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Abstract:
Distribution systems pose a significant challenge within the power grid, primarily due to their
high current, low voltage, and comparatively high ohmic resistance compared to transmission
and sub-transmission systems. This results in substantial power losses, necessitating the need
for effective mitigation strategies. To address this issue, a wide range of methods and algorithms
have been proposed and continuously developed. Over the past half-century, reconfiguring the
distribution network has emerged as a cost-effective and straightforward approach to reduce
distribution losses. Distribution system reconfiguration has been extensively studied, with each
study aiming to achieve distinct objectives. Additionally, numerous studies have explored the
dynamics of distribution system reconfiguration, evaluating and comparing various approaches.
This study comprehensively assesses both static and dynamic methods of reconfiguring distribution
systems and introduces a novel dynamic reconfiguration technique. Unlike traditional methods
that rely on real-time or hourly load models, this approach utilizes a load model to address the
dynamic reconfiguration problem. Simulations were conducted on the well-established IEEE
33-bus test system, employing MATLAB software in conjunction with a genetic algorithm to
minimize losses and optimize voltage profiles. Based on the simulation results, this novel dynamic
reconfiguration method demonstrated superior performance compared to previously employed
methods. It effectively reduced power losses and enhanced the voltage profile, demonstrating its
potential for improving the overall efficiency of distribution systems.

Keywords: Loss reduction; Network reconfiguration; Distribution system; Genetic algorithm; Voltage profile; Load
duration curve; Capacitor; Static; Dynamic

1. Introduction

Urban distribution networks, typically constructed as a mesh
structure, operate in a radial topology. Distribution net-
work reconfiguration (DNR) involves opening normally
closed switches (sectionalizing switches) and closing nor-
mally open switches (tie switches). These operations can be
controlled manually or automatically using remote control
switches. With the appropriate telecommunication infras-
tructure, remote control of switch statuses is possible. Smart
networks, with their quick and accurate reconfiguration
abilities, enable efficient utilization of network equipment.
Distribution lines exhibit higher power losses compared to

transmission lines due to their higher voltage-to-current ra-
tio, resulting in greater impedance. These power losses, op-
erating costs, and voltage profiles are interconnected. DNR
aims to minimize power losses during normal operations,
particularly in power systems with heavy loads. Additional
objectives have emerged, including improving power qual-
ity, enhancing voltage safety margins, boosting reliability,
expanding line capacity, balancing loads, integrating dis-
tributed generation, accelerating service restoration, and
prompting rapid recovery [1]. Two primary methods ex-
ist for reconfiguring distribution networks, independent of
the specific objectives: dynamic distribution network re-
configuration (DDNR) and static distribution network re-

https://dx.doi.org/10.57647/j.mjee.2024.1802.28
https://orcid.org/0000-0002-4263-2036
https://orcid.org/0000-0002-0437-2261
https://orcid.org/0000-0003-0218-3720
mailto:a.jahangiri@iauh.ac.ir


2/20 MJEE18 (2024) -182428 Sadeghi et al.

configuration (SDNR). SDNR concentrates on data and
constraints about a particular time frame, employing opti-
mization techniques to determine the optimal operational
structure. In distribution networks, bus loads fluctuate over
time. DDNR ensures reliable, stable, and safe system oper-
ation. Indeed, DDNR specifically addresses variable loads.
The optimal location and size of devices such as capac-
itors, Flexible AC Transmission Systems (FACTS), and
distributed generation are determined using a variety of
optimization methods [2–4]. This study investigates the im-
pact of reconfiguration on distribution network performance
by considering shunt capacitor allocation. The modeling
of load changes and their effects on the DNR are also ex-
plored. The DNR problem was first proposed in [5]. In
[6], an advanced SDNR approach, characterized by its dy-
namic nature, was introduced for network reconfiguration.
Unlike traditional SDNR, which assumes a fixed load, this
enhanced method employs a variable topology, allowing for
timely switch adjustments based on real-time operating con-
ditions. This dynamic approach considers various factors
that impact network performance, including load fluctua-
tions, generation variability, uncertain resource availability,
market dynamics, switching time constraints, and climate
change effects. As a result, the network’s performance
can be accurately assessed. However, DDNR is computa-
tionally more demanding and complex than SDNR [7, 8].
Pioneering work in 1975 introduced classical optimization
techniques as efficient tools for addressing the DNR is-
sue [5]. Due to the limitations of classical optimization
methods, heuristics methods were introduced as a solution
strategy to address the DNR problem. Subsequently, with
the advancement of heuristic performance in DNR applica-
tions, meta-heuristic approaches were introduced. In [9],
the dynamic DNR problem was addressed using BD and
B & B algorithms. However, the BD method’s accuracy
was found to be compromised due to the load-flow equa-
tions employed. Additionally, the paper did not compare
the efficiency of the proposed method to other online re-
configuration techniques. [10] presents an extended, fast
decoupled power-flow method that exhibits significantly
lower computational time compared to conventional meth-
ods. However, the proposed method’s efficiency dimin-
ishes in distribution networks characterized by high ohmic
resistance-to-reactance ratios. [11] and [12] demonstrate
the application of GAMS to solve the multi-objective SDSR
problem incorporating demand response. [13] employs an
approximate dynamic planning method to restrict DG and
shed. [14] utilizes a mathematical modeling language to
address the SDNR problem. While methods [15] and [14]
produce shorter optimized configurations compared to other
mathematical techniques, they are not scalable to large dis-
tribution systems. Recently, [16] introduced a novel heuris-
tic based on the Lagrange relaxation method to tackle the
DDNR problem. However, linear approximations can limit
the accuracy of the obtained solutions in large-scale distri-
bution systems. To address the SDNR problem with DGs,
a simple exploration method was developed in [17]. The
proposed method successfully reduced power losses and en-
hanced the rapid voltage stability index. Additionally, [18]

introduced a vector shift operation to minimize distribution
losses with DG deployment. This algorithm circumvents
computationally intensive load-flow calculations by employ-
ing power vectors and resistance values. However, linear
approximations can limit the accuracy of the obtained so-
lutions in large-scale distribution systems. To address the
SDNR problem with DGs, a simple exploration method was
developed in [17]. The proposed method successfully re-
duced power losses and enhanced the rapid voltage stability
index. Additionally, [18] introduced a vector shift operation
to minimize distribution losses with DG deployment. This
algorithm circumvents computationally intensive load-flow
calculations by employing power vectors and resistance
values. To tackle the integrated problem of DNR and DG al-
location, a hybrid optimization approach combining TLBO
and the ε-constraint method was proposed in [19], demon-
strating superior performance over PSO. [20] Introduced
chaos-disturbed beetle antenna search (CDBAS) to simulta-
neously minimize power losses, unbalanced loadings, and
nodal voltage distortions. A fuzzy-modified PSO was em-
ployed in [21] to solve a multi-objective SDNR problem,
utilizing the Kruskal algorithm for efficient network re-
configuration. The Kruskal algorithm’s ability to generate
radial topologies without loop evaluation makes it an effi-
cient tool for network reconfiguration. In [22], an enhanced
Cuckoo Search Algorithm (CSA) was introduced to tackle
a multi-objective SDNR problem incorporating DG and DR.
A novel voltage stability constraint for the SDNR problem
was proposed in [23], which effectively reduces network
losses by considering switched capacitor banks and DGs.
The model’s results demonstrate the impact of DG output
fluctuations on bus voltage. Additionally, [24] addressed
both the DNR problem and distributed expansion planning
simultaneously. [25] Optimized reactive power losses in
SDNRs to reduce distribution system loading limitations.
In [26], shunt capacitor banks, voltage regulators, and tap
changers were explored as dynamic state control (DSC) con-
trol devices in PV-based DG units to minimize energy losses.
In this article, load modeling was not addressed. This led
[27] to propose the N−1 probability criterion for the SDNR
problem, aiming to minimize power loss and enhance net-
work security. Later, [28] proposed an SDNR formulation
that incorporated power-flow controllers. To conclude, [38]
presented a DDNR that leverages renewable energy and
energy storage systems to enhance network performance. In
conclusion, minimizing power losses and preventing energy
waste in distribution networks have significant technical and
economic ramifications. Therefore, it is crucial to investi-
gate optimization techniques that effectively reduce losses
and costs. This can be accomplished by methods such as
reconfiguring and optimizing the allocation of capacitors.
For instance, in [29] through a comparative analysis of the
cuckoo and cultural algorithms, researchers have addressed
the optimal reconfiguration of the smart distribution net-
work in the presence of shunt capacitors, achieving loss
reduction and voltage profile improvement. The [30] re-
search proposed the multi-objective optimal allocation of
renewable distributed generation and shunt capacitors in the
distribution system utilizing corona virus herd optimization
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techniques. The objective of the study was to attain techni-
cal benefits, reduce the total electricity cost, and enhance
greenhouse safety. The article [31] presents a methodology
for optimizing energy systems in a distribution micro-grid
through the application of particle swarm optimization. The
approach addresses the optimal production planning of con-
current production systems while considering the loss of
electric energy transmission associated with these systems
to the grid bus. The article establishes a correlation between
the development of optimal load distribution methodology
systems and the supply of electrical or thermal load. The
proposed algorithm’s advantages are demonstrated through
numerical studies and comparisons. However, similar to
prior articles, load modeling is not employed in this study.
The calculations are based on peak load rather than incor-
porating load modeling into the analysis.[32] Increased in-
tegration of distributed generation resources, such as wind
power and solar photovoltaic units, into distribution sys-
tems necessitates a thorough examination of their impact
on the operational reliability of these systems. This paper
introduces the concept of multi-objective dynamic feeder
reconfiguration as an efficient approach to establish an en-
ergy management schedule in the distribution grid. The
primary focus is on evaluating and optimizing the reliability
of distribution systems in the presence of diverse distributed
generation resources. In [33], the authors propose a revised
Pareto local search strategy for optimizing the deployment
of distributed generation (DG) units and capacitor banks.
To curtail the search space and identify Pareto solutions, a
novel combination method, comprising Pareto charts and
weighting functions, is employed. In [34], the article in-
troduces a network reconfiguration technique for balanced
distribution networks, employing Multi-Verse Optimization
(MVO) to optimize both total system resistive losses and
reduce emissions through step-by-step switching. It is im-
portant to note that this study focuses solely on solving the
static reconfiguration problem, and there is no mention of
incorporating capacitors or load modeling in the analysis.
In addition, through a comprehensive review of relevant
studies, it has been established that incorporating shunt
capacitors (SCs) can effectively reduce power losses and
enhance voltage profile. However, neglecting the careful

determination of appropriate SC size and placement can
lead to detrimental consequences, such as increased power
losses, voltage dips, and potential instability. Dynamic re-
configuration has emerged as a novel approach with diverse
objectives in the field of distribution network optimization
[35]. However, it is crucial to consider the potential cost
associated with frequent switching in dynamic reconfigura-
tion. Indeed, excessive switching can lead to significant eco-
nomic burdens. Therefore, minimizing switching events is
essential for efficient network management. As mentioned
in the article [36, 37], this challenge has been addressed
to some extent, yet it still demands a substantial amount
of computational effort. In this study, we have leveraged
the load model to optimize dynamic reconfiguration while
simultaneously optimizing the allocation of SCs. This holis-
tic approach aims to achieve a synergistic combination of
reduced system losses and improved voltage profile stability.
Table 1 summarizes the findings of the previous studies and
compares them with the proposed method.

2. Problem formulation
Optimized reconfiguration and capacitor allocation method-
ologies are introduced to improve the effectiveness of
distribution networks. Minimizing power losses and en-
hancing voltage profiles are the principal objectives. To
achieve these goals, switches’ open/close states are modi-
fied through reconfiguration. By analyzing load patterns,
the study seeks to minimize active power losses and voltage
deviations. The objective function is described below:

Minimize f = PR,Loss +V D (1)

In this context, PR,Loss, represents the cumulative amount of
power loss, whereas V D represents the deviation in voltage
at a particular bus. Following is a method for calculating
the total active power loss:

PR,Loss =
n

∑
j=1

R j ∗

(
P2

j +Q2
j

V 2
j

)
(2)

‘n’ indicates how many lines are there. There are three
variables, R j, Pj , and Q j, which represent line resistance,

Table 1. A comparison between the proposed method and some literature.

Ref CS Loss Voltage Load SDNR DDNR
allocation reduction improvement modeling

[29] ✓ ✓ ✓ - - -
[30] ✓ ✓ ✓ - - -
[31] - ✓ - - - -
[32] ✓ ✓ - - - -
[33] ✓ ✓ ✓ - - -
[34] - ✓ - - ✓ -
[35] - ✓ ✓ - ✓ -
[36] - ✓ - - - ✓
[37] - ✓ ✓ - - ✓
Proposed
method

✓ ✓ ✓ ✓ ✓ ✓
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active and reactive power flow, respectively. R j represents
the voltage of the ‘ j-th’ bus. It is possible to express the
voltage deviation as follows, using Equation (3):

V D =
∣∣1−Vj

∣∣ (3)

It represents the voltage of the ‘ j-th’ bus in pu. The recon-
figuration will minimize the V D closer to zero and improve
the network’s voltage stability and performance.

3. Limitations
Distribution network reconfiguration should be accompa-
nied by power flow analysis to determine bus voltages,
power losses, and branch currents for each proposed con-
figuration. The objective function, however, has certain
limitations.

3.1 Bus voltage and current of branches
To ensure the feasibility of a reconfiguration, permissible
ranges for bus and branch voltages and currents must be
adhered to. These limitations are as follows:

Vmin ≤Vi ≤Vmax i = 1, 2, ..., NBus (4)

Imin ≤ Ii ≤ Imax i = 1, 2, ..., NBr (5)
There are NBus buses and NBr branches.

3.2 Number and size of capacitors
The use of capacitors is limited for technical and economic
reasons. In this study, the number Nc and size Qc of the
capacitors were as follows:

1 ≤ Nc ≤ 4 (6)

300KVAR ≤ Qc ≤ 3000KVAR (7)
Also:

QT
c ≤ QT

L (8)
In this equation, QT

c indicates the total reactive power of
capacitor and QT

L indicates the total reactive load. (Both in
KVAR).

3.3 Radial network verification
In this section, a radial network verification algorithm is pre-
sented. The matrix below illustrates the status of switches,
indicating whether they are in an open or closed state.

M =

[
Tie1 Tie2.......TieN
Sw1 Sw2........SwN

]
2∗N

(9)

Suppose there are N tie switches, and the state of each
switch is Tie j, i.e., (Open = 0; Close = 1), and the number
of closed switches is Sw j . Each network comprises several
loops due to the closure of all switches and the presence of
a single open link. Closing this link results in the formation
of a loop. It is imperative to open one of the switches within
that loop to preserve the radial nature of the network. N
is the number of open switches in the network that can be
converted to closed switches, and Sw j is the number of
closed switches in the desired loop. Consider the following
M-matrix as an example.

M =

[
01001
86972

]
2∗N

(10)

In the following control matrix, it can be seen that the
open switches in the first, third, and fourth loops must re-
main unchanged while the switches in the second and fifth
loops must be closed. From the closed switches, the sixth
and second switches were opened in order to maintain the
radial state of the system.

4. Solution for load flow
This study has employed a direct load flow method [29]. A
sample radial distribution network is depicted in Figure 1 to
illustrate the direct load distribution method. In Figure 1, it
can be seen that I1, I2, I3, I4, I5, and I6 represent the current
flowing through the loads corresponding to each bus while
the current of the branches is represented by B1, B2, B3, B4

Figure 1. A simple radial distribution.
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and B5, respectively.
The relationship between the currents of branches and loads
can be expressed in the following formula:

B1
B2
B3
B4
B5

=


1 1 1 1
0 1 1 1
0 0 1 1
0
0

0
0

0
0

1
0

1
1
0
0
1




I2
I3
I4
I5
I6


(11)

Equation (11) can be expressed as:

[B] = [BIBC] [Ii] (12)

The following equation can be derived if the impedance
between branches i and j is Zi j = Z ji:

V1 −V2
V1 −V3
V1 −V4
V1 −V5
V1 −V6

=


z12 0 0 0
z12 z13 0 0
z12 z23 z34 0
z12
z12

z23
z23

z34
0

z45
0

0
0
0

0
z36




B1
B2
B3
B4
B5


(13)

Matrix Equation (13) can be expressed as follows:

[∆V ] = [BCBV ] [B] (14)

Based on the topological arrangement of distribution sys-
tems, the BIBC and BCBV matrices are constructed. These
results can be derived from Equations (12) and (14):

[∆V ] = [BCBV ] [BIBC] [Ii] (15)

[∆V ] = [DLF ] [Ii] (16)

where:
[DLF ] = [BCBV ] [BIBC] (17)

The DLF matrix serves as a representation of the correlation
between deviations in bus voltage and load currents within
radial distribution systems.

5. Load modeling
It is crucial to acknowledge that during the operation of a
distribution network, the load fluctuates and is not constant.
Consequently, as the load varies over time, the system’s
output also changes. Network structures that function op-
timally at one point in time may not be optimal at another
due to these dynamic variations. In the dynamic state of the

Figure 2. Load curve of IEEE 33 bus

distribution network, planning and adjusting the operation
of the distribution network necessitates the consideration
of both the time factor and the network mode [39]. The
reconfiguration is affected by changes in the load. DDNR
targets a load that varies over time. Because of the variable
nature of the load over time and the importance of dynamic
reconfiguration of the distribution system, many articles
have addressed the issue of hourly and daily reconfiguration
[40]. Nevertheless, it is not imperative to address this prob-
lem on an hourly basis. Hourly reconfiguration involves
consecutive network changes and extensive switching, in-
curring substantial costs. In this study, instead of employing
a series of hourly intervals, we divided the duration of the
day into multiple periods and reconfigured the distribution
system accordingly. An example of a load curve is shown
in Figure 2.
Over 24 hours, Figure 2 shows the load varying. As dis-
cussed in previous sections, partitioning the day into distinct
periods instead of relying on hourly intervals offers a more
effective approach to dynamic reconfiguration. This study
employs two methods for dividing the load curve into time
periods. A detailed discussion of these techniques is pre-
sented as follows.

5.1 Experimental method (EM)
Figure 2 illustrates variations in subscriber consumption
over the 24 hours. During certain hours, consumption is
low, while for a few hours, it remains at an average level.
There are also times when the load is heavy. Consequently,
the load curve is categorized into three parts: light, bal-
anced, and peak. Figure 3 shows the experimental method.
For all three time periods of peak load, balanced load, and
light load, the reconfiguration was performed separately.
This is the static reconfiguration method. Typically, static
distribution network reconfiguration is evaluated for a spe-
cific time point. Moreover, peak load conditions are fre-
quently employed as the decision-making criteria. Ulti-
mately, the optimal mode is determined based on the out-
comes of all three stages.

5.2 Spotting method (SM)
Selecting the boundaries between the periods of peak load,
balanced load, and light load in the experimental method
may be done arbitrarily, leading to potential inaccuracies.
Thus, in this study, the spotting method was described as
follows:

Figure 3. Load duration curve (LDC) of IEEE 33 bus
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I. A load curve can be divided into segments with no change,
rising loads, or falling loads.
II. The boundaries between these areas were specified, and
the load was assumed to be β .
III. The difference between the two points before and after
β is calculated and referred to as ∆P.
IV. If ∆P is greater than β , the two regions must be divided
into three regions, and the preceding steps must be repeated.
Otherwise, the division is correct.
Based on the spotting method, Figure 4 shows the load
curve division for the IEEE 33 bus test system.
For all five periods of the spotting method, reconfiguration

was carried out individually. In the final stage, the most op-
timal mode will be determined based on the results obtained
from all five stages.

6. Genetic algorithm
In the Genetic Algorithm (GA), the simulation of biologi-
cal evolution is employed to address both constrained and
unconstrained optimization issues. The process involves
continuously updating a population of individual solutions.
To produce children for the next generation, the GA ran-
domly selects individuals from the current population and
uses them as parents. The population evolves toward an
optimal solution as successive generations pass. The GA
excels in solving problems that may not be well-suited for
traditional optimization algorithms. Specifically, it is ef-
fective in addressing issues associated with discontinuous,
stochastic, or highly nonlinear objective functions. Natu-
ral selection, the driving force of evolution, operates by
favoring individuals with advantageous traits, ensuring their
genetic material is passed on to the next generation. These
fitter individuals produce offspring that inherit their bene-
ficial qualities, making them better equipped to thrive and
reproduce, further perpetuating the cycle of adaptation and
improvement. At the end of this process, the fittest gener-
ation will emerge. It is possible to apply this notion to a
search problem. The best solutions to a problem are selected
from a set of solutions. A genetic algorithm has five steps.

6.1 Initial population
The process begins with a population of individuals, where
each individual represents a solution to the problem at hand.
The genes within each individual constitute a set of param-
eters that define its characteristics or variables. Chromo-

Figure 4. LDC division by spotting method

somes are formed by joining genes into a string (solution).
A genetic algorithm represents an individual’s genes as a
string based on an alphabet. Binary values (strings of 1s
and 0s) are usually used. Genes are encoded on chromo-
somes. As a result of entering the network data, the genetic
algorithm program generates different randomly selected
solutions that present different switch statuses and capacitor
allocations. A single random solution is shown in Figure 5.
Therefore, different network configurations are initiated
randomly.

6.2 Initial population
The assessment of individuals’ fitness is based on their abil-
ity to outperform their peers. Each individual is assigned a
fitness score, and these scores play a critical role in selecting
individuals for the reproduction process.

6.3 Selection
The selection process plays a crucial role in the genetic al-
gorithm by identifying and selecting individuals with higher
fitness scores to serve as parents for the next generation.
This strategic selection enhances the probability of produc-
ing offspring with even better fitness, gradually guiding the
algorithm towards more optimal solutions.

6.4 Crossover
Genetic algorithms hinge on crossover as a pivotal step. For
every pair of parents chosen to mate, a random crossover
point is determined within their genes. For instance, con-
sidering the crossover point in Figure 6 to be 3, the genes
are exchanged or combined at that specific point to generate
offspring.
Children are generated through the exchange of genes be-
tween parents until a crossover point is reached. This it-
erative process results in the birth of a new generation of
children, as depicted in Figure 7.

Figure 5. A single random solution

Figure 6. Crossover point
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Figure 7. Crossover and a new generation

6.5 Mutation
In newborns, specific genes undergo mutation with a low
random probability. In other words, certain bits of the bit
string may change from “0” to “1” or vice versa. The
mutation is introduced to maintain diversity within the pop-
ulation and prevent premature convergence, ensuring that
the genetic algorithm explores a broader solution space.

The simulation process is illustrated in Figure 8. Data
about bus, branch, and switch status were entered as part

Figure 8. Distribution system reconfiguration and SC alloca-
tion flowchart based on the GA algorithm.

of the second step of optimization. GA parameters such as
generation, population, mutation probability, and crossover
probability are also specified. Subsequently, random popu-
lations are generated. To formulate the objective function,
it is necessary to define the search space as well as the end
stages of the process. An individual with high-performance
parameters was selected from the newly created population
at the sixth stage. The population is then sorted so that the
fittest individuals appear at the top. In order to complete the
steps, the steps are repeated until all constraints have been
satisfied.

7. Results of the simulation

This article undertakes a comparative analysis of two pri-
mary optimization approaches: various combinations of
reconfiguration and SC allocation. To minimize power loss
and voltage deviation, the GA algorithm is applied to solve
the network reconfiguration and capacitor allocation prob-
lem. MATLAB software was utilized to simulate six sce-
narios using the IEEE 33 Bus System to assess and verify
performance. These are the scenarios:
The first scenario: Base case.
The second scenario: Just network reconfiguration.
The third scenario: Just capacitor allocation.
The fourth scenario: Allocation of capacitors after reconfig-
uration.
The fifth scenario: Network reconfiguration after allocation
of capacitors.
The sixth scenario: Network reconfiguration and capacitor
allocation simultaneously.
In all six of the above cases, both the (EM) and (SM) meth-
ods will be simulated, and at the end, the most appropriate
method of dividing the time will be determined.

7.1 Base Cace
The base case, representing the system without capacitors
or network reconfiguration, is considered to establish the
initial power losses and bus voltage. This scenario serves
as a benchmark for comparison with other cases. Figure 9
shows a single-line diagram of the 33-bus system. Accord-
ing to Figure 9, the 33-bus system consists of 32 section-
alizing switches and five tie switches. The numbering of
the sectionalizing switches ranges from 1 to 32, whereas
the numbering of the tie switches ranges from 33 to 37.
Simulation results are shown in Table 2.

Figure 9. Single-line diagram of the 33-bus system
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Table 2. Analyses of the first scenario.

Method Power Loss (kW) Minimum Bus Voltage
(pu)

Tie Switches

EM 33,34,35,36,37
Peak Load 575.36 0.85 -
Balanced Load 202.67 0.91 -
Light Load 47.07 0.95 -
SM 33,34,35,36,37
Period 1 38817.50 0.31 -
Period 2 32610.41 0.30 -
Period 3 36227.23 0.30 -
Period 4 36275.00 0.28 -
Period 5 30655.34 0.34 -

7.2 Just network reconfiguration

This case focuses solely on network reconfiguration to min-
imize power losses and enhance the voltage profile without
incorporating capacitors. Tables 3 and 4 present the simula-
tion results for this particular scenario.
Considering the results in Tables 2, 3 and 4, if the goal is to
reduce distribution system losses with distribution system
reconfiguration, more loss reduction can be achieved with
(SM) modeling than (EM) modeling. In addition, peak load
decisions can be more effective than balanced and light
loads, and (SM) load modeling is more useful if the goal is
to improve the voltage profile of the distribution network.
((SM) method’s 30% increase compared to (EM) method’s
10% increase) Figures 10 and 11 illustrate the changes in
the voltage profile using the (EM) and (SM) methods, re-
spectively.

7.3 Just capacitor placement

This scenario assumes that the only way to reduce losses
and improve the voltage profile is through capacitor addi-
tion to the distribution system. It is not necessary to make
any changes to the system configuration. Tables 5 and 6
display the simulation results for this specific scenario.
Based on Tables 2, 5 and 6, it appears that the (SM) method
is more suitable for improving voltage profile and reducing
losses than the (EM) method. Furthermore, if the decision-
making basis is the fifth period, the most significant reduc-
tion in losses (67.36%) is achieved. It is better to place the
peak load on a decision-making basis if it is to be modeled
(EM), because of the greatest reduction in losses.
Figures 12 and 13 illustrate the changes in the voltage
profile obtained using the (EM) and (SM) methods, respec-
tively.

Table 3. Second scenario simulation results for (EM) method.

Load Type Paramerts Details

Peak Load

Tie switches 36,34,23,20,10
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.95
Power losses (kW) 446.43
Loss reduction (%) 22.40

Balanced Load

Tie switches 36,20,11,8,5
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.95
Power losses (kW) 200.89
Loss reduction (%) 0.87

Light Load

Tie switches 33,29,14,10,4
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.97
Power losses (kW) 45.63
Loss reduction (%) 3.05
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Table 4. Second scenario simulation results for (SM) method.

Load Type Paramerts Details

Period 1

Tie switches 34,29,11,7,4
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.95
Power losses (kW) 30299.61
Loss reduction (%) 21.94

Period 2

Tie switches 37,34,32,9,4
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.95
Power losses (kW) 32608.78
Loss reduction (%) 0.005

Period 3

Tie switches 34,32,25,10,3
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.95
Power losses (kW) 36225.34
Loss reduction (%) 0.005

Period 4

Tie switches 36,25,10,8,5
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.95
Power losses (kW) 22103.16
Loss reduction (%) 39.06

Period 5

Tie switches 31,25,20,14,8
Size of the capacitator (KVAR) -
Location of the capacitator (Bus No) -
Minimum bus voltage (pu) 0.95
Power losses (kW) 30653.46
Loss reduction (%) 0.006

Table 5. Third scenario simulation results for (EM) method.

Load Type Paramerts Details

Peak Load

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 1200,300,300,300
Location of the capacitator (Bus No) 3,2,6,33
Minimum bus voltage (pu) 0.95
Power losses (kW) 268.14
Loss reduction (%) 53.39

Balanced Load

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 300,300,600,2400
Location of the capacitator (Bus No) 4,6,33,19
Minimum bus voltage (pu) 0.95
Power losses (kW) 134.69
Loss reduction (%) 33.54

Light Load

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 600,300,1200,600
Location of the capacitator (Bus No) 21,31,6,2
Minimum bus voltage (pu) 0.97
Power losses (kW) 42.87
Loss reduction (%) 8.92
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Table 6. Second scenario simulation results for (SM) method.

Load Type Paramerts Details

Period 1

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 3000,2700,3000,3000
Location of the capacitator (Bus No) 13,7,33,12
Minimum bus voltage (pu) 0.95
Power losses (kW) 14096.26
Loss reduction (%) 63.68

Period 2

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 1500,3000,2100,3000
Location of the capacitator (Bus No) 12,16,33,7
Minimum bus voltage (pu) 0.95
Power losses (kW) 11448.11
Loss reduction (%) 64.89

Period 3

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 3000,1500,3000,3000
Location of the capacitator (Bus No) 12,33,31,6
Minimum bus voltage (pu) 0.95
Power losses (kW) 13572.64
Loss reduction (%) 62.53

Period 4

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 2400,3000,3000,3000
Location of the capacitator (Bus No) 30,33,12,6
Minimum bus voltage (pu) 0.95
Power losses (kW) 12761.90
Loss reduction (%) 64.81

Period 5

Tie switches 33,34,35,36,37
Size of the capacitator (KVAR) 3000,1200,3000,3000
Location of the capacitator (Bus No) 12,24,33,14
Minimum bus voltage (pu) 0.95
Power losses (kW) 10003.64
Loss reduction (%) 67.36

Table 7. Fourth scenario simulation results for (EM) method.

Load Type Paramerts Details

Peak Load

Tie switches 36,34,23,20,10
Size of the capacitator (KVAR) 3000,1200,300,300
Location of the capacitator (Bus No) 11,33,30,10
Minimum bus voltage (pu) 0.95
Power losses (kW) 263.71
Loss reduction (%) 54.16

Balanced Load

Tie switches 37,33,21,14,6
Size of the capacitator (KVAR) 1500,300,3000,1200
Location of the capacitator (Bus No) 2,33,11,5
Minimum bus voltage (pu) 0.95
Power losses (kW) 130.73
Loss reduction (%) 35.49

Light Load

Tie switches 33,29,14,10,4
Size of the capacitator (KVAR) 3000,1200,300,1800
Location of the capacitator (Bus No) 7,14,33,21
Minimum bus voltage (pu) 0.99
Power losses (kW) 38.43
Loss reduction (%) 18.35
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Table 8. Fourth scenario simulation results for (SM) method.

Load Type Paramerts Details

Period 1

Tie switches 34,29,11,7,4
Size of the capacitator (KVAR) 2400,3000,3000,300
Location of the capacitator (Bus No) 7,33,8,13
Minimum bus voltage (pu) 0.96
Power losses (kW) 9039.40
Loss reduction (%) 76.71

Period 2

Tie switches 37,34,32,9,4
Size of the capacitator (KVAR) 2700,3000,2100,3000
Location of the capacitator (Bus No) 27,33,28,13
Minimum bus voltage (pu) 0.95
Power losses (kW) 11443.80
Loss reduction (%) 64.90

Period 3

Tie switches 34,32,25,10,3
Size of the capacitator (KVAR) 300,3000,3000,3000
Location of the capacitator (Bus No) 3,25,33,21
Minimum bus voltage (pu) 0.95
Power losses (kW) 13568.26
Loss reduction (%) 66.22

Period 4

Tie switches 37,27,12,8,6
Size of the capacitator (KVAR) 1200,3000,1500,1800
Location of the capacitator (Bus No) 9,20,33,24
Minimum bus voltage (pu) 0.95
Power losses (kW) 9762.53
Loss reduction (%) 73.08

Period 5

Tie switches 31,25,20,14,8
Size of the capacitator (KVAR) 1200,300,3000,2400
Location of the capacitator (Bus No) 13,28,33,9
Minimum bus voltage (pu) 0.95
Power losses (kW) 9999.52
Loss reduction (%) 70.59

7.4 Allocation of capacitors after reconfiguration
In this scenario, network reconfiguration is initially per-
formed, followed by the placement of capacitors to further
enhance optimization outcomes. Tables 7 and 8 display the
simulation results for this specific scenario.
Based on Tables 2, 7 and 8 it appears that the (SM) method
is more suitable for improving the voltage profile and re-
ducing losses than the (EM) method. Furthermore, if the
decision-making basis was the first period, the most signifi-
cant reduction in losses (76.71%) would be achieved. It is
better to place the peak load on a decision-making basis if
it is to be modeled (EM) because of the greatest reduction
in losses.
Figures 14 and 15 illustrate the changes in the voltage profile
obtained using the (EM) and (SM) methods, respectively.

7.5 Network reconfiguration after allocation of capaci-
tors

As in the previous scenario, the situation is similar in this
case. On the other hand, a capacitor was initially installed
in the network and reconfigured. To determine the most
optimal case, would it be better to install the capacitor first
and then reconfigure the system, or Inverse?

Tables 9 and 10 present the simulation results for this
specific scenario.
Based on Tables 2, 9 and 10, it appears that the (SM)
method is more suitable for improving the voltage profile
and reducing losses than the (EM) method. Furthermore,
if the decision-making basis is the fifth period, the most
significant reduction in losses (83.22%) is achieved. It is
better to place the peak load on a decision-making basis if
it is to be modeled (EM) because of the greatest reduction
in losses. Figures 16 and 17 illustrate the changes in the
voltage profile obtained using the (EM) and (SM) methods,
respectively.

7.6 Network reconfiguration and capacitor allocation
simultaneously

In this scenario, the installation of capacitors coincides with
distribution system reconfiguration.
Tables 11 and 12 depict simulation results for this particular
scenario.
Upon analysis of Tables 2, 11, and 12, it is evident that
the (SM) method proves to be more effective in enhancing
the voltage profile and minimizing losses compared to the
(EM) method. Furthermore, if the decision-making basis is
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Table 9. Fifth scenario simulation results for (EM) method.

Load Type Paramerts Details

Peak Load

Tie switches 32,22,12,9,7
Size of the capacitator (KVAR) 1200,300,300,300
Location of the capacitator (Bus No) 3,2,6,33
Minimum bus voltage (pu) 0.95
Power losses (kW) 262.06
Loss reduction (%) 54.45

Balanced Load

Tie switches 32,25,18,10,8
Size of the capacitator (KVAR) 300,300,600,2400
Location of the capacitator (Bus No) 4,6,33,19
Minimum bus voltage (pu) 0.95
Power losses (kW) 129.42
Loss reduction (%) 36.14

Light Load

Tie switches 34,31,2710,6
Size of the capacitator (KVAR) 600,300,1200,600
Location of the capacitator (Bus No) 21,31,6,2
Minimum bus voltage (pu) 0.98
Power losses (kW) 37.09
Loss reduction (%) 21.20

Table 10. Fifth scenario results for (SM) method.

Load Type Paramerts Details

Period 1

Tie switches 37,35,27,11,6
Size of the capacitator (KVAR) 3000,2700,3000,3000
Location of the capacitator (Bus No) 13,7,33,12
Minimum bus voltage (pu) 0.95
Power losses (kW) 9037.91
Loss reduction (%) 76.71

Period 2

Tie switches 36,33,10,8,4
Size of the capacitator (KVAR) 1500,300-,2100,3000
Location of the capacitator (Bus No) 12,16,33,7
Minimum bus voltage (pu) 0.95
Power losses (kW) 10230.94
Loss reduction (%) 68.62

Period 3

Tie switches 37,15,11,8,5
Size of the capacitator (KVAR) 3000,1500,3000,3000
Location of the capacitator (Bus No) 12,33,31,6
Minimum bus voltage (pu) 0.95
Power losses (kW) 6133.79
Loss reduction (%) 83.06

Period 4

Tie switches 31,25,14,8,5
Size of the capacitator (KVAR) 2400,3000,3000,3000
Location of the capacitator (Bus No) 30,33,12,6
Minimum bus voltage (pu) 0.95
Power losses (kW) 9760.66
Loss reduction (%) 73.09

Period 5

Tie switches 37,14,11,7,5
Size of the capacitator (KVAR) 3000,1200,3000,3000
Location of the capacitator (Bus No) 12,24,33,14
Minimum bus voltage (pu) 0.95
Power losses (kW) 5143.84
Loss reduction (%) 83.22
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Table 11. Sixth scenario simulation results for (EM) method.

Load Type Paramerts Details

Peak Load

Tie switches 33,28,20,13,7
Size of the capacitator (KVAR) 300,2100,3000,1200
Location of the capacitator (Bus No) 33,4,21,14
Minimum bus voltage (pu) 0.95
Power losses (kW) 248.46
Loss reduction (%) 56.81

Balanced Load

Tie switches 37,35,29,14,6
Size of the capacitator (KVAR) 3000,300,1200,1800
Location of the capacitator (Bus No) 19,31,3,20
Minimum bus voltage (pu) 0.95
Power losses (kW) 104.99
Loss reduction (%) 48.19

Light Load

Tie switches 23,17,9,8,5
Size of the capacitator (KVAR) 3000,300,600,3000
Location of the capacitator (Bus No) 11,16,33,18
Minimum bus voltage (pu) 0.98
Power losses (kW) 27.04
Loss reduction (%) 42.55

Table 12. Sixth scenario results for (SM) method.

Load Type Paramerts Details

Period 1

Tie switches 33,31,24,11,5
Size of the capacitator (KVAR) 3000,3000,300,300
Location of the capacitator (Bus No) 15,33,4,23
Minimum bus voltage (pu) 0.95
Power losses (kW) 9034.09
Loss reduction (%) 76.72

Period 2

Tie switches 29,21,10,6,5
Size of the capacitator (KVAR) 3000,3000,2700,3000
Location of the capacitator (Bus No) 11,22,33,17
Minimum bus voltage (pu) 0.95
Power losses (kW) 5478.89
Loss reduction (%) 83.19

Period 3

Tie switches 33,21,13,83
Size of the capacitator (KVAR) 2100,1200,3000,3000
Location of the capacitator (Bus No) 33,3,25,30
Minimum bus voltage (pu) 0.95
Power losses (kW) 3787.41
Loss reduction (%) 89.54

Period 4

Tie switches 33,27,19,11,8
Size of the capacitator (KVAR) 2400,300,3000,300
Location of the capacitator (Bus No) 33,4,20,22
Minimum bus voltage (pu) 0.95
Power losses (kW) 9756.26
Loss reduction (%) 73.10

Period 5

Tie switches 37,29,13,9,7
Size of the capacitator (KVAR) 3000,300,300,2100
Location of the capacitator (Bus No) 15,16,33,14
Minimum bus voltage (pu) 0.95
Power losses (kW) 5140.02
Loss reduction (%) 83.23
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Figure 10. Changes in voltage profile by (EM), a) peak load, b) balanced load, c) light load.

Figure 11. Changes in voltage profile by (SM), a) period T1, b) period T2, c) period T3, d) period T4, e) period T5.

Figure 12. Changes in voltage profile by (EM), a) peak load, b) balanced load, c) light load.

Figure 13. Changes in voltage profile by (SM), a) period T1, b) period T2, c) period T3, d) period T4, e) period T5.
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Figure 14. Changes in voltage profile by (EM), a) peak load, b) balanced load, c) light load.

Figure 15. Changes in voltage profile by (SM), a) period T1, b) period T2, c) period T3, d) period T4, e) period T5.

Figure 16. Changes in voltage profile by (EM), a) peak load, b) balanced load, c) light load.

Figure 17. Changes in voltage profile by (SM), a) period T1, b) period T2, c) period T3, d) period T4, e) period T5.
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Figure 18. Changes in voltage profile by (EM), a) peak load, b) balanced load, c) light load.

Figure 19. Changes in voltage profile by (SM), a) period T1, b) period T2, c) period T3, d) period T4, e) period T5.

in the third period, the most significant reduction in losses
(89.54%) is achieved. It is better to place the peak load
on a decision-making basis if it is to be modeled (EM) be-
cause it will reduce loss and improve the voltage profile.
Based on the simulation results, scenario 6 showed the most
significant loss reduction and voltage profile improvement.
Figures 18 and 19 depict the variations in voltage profile
observed under the (EM) and (SM) methods, respectively.
Figure 20 summarizes the simulation results of the (EM)
method.
As shown in Figure 20, the peak load exhibited the highest
percentage of loss reduction in all the cases. The balanced
load, followed by the light load, exhibited the highest per-
centage of loss reduction. Furthermore, the lowest percent-
age of loss reduction was associated with only reconfigura-
tion, whereas the highest percentage was associated with

Figure 20. Summary of the simulation results of the (EM)
method.

simultaneous reconfiguration and capacitor placement.
Figure 21 summarizes the simulation results of the (SM)
method.
As depicted in Figure 21, the third period demonstrated the
most significant loss reduction. Moreover, standalone re-
configuration produced the lowest percentage of loss reduc-
tion, whereas simultaneous reconfiguration and capacitor
placement attained the highest loss reduction percentage.
Figure 22 contrasts the minimum and maximum percent-
ages of loss reduction between the two methods, (EM) and
(SM).
Figure 23 shows a comparison of the highest voltage in-
crease. As shown in Figure 23, the maximum voltage range
increase of the (SM) is 70.83%. (From 0.28 pu to 0.96 pu).
It is also significant to note that the voltage range of the
(EM) has increased by 14.42%. (0.85 pu to 0.99 pu).

Figure 21. Summary of the simulation results of the (SM)
method.
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Figure 22. Comparison of the lowest and highest loss reduction percentages between (EM) and (SM). a) lowest percentage
b) highest percentage.

Figure 23. Comparison of the highest voltage increase.

8. Conclusion

This study introduces a novel dynamic reconfiguration
method for mitigating power losses, enhancing voltage
profile quality, and optimizing capacitor allocation.
Utilizing the Genetic Algorithm and the IEEE 33 Bus test
system in MATLAB software, simulations were carried out
to ascertain that, along with the reduction in losses, there
was a substantial improvement in the voltage profile. In
static reconfiguration, only the current state of the network
is considered, which may not satisfy all the requirements
of the network in the future. As a result, the challenge
of dynamic reconfiguration was introduced, inevitably
giving rise to issues such as successive switching and
increased costs. This study introduced a novel dynamic
reconfiguration method. In this method, rather than
conducting reconfiguration hourly, 24 h was divided
into several periods during which capacitor allocation
and reconfiguration were performed. This method,
encompassing the entire 24-hour timeframe, effectively

eliminates the need for frequent hourly reconfiguration
and the associated challenges of consecutive switching.
The simulation results showed that this method performed
reasonably well. Both static and dynamic performances
were assessed using two load modeling methods (EM)
and (SM), and it was found that the (SM) method is more
efficient and has a significant impact on voltage profile
improvement and loss reduction. Furthermore, it was
determined that the combined implementation of capacitor
installation and distribution network reconfiguration
yielded superior performance outcomes. Simulations
revealed that implementing capacitor installation before
distribution system reconfiguration resulted in a more
substantial reduction in power losses. Simulation findings
indicated that the peak load criterion exhibited superior
efficacy in static reconfiguration compared to the balanced
or light load criterion.
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