︷ ︸
f0

∣∣∣∣∣∣∣∣∣
2n−1
(20)

=
∣∣ f3 + f2 + f1 + f0

∣∣
2n−1

The algorithm of new CRT based on the set
{m1, m2, . . . , mn} is calculated by Equation (12),
which serves as the basic formula of the algorithm of the
new CRT. In this equation, the input values, the residuals,
the number of moduli, and the output are the weight number
calculated (in this formula, n is the number of moduli).
Thus, it converts a residual number such as {x1, x2, . . . , xn}
into the normal weighted equivalent of X [20].

X = x1 +m1∣∣∣∣ k1(x2 − x1)+m2k2(x3 − x2)+m2m3k3
+(x4 − x3)+m2m3...mn−1kn−1(xn − xn−1)

∣∣∣∣
m2...mn

(21)

The ki coefficients show the multiplicative reverse of the
mi moduli. The multiplicative reverses are calculated sepa-
rately and inserted into the above equation to calculate the
coefficients of the new CRT algorithm.∣∣∣kn−1m1...mn−1

∣∣∣
mn

= 1 (22)∣∣∣k1 ×m1

∣∣∣
m2m3

=
∣∣∣k1 × (22n +1)

∣∣∣
22n−1

= 1 ⇒

k1 = 22n −1
(23)

∣∣∣k2 ×m1m2

∣∣∣
m3

=
∣∣∣k2 × (22n +1)(2n +1)

∣∣∣
22n−1

= 1 ⇒

k2 = 2n−2

(24)

Considering that we have the coefficients’ values, the value
of X is calculated from the Equation (21) in terms of the
remainders. Note that by choosing the moduli in the form of
2n and 2n ±1, the multiplications are converted into shifts,
and hence there is no need for the use of the multiplier in
the reverse converter.

4. The suggested method
In both forward and reverse conversion operations, several
separate moduli additions are required for each module,
which is taken into consideration in the design of hybrid
converters.
The control sign enables a switch between forward and
reverse converters. If control = 1, the converter works in

forward mode (a binary weighted number such as X is
inserted, and then the remainders of the weighted number X ,
i.e. (x1, x2, . . . , xn) are shown in the output), and if control
= 0, the converter functions in reverse mode (some residuals
such as (y1, y2, . . . , yn) is inserted, and then the weighted
equivalent of the residuals yi, i.e. the normal weighted
number Y , is eliminated from it). Therefore, by replacing
forward and reverse converters with a hybrid converter, the
required hardware and control signals are reduced, leading
to an increase in the overall system performance (see Fig. 2).

4.1 Rewriting arithmetic relations of forward and re-
verse conversion based on reversible logic for moduli
set 1

Now, based on Equations (12) to (16) for the reverse con-
verter, and (8) to (11) for the forward converter, the fol-
lowing relations can be used to design the forward /reverse
conversion unit (Table 1).

Y = hn

n−1

∏
i=1

mi + ...+h3m2m1 +h2m1 +h1

where =


xi = hi for i = 1, ...,n

hi =


∣∣∣∑

i
j−1 vi j

∣∣∣
mi

if control = 0∣∣∣∑
k
j−0 fi

∣∣∣
mi

if control = 1

(25)

The forward converter for the moduli 22n needs no special
computing circuit, and it is enough to select the 2n low bits
of the input value.

x1 = |X |22n = |X4n...X1X0|22n = X2n−1...X1X0︸ ︷︷ ︸
2n bits

(26)

The second and third residuals are calculated based on the
moduli 2n −1 and 2n+1 −1, respectively, as follows:

x2 =
∣∣∣ 4

∑
i=0

fi

∣∣∣
2n−1

, where (27)

fi = X(i+1)n−1...Xin+1Xin︸ ︷︷ ︸
nbits

for i = 0 to 3

x3 =
∣∣∣ 3

∑
i=0

gi

∣∣∣
2n+1−1

, where (28)

gi = X(i+1)n+1...Xin+i+1Xin+i︸ ︷︷ ︸
n+1bits

for i = 0 to 2

To obtain the residuals, some binary vectors can be simply
added. The relation (10) can be used to calculate x2 and x3.
That is, adders with n-bit and n+1-bit carry digit storages
implemented using the HNG reversible gate can be used.

Table 1. Inputs and outputs of the hybrid forward and reverse conversion unit.

Control signal Working mode Input Output
0 Reverse converter y1, y2, . . . , yn Y
1 Forward converter X x1, x2, . . . , xn
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Figure 2. The proposed structure of the residue number system.

This is accompanied by a propagation adder with the ability
to rotate the final n-bit and n+1-bit carry digits, respectively,
which is implemented by PG and HNG reversible gates [10]
(Fig. 3).
The hardware structure of the reverse converter for the set
of ternary modules {22n, 2n −1, 2n+1 −1}, based on CRT,
has been completely shown in [21]. The following relation
is simply used to convert the residuals into weighted equiv-
alents, and after simplifying and using the CSAs and ripple
carry propagate adders based on reversible gates, it has been
implemented according to the method presented in [10].

Y = 22n(2n −1)v3 +22nv2 + v1

where =


v1 = x1

v2 = |w1 +w21 +w22|2n−1

v3 = |w3 +w4 +w51 +w52|2n+1−1

(29)

Where the wi vectors are as follows:

w1 = x2, n−1...x2,1,x2,0︸ ︷︷ ︸
n bits

(30)

w21 = x̄1,n−1...x̄1,1x̄1,0︸ ︷︷ ︸
n bits

(31)

w22 = x̄1,2n−1...x̄1,n+1x̄1,n︸ ︷︷ ︸
n bits

(32)

w3 = v2,n−1...v2,1v2,︸ ︷︷ ︸
n bits

0 (33)

w4 = x̄3,n−3...x̄3,1x̄3,0︸ ︷︷ ︸
n−2 bits

x̄3,n...x̄3,n−1x̄3,n−2 (34)

w51 = x1,n−3...x1,1x1,0︸ ︷︷ ︸
n−2 bits

x1,n...x1,n−1x1,n−2 (35)

w52 = x1,2n−2...x1,n+2x1,n+2︸ ︷︷ ︸
n−2bits

00x1,2n−1 (36)

Fig. 4 shows the hardware structure of the reverse converter
for the moduli set 1 based on relations (29) to (36). As seen,
the CSAs and the ripple carry propagate adders according
to the method presented in [10] were used.

5. Rewriting arithmetic relations of forward
and reverse conversion based on reversible

logic for moduli Set 2
In this section, based on relations (21) to (24) for the reverse
converter, and (17) to (20) for the forward converter, and
considering that the inverse converter is 2n bits and, on the
other hand, the forward converter is n-bit for one module
and n+1-bit for the other module, the control unit can use
one of the n-bit adders for low-value n bits and another n-bit
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Figure 3. Reversible forward converter for the module set {22n, 2n −1, 2n+1 −1}

adder for high-value n bits.
To fully demonstrate the characteristics of the proposed
method, the design of the forward and reverse converters
for this module set is discussed. As seen from relations
(17) to (20), to obtain the residuals in the forward converter
for the set of modules {2n − 1, 2n + 1, 22n + 1}, a num-
ber of binary vectors can be simply added using relation
(10). That is, adders with n-bit and n+1-bit carry digit stor-
ages implemented using HNG reversible gate can be used.
This is accompanied by a propagation adder with the ability
to rotate the final n-bit and n+1-bit carry digits, respec-
tively, which is implemented by PG and HNG reversible
gates [11] (Fig. 5 The reverse converter for the module set
{2n − 1, 2n + 1, 22n + 1} is obtained in (21) to (26), and
then it is simplified as a moduli addition.
In the hardware structure of the reverse converter for the
set of three modules {2n −1, 2n +1, 22n +1}, by placing
the values of the modules, multiplicative reverse, and using
the algorithm of the new CRT, it is enough to use the fol-
lowing relations to convert the remainders into a weighted
equivalent. Based on the method presented in [10], After
simplifying and using CSAs and carry propagate adders
with the ability to rotate based on the reversible logic gates,
it is implemented.

X =x1 +(22n +1)∣∣22n−1(x2 − x1)+2n−2(2n +1)(x3 − x2)
∣∣
22n−1

=x1 +(22n +1)y

(37)

∣∣∣∣y = 22n−1x2 −22n−1x1 −2n−2(2n +1)x2+
2n−2(2n +1)x3

∣∣∣∣
22n−1

(38)

y1 =
∣∣−22n−1x1

∣∣
22n−1

=
∣∣−22n−1[x1(2n)×22n + x1(2n−2)x1(0)

]∣∣
22n−1 (39)

y11 =
∣∣−22n−1[x1(2n−1)...x1(0)

]∣∣
22n−1

= x̄1(0)x̄1(2n−1)...x̄1(1) (40)

y12 =
∣∣−22n−1[x1(2n)×22n]∣∣

22n−1 = x̄1(2n) 1....1︸ ︷︷ ︸
2n−1

(41)

y2 =
∣∣22n−1x2 −2n−2(2n +1)x2

∣∣
22n−1

=
∣∣22n−1x2 −2n−2x2 −2n−2x2

∣∣
22n−1

=
∣∣22n−2x2 +22n−2x2 −22n−2x2 −2n−2x2

∣∣
22n−1

=
∣∣22n−2x2 −2n−2x2

∣∣
22n−1

(42)

y21 =
∣∣22n−2x2

∣∣
22n−1 = x2(1)x2(0) 0...0︸︷︷︸

n−1

x2(n)x2(2) (43)

y22 =
∣∣2n−2x2

∣∣
22n−1 = 1x̄2(n)...x̄2(0) 1...1︸︷︷︸

n−2

(44)

y′12 = 11...1︸︷︷︸
2n−1

,y′22 = x̄1(2n)x̄2(n)...x̄2(0) 1...1︸︷︷︸
n−2

(45)

y3 =
∣∣2n−2(2n +1)x3

∣∣
22n−1 =

∣∣2n−2(2nx3 + x3)
∣∣
22n−1

= x3(1)x3(1) x3(n−1)...x3(0)︸ ︷︷ ︸
n

x3(n−1)...x3(0)︸ ︷︷ ︸
n−2

(46)

X = x1+(22n+1)y= x1+22ny+ y︸ ︷︷ ︸
s

s= y2n−1...y0y2n−1...y0︸ ︷︷ ︸
4n

(47)
Fig. 6 shows the hardware structure of the reverse converter
for module set 2 based on the above arithmetic relations
using the CSAs and carry propagate adders with the ability
to rotate, according to the method presented in [15].

5.1 Hybrid design of forward and reverse converters
using reversible logic gates

Examining the similarity of Fig. 3 and Fig. 4 as well as
Fig. 5 and Fig. 6 in modular set 2, and sharing the hardware
used by forward and reverse converters, it can be concluded
that for the design of forward and reverse converters using
reversible PG and HNG gates, CSAs, and the module adders,
a single hardware can be obtained for each modular set,
separately. So, by using integration relations (48) to (51) for
moduli set 1 and integration relations (52) to (54) for moduli
set 2, it is possible to design a hardware for forward/reverse
hybrid converter.
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Figure 4. Reversible reverse converter for module set {22n, 2n −1, 2n+1 −1}.
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Figure 5. The forward converter for the module set {2n −1, 2n +1, 22n +1}.

Y = 22n +1(2n −1)h3 +22nh2 +h1 (48)

x1 = h1 = X2n−1...X1X2︸ ︷︷ ︸
2nbits

(49)

x2 = h2 =

{
|w1 +w2 +w22|2n−1 if control = 0
| f0 + f1 + f2 + f3 + f4|2n−1 if control = 1

(50)

x3 = h3 =

{
|w3 +w4 +w51 +w52|2n+1−1 if control = 0
|g0 +g1 +g2 +g3|2n+1−1 if control = 1

(51)
x1 =−2 f ′1 : f ′0 (52)

x2 = h2 =
|− f3 + f2 − f1 + f0|2n+1 if control = 1
|y11(0−(n−1))+ y21(0−(n−1))+ y′22(0−(n−1))|2n+1

if control = 0

(53)

x3 = h3 =
| f3 + f2 + f1 + f0|2n−1 if control = 1
|y11(n−(2n−1))+ y21(n−(2n−1))+ y′22(n−(2n−1))|2n−1

if control = 0
(54)

As shown in Fig. 7, by comparing the proposed reversible
hybrid converter (Fig. 7) and the ordinary reversible for-
ward and reverse converters (Fig. 3 and Fig. 4), we can use
multiplexers to design forward and inverse converters by
combined hardware.
Using the control signal, Multiplexers direct the appropriate
inputs to the CSAs. If the control signal is zero, the reverse
conversion mode is selected, and (y1, y2, y3) will be the

inputs of the circuit, and Y will be the output. If the control
signal is one, the functional mode of forward conversion is
selected, and X will be the input, and (x1, x2, x3) will be the
outputs of the circuit.
On the other hand, reversible circuits usually suffer from a
large number of inputs and garbage outputs, since convert-
ing a digital circuit into a reversible circuit requires adding
several garbage outputs and possibly several ancilla inputs.
Considering that increasing the number of circuit inputs

and outputs in reversible technologies such as quantum cir-
cuits increases the number of qubits and imposes a large
cost on the system, reducing the size of reversible circuits
by reducing the number of ancilla inputs and garbage out-
puts in multiplexers would be helpful. In this article, the
design of the mux block can be modified to reduce the an-
cilla inputs and garbage outputs that are imposed due to the
overhead caused by the addition of reversible multiplexers
to the circuit. Considering that the use of Fredkin gates
individually increases the number of blocks that make up
the final circuit and naturally increases the ancilla inputs
and garbage outputs of reversible circuits, a novel structure
designed in this paper can be used to reduce the number of
individual blocks.
The more the number of blocks in a circuit, the more ancilla
inputs and garbage outputs. As a result, in this proposed
hybrid converter, the number of ancilla inputs and garbage
outputs decreases as the value of n increases compared to
when forward and inverse reversible converters are used
separately.
On the other hand, the number and type of adders used in
the proposed reversible hybrid circuit in Fig. 8 is the same
as [26], that is, in Fig. 7, and only one CSA has been added
to cover the fourth operand required for forward conversion.
The last reversible carry propagate adder used in Fig. 8 is
only needed to perform the reverse conversion. That is, in
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Figure 6. The reverse converter for the module set {2n −1,2n +1,22n +1}.

the forward conversion mode, this adder has no role.

6. Performance evaluation
The most common architectural model for the design of
the forward converter is the use of CSAs, followed by a
moduli adder [23]. Unlike the forward converter which has
a parallel structure, the reverse converter, or the residual
bottleneck, is very complex and dependent on the type of
conversion algorithm and moduli set. It should be noted
that the higher the number of moduli additions and mul-

tiplications within the system compared to the number of
forward or reverse conversions, the higher the efficiency
of the residue number system because the speed advantage
resulting from the parallel implementation of additions and
multiplications will prevail over the overhead caused by the
converter. On the other hand, to achieve a more efficient
inverse converter, the following criteria should be consid-
ered: 1) choosing a new moduli set, 2) choosing a suitable
conversion algorithm, and 3) innovative simplification of
the inverse conversion formulas. In choosing between con-
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Figure 7. Proposed forward/reverse hybrid converter using reversible logic gates for module set 1.
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Figure 8. Proposed forward/reverse hybrid converter using reversible logic gates for module set 2

version algorithms, the use of CRTs has received much
attention due to their potential for parallel computing, but
these theories will increase the system overhead due to the
need for a large moduli addition. On the other hand, the
mixed-radix conversion using several small-scale moduli
additions with an ordinal structure is considered the best
conversion algorithm in this research. In addition, the use
of special arithmetic hardware components in the inverse
converter design according to the needs of the inverse con-
verter will increase the system’s performance.
In this study, an independent design for forward and reverse
converters in reversible logic was presented. In the sug-
gested method, to design a forward converter, CSA-EAC
k-bit adders were used that function like an ordinary CSA,
where the last carry is re-entered to add the carry digit with
the operands and perform a moduli addition. According to
[23], as shown in Fig. 1(b), the HNG reversible gate will be

converted into an FA by setting the fourth input to the logic
zero level. Considering the two-step addition in the binary
number system, the required hardware for the ordinary k-bit
CSA is considered equal to k full adder, and its delay is
equal to one FA [26].
As can be seen in Fig. 7 and Fig. 8, the proposed reversible
forward/reverse hybrid converter for both moduli requires
less hardware than when both converters are used simul-
taneously in the residue number system. This is because
all the moduli adders needed in both reversible convert-
ers are shared in the hybrid structure. Compared with the
ordinary reverse converter [25], in the proposed converter
for moduli set 1 and 2, only one and two reversible CSA
based on a number of HNG and PG gates and multiplex-
ers based on a number of Fredkin gates have been added
in the combined circuit, respectively. In addition, in the
working mode of forward conversion, the calculation of
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the output residue is done parallel because (27) and (28)
are independent, and only some Fredkin gates have been
added to the critical path compared to the ordinary forward
converter. Therefore, the delay in the combined circuit of
the proposed forward/reverse reversible converter has been
slightly increased compared to the independent reversible
converter because multiplexers (Fredkin gates) and CSAs
(HNGs and PGs) have been added to the critical path delay.
In general, the proposed design in Fig. 3 and Fig. 4 requires
6n+ 2 and 7n+ 2 HNG gates and 2n+ 2 and 2n+ 3 PG
gates, respectively. Considering that it is the first attempt to
develop a hybrid design of forward and reverse converters
in reversible logic, a comparison can be made with indepen-
dent designs of forward and reverse converters in reversible
logic to evaluate either converter’s efficiency.
Therefore, the circuits in the forward converter (Fig. 3
and Fig. 5) and reverse converter (Fig. 4 and Fig. 6)
in reversible logic are compared with the proposed for-
ward/reverse hybrid converter in reversible logic (Fig. 7 and
Fig. 8) based on the moduli set {22n, 2n −1, 2n+1 −1} and
{2n −1, 2n +1, 22n +1}, respectively, in terms of their ef-
ficiency.
As mentioned in the introduction, different criteria are em-
ployed to assess reversible circuits. Among the crucial ones
are the circuit’s gate count (NoG), the quantum cost (QC)
which is determined by the number of primary gates needed
for circuit implementation, the ancilla input count (NCin)
used to balance the number of inputs, and outputs, and the
garbage output count (NGout) added to establish a one-to-
one correspondence between input and output combinations.
These parameters are presented in Tables 2 and 3 for the
forward converter, reverse converter, and the proposed con-
verter for moduli sets 1 and 2, respectively. The proposed
model focuses on quantum cost reduction. Therefore, as
explained in [29], as the quantum cost and the number of
gates decrease, the number of ancilla inputs and garbage
outputs increases. The benchmark values listed in Tables 2

and 3 were generated by the RCViewer + Analyzer tool.
This software, which was introduced and explained in [30],
is a viable tool for simulating and analyzing reversible cir-
cuits.
As expected, forward and reverse reversible converters,
when used independently, have a higher quantum cost and
number of gates than the hybrid converter. However, it
should be noted that the hybrid converter yields a negli-
gible overhead in terms of the number of ancilla inputs
and garbage output compared to using forward/reverse re-
versible converters. In terms of quantum cost, forward and
reverse reversible converters used independently in moduli
set 1 (n = 32) and moduli set 2 yield 19.56% and 19.52%
overhead, respectively, compared to when they are used in
hybrid mode. Therefore, it can be concluded that the hybrid
converter yields less overhead than the independent use of
these converters in the reversible logic.

7. Conclusion
In this article, for the first time, a hybrid design of forward
and reverse converters based on reversible logic was
presented, which was able to reduce the overhead caused by
the hardware needed for the reversible forward and reverse
converters independently. Therefore, by having such a
hybrid converter, the hardware complexity and the total
quantum cost of the residue number system in reversible
logic are reduced, thus enabling the possibility of its use in
applications that require less hardware such as embedded
systems. In the future, it is possible to implement hybrid
converters as well as other computing and processing
circuits that reduce the number of inputs and outputs. This
will be achieved by reducing the number of Fredkin gates
used as multiplexers in the proposed circuit. Also, other
features such as fault tolerance can be added to these
circuits, though it should be noted that this feature usually
increases the size of the circuit.

Table 2. Performance comparison of converters based on reversible logic (moduli set 1).

Circuit in Reversible Logic Quantum Cost Number of Gates Garbage Outputs Ancilla Inputs
Forward Converter 1428 260 454 260
Reverse Converter 1624 293 519 293
The Total Forward & Reverse Converters 3052 553 973 553
Proposed Forward/Reverse Converter 2455 454 1031 582
Ref [10] 3037 554 985 551
Ref [27] 3646 661 1163 661

Table 3. Performance comparison of converters based on reversible logic (moduli set 2).

Circuit in reversible logic Quantum cost Number of gates Garbage outputs Ancilla inputs
Forward Converter 2139 455 712 455
Reverse Converter 2434 449 768 449
The Total Forward & Reverse Converters 4573 904 1480 904
Proposed Forward/Reverse Converter 3680 713 1520 1002
Ref. [11] 3924 736 1273 712
Ref. [28] 3710 719 1204 674
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