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1.  INTRODUCTION 

The rapid development of societies and the increase in energy demand cause environmental/air pollution. Due to 
massive consumption of fossil energy, energy shortage, and environmental pollution, the use of Electrical Vehicles 
(EVs) has been welcomed. Low carbon emissions, energy saving, and environmental compatibility are the advantages 
of these vehicles [1, 2]. There are many parking lots including EVs that can be connected to the grid for charging or 
discharging. With the increasing burden of EVs on the grid, their charging rate should be controlled because the lack 
of control of EVs in the grid will cause voltage drops or blackouts [3]. In this respect, a lot of research has been 
conducted on the planning and optimal charging of EVs, among these studies centralized, decentralized, and 
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this work an online optimization based on receding horizon concept is proposed to monitor network load every hour. 
However, due to the complexity of online calculations and disconnection detection, the optimization is implemented 
in an event-based manner. Although several distributed event-triggered methods have been introduced recently, 
these methods generally require state estimators to calculate the event-triggered error, the latest states and the 
threshold which increases the computation cost. However, the proposed event-triggered control method only 
requires mean field game information to compute the event-triggered conditions and requires less computations. To 
have convergent game, a time-varying network topology is suggested when the communication of parking lots is lost 
and the disconnection event is triggered. To validate the effectiveness of our method, we conduct computer 
simulations that demonstrate their achievements. 
 

KEYWORDS: Aggregative Games, Consensus Algorithm, Electric Vehicles, Event Trigger, Switching Topology. 

 

https://doi.org/10.30486/mjee.2023.1993787.1216
https://doi.org/10.30486/mjee.2023.1993787.1216
https://orcid.org/0000-0001-8509-4525


Majlesi Journal of Electrical Engineering                                              Vol. 18, No. 1, March 2024 
 

76 

 

hierarchical methods are the main streams [4].  Although centralized charging control is simple compared to 
decentralized control, it is not suitable for large-scale charging networks [5]. If an error occurs in the central controller, the 
entire system will be disrupted. On the other hand, distributed and decentralized systems are more scalable and flexible to 
system changes and can include concepts such as topology change [6, 7]. A decentralized EV charging control scheme is 
reported in [8], which allows to flatten the demand profile during overnight charging meeting grid constraints.  Another 
advantage of decentralized control is preserving the privacy of information. 

In [9], a fully decentralized cooperative algorithm is designed for the optimal charging of EVs that preserves 

agent privacy and user satisfaction. In a decentralized method, the charging management of EVs could be modeled as 

a game, where different algorithms have been presented based on the access level of each agent to others’ information 

[10, 11]. In [12], an aggregative game model is presented for the day-ahead EV charging scheduling to manage EVs 

interaction and its impact on electricity prices. 
The authors of [13] have suggested a  mean field game algorithm to determine the charging of Plug-in Hybrid 

Electric Vehicle (PHEV) customers to optimize the combination of gasoline and battery modes according to distance 
and travel time. Also, a linear quadratic mean field game theory to manage parking lots and implement decentralized 
control for charging EVs population is proposed in [14]. 

In large scale systems, the communication of EVs through a single aggregator becomes difficult due to their 

dispersion in different parking lots and geographical locations. Therefore, they are usually grouped into several 

categories and connected with aggregators. This method is referred to as the hierarchical method. In this way, control 

and computational load are divided among several aggregators to exchange information through a communication 

network. In this way, there is no need for an extensive network. In [15], an improved policy for optimizing PEV 

charging by coordination of aggregators is proposed. This policy minimizes the energy costs of the aggregators. 

Research presented in [16] investigates multiple parking lots that exchange energy with each other and grid 

operator through a new energy management framework and maximize the profit of parking lot owners. In [17] a 

coordination method of several EV aggregators is presented to smooth the load curve by considering peak shaving and 

valley filling. A two-layer algorithm is implemented to establish coordination in the control of EVs charging between 

aggregators and the distribution system operator. However, in [15-17] aggregators do not collaborate with each other. 

In some research, the aggregators exchange information with each other [18-21]. A two-layer distributed optimization 

platform with the alternating direction method of the multiplier is suggested to optimize the charging/discharging 

population of EVs considering coordinated aggregators [18]. The authors of [19] have proposed a cooperative 

hierarchical multi-agent system for scheduled EV charging to minimize the demand charges. 

Another study represents an operational strategy for charging stations in that EVs can be charged via solar energy 

or the grid [20]. Aggregators’ collaborative scheduling is considered to maximize their profits. In [21], a two-layer 

hierarchical control structure is suggested to control the charging of EVs in networked parking lots. At the lower layer, 

EVs compete with each other to achieve their optimal charge profile, while at the higher level, the aggregators 

exchange information through a directed communication graph to evaluate the overall mean field value and send it to 

their vehicles. Concerning the previous studies, the charge control of vehicles is done by several aggregators. In most 

of the proposed methods, the aggregators are not connected to each other online, and exchanging information is done 

in offline simulation conditions. Also, the number of cars is constant.  Uncertainties such as an unspecified number of 

vehicles in the grid or inexact generation of renewable resources [22, 23] as a local power supply or in non-EV 

electrical loads at charging stations in residential buildings have not been appropriately considered due to offline 

optimization.  These uncertainties could cause problems in grid reliability and thus provoke one to solve the 

optimization problem online, which becomes very time-consuming when the number of agents is large. For this 

purpose, the event trigger method is suggested to decrease the time and volume of calculations and save 

communication bandwidth [24, 25]. Recently, the event-based control method has been used in control systems to 

decrease the communication and computational volume, which can achieve satisfactory performance.  In [26], the 

event-based control strategy is suggested to implement the consensus protocol to reduce communication in the 

interconnected systems. The authors of [27] have proposed an event-triggered control strategy to avoid data 

transmission in distributed cooperative control continuously. In [28], event trigger mechanism is implemented to 

reduce the communication resource and bandwidth. In [29] the agents interact locally and exchange their state 

information with each other to reach a group decision value. The general approach is to employ event-triggering laws 

with threshold mechanisms that depend on the states of the agents. Although several distributed event-triggered 

control methods have been introduced recently, these methods generally require state estimators to calculate the event-

triggered error, which increases the computation cost [30]. However, the proposed event-triggered control method 

only requires mean field game information to compute the event-triggered conditions, which has a low computational 

volume. In the mentioned papers, the defined event relies on the error, the latest states, and the threshold and mean 

field game concept in multi-agent systems is not employed. 

Furthermore, in most of the similar works, link disconnection between aggregators has been neglected to 
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consider as an event, while the connection between the aggregators may be interrupted due to an attack or a 

communication error [31]. Due to the correct charging/discharging of electric vehicles in the parking lots, these 

disconnections should be recognized.  In some papers, observer-based or external estimator methods have been used to 

detect disconnectivity of an agent or an edge, and agent states are estimated [32-34]. The authors of [32] have 

presented a model of external estimators to monitor the connection status of two arbitrarily chosen agents, and 

investigate disconnection between agents through decision rules. In [33], the observer-based event-triggering 

consensus control problem is investigated for a discrete-time multi-agent system with lossy sensors and cyber-attacks. 

In [34], observability of the system is employed to establish conditions for the discernibility of the edge disconnection. 

Since the numerical mean-field values are specific and constant, the mentioned research works are different from the 

present study. 

The present paper proposes a framework to cover multiple aggregators’ hierarchical infrastructures in the 

presence of uncertainties and communication failure through an event trigger-based receding horizon control when the 

population of EVs is large. In this work, it is assumed that there are a large and unspecified number of vehicles in the 

grid. These vehicles can be charged/discharged [35] in the parking lot of residential buildings and controlled by local 

aggregators. Due to the difference in geographical location of the parking lots and the increase in the communication 

links by the direct or indirect central aggregator, the vehicles are divided into several groups with local aggregators. 

Each local aggregator is in connection with some neighbors, and vehicles’ charging and discharging are controlled by 

implementing the mean-field game method so that the load curve becomes smoother considering the constraints. 

Communication among aggregators is a directed graph, and it may be disconnected in some hours and reconnected in 

others, and they have a time-varying network. It is assumed that all parking lots send their information signal to each 

other simultaneously. Based on the mean-field value of each parking lot and the overall mean-field value, the 

disconnected link is detected, and the relevant event is defined. In these circumstances, convergence conditions are 

provided for the existing parking lots network by replacing the proposed topology. In other words, for disconnection 

errors, one issue is error detection, and the other is compensating for the situation. Monitoring the difference between 

the overall mean-field value and the mean-field value of each parking lot for detecting disconnection is suggested. As 

a solution, a new topology is proposed. Links connected to a disconnected parking lot now connect to a parking lot 

that is no longer receiving information. It is assumed that the communication links between all parking lots are 

established by default, but the network is based on a defined directed graph. 
According to the circumstances, we will have two types of events in the system. The event is defined either for 

disconnection detection or sense of uncertainty existence in the parking lots. This study aims to solve the defined 
optimization problem repeated with the new information at discrete instants when the communication topology 
changes because of disconnection or the event-triggering condition meets. 

In other words, this work presents a hierarchical event-triggered method that can identify disconnections directly 

and only through aggregators' information (mean-field values) and define it as an event in the communication network 

of the parking lots. Furthermore, our method can make the grid load curve smoother through the receding horizon idea 

of predictive control despite uncertainties in the number of EVs, energy production, or consumption load of the grid. 
The main contributions of this paper can be summarized as follows. 

- Disconnection detection of parking lots based on the mean-field game theory and predictive idea to optimize 
vehicle charging/discharging considering uncertainty in some vehicles, solar energy generation, and load demand 

- Suggestion of a new topology in a time-varying network of parking lots considering the convergence. 
- Implementing an event-based solution to reduce the computation volume. 

The paper is organized as follows. The problem statement and system formulation are presented in Section 2. 

Section 3 addresses the online optimization scheme of parking lots. The simulation results are presented and discussed 

in Section 4, and finally, the conclusions are given in Section 5. 

 

2.  MATHEMATICAL MODEL OF EV AGGREGATION 

2.1.  Problem Description 
Consider the charging coordination problem for a population of EVs that have been distributed in 𝑷 different 

parking lots of residential buildings. Each EV (𝑬𝑽𝒏, 𝒏 ∈ 𝑵) can be charged/discharged during some time slots 𝒕 ∈
𝑻 = {𝟏, ⋯ , 𝟐𝟒}. Every parking lot 𝒑 ∈ 𝑷 has a local aggregator that can exchange information with some other 

parking lot aggregators through a communication network defined by time-varying directed graph 𝑮(𝑷, 𝑬), where 𝑷 is 

the set of parking lots and 𝑬 is the set of directed edges representing the communication links connecting these 

parking lots (Fig. 1) [36]. Self-loop is represented by (𝒑, 𝒑) ∈ 𝑬 , for ∀ 𝒑 ∈ 𝑷 and neighbor of parking lot 𝒑 which 

sends information is shown by (𝒑, 𝒑′) ∈ 𝑬 , for ∀ 𝒑′ ∈ 𝑷. The adjacency matrix associated with the communication 

graph is defined as 𝑨 = [𝒂𝒑,𝒑′] ∈ 𝑹𝒑×𝒑′, where 𝒂𝒑,𝒑′ denotes the connection between the parking 𝒑 and parking 𝒑′. 

The element 𝒂𝒑,𝒑′ is in (0, 1] if (𝒑, 𝒑′) in 𝑬, and zero, otherwise. Each vehicle controls its charged and discharged 

https://www.sciencedirect.com/topics/computer-science/communication-graph
https://www.sciencedirect.com/topics/computer-science/communication-graph
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energy 𝒒𝒑,𝒏
𝒕 = [𝒒𝒑,𝒏

𝑪,𝒕   𝒒𝒑,𝒏
𝑫,𝒕 ]𝑻 and minimizes its objective function by satisfying constraints 𝟎 ≤ 𝒒𝒑,𝒏

𝑪,𝒕 ≤ 𝒒𝒑,𝒏
𝑪,𝐦𝐚𝐱

 and 𝟎 ≤

𝒒𝒑,𝒏
𝑫,𝒕 ≤ 𝒒𝒑,𝒏

𝑫,𝐦𝐚𝐱. 𝒒𝒑,𝒏
𝑪,𝒕 > 𝟎 and 𝒒𝒑,𝒏

𝑫,𝒕 < 𝟎 indicate charge and discharge of the battery from/to the grid, respectively when 

EVs are connected to the grid. 𝑞𝑝,𝑛
𝐶,max and 𝑞𝑝,𝑛

𝐷,max represent the maximum charging and discharging power of the 

battery, respectively. 

 

PL1 PL2

PL3

PL4PL5      

PL6

 
Fig. 1. Schematic of the proposed network of parking lots. 

 

Also, 𝑠𝑜𝑐𝑝,𝑛
𝑡  denoted the State of Charge (SoC) of the battery of EV 𝑛 in parking lot 𝑝 at 𝑡 ∈ 𝑇 with dynamics 

defined as follows [37]. 

𝑠𝑜𝑐𝑝,𝑛
𝑡 = 𝑠𝑜𝑐𝑝,𝑛

𝑡−1 +
𝛾𝑝,𝑛

𝛿𝑝,𝑛
𝑞𝑝,𝑛

𝐶,𝑡 −
𝛾𝑝,𝑛

−1

𝛿𝑝,𝑛
𝑞𝑝,𝑛

𝐷,𝑡  

0 ≤ 𝑠𝑜𝑐𝑝,𝑛
𝑡 ≤ 1, 

(1) 

 

       Where, 𝜸𝒑,𝒏 is the charging efficiency and 𝜹𝒑,𝒏 is the battery size. 

 

2.2.  System cost function 
The following optimization problem is solved for every EV 𝑛 ∈ 𝑁 in each parking lot 𝑝 ∈ 𝑃 in parallel for the 

next 24 hours to obtain an optimal response. 
 

minimize 𝐽𝑝,𝑛(𝑞𝑛, 𝑝̅) 

subject to 0 ≤ 𝑠𝑜𝑐𝑝,𝑛
𝑡 ≤ 1 

0 ≤ 𝑞𝑝,𝑛
𝐶,𝑡 ≤ 𝑞𝑝,𝑛

𝐶,max
 

0 ≤ 𝑞𝑝,𝑛
𝐷,𝑡 ≤ 𝑞𝑝,𝑛

𝐷,max
 

𝑠𝑜𝑐𝑝,𝑛
𝑡 = 𝑠𝑜𝑐𝑝,𝑛

𝑡−1 +
𝛾𝑝,𝑛

𝛿𝑝,𝑛
𝑞𝑝,𝑛

𝐶,𝑡 −
𝛾𝑝,𝑛

−1

𝛿𝑝,𝑛
𝑞𝑝,𝑛

𝐷,𝑡
 

(2) 

 

The cost function is defined as 

𝐽𝑝,𝑛(𝑞𝑛 , 𝑝̅) = 𝜋𝑝,𝑛
𝑡 (𝑝𝑝,𝑛

𝑡 , 𝑝̅𝑡)𝑝𝑝,𝑛
𝑡 + 𝐶𝑝,𝑛(𝑞𝑝,𝑛

𝑡 )  (3) 

 

            𝜋𝑝,𝑛
𝑡 (𝑝𝑝,𝑛

𝑡 , 𝑝̅𝑡) represents the function of energy price and is defined as follows. 

 

𝜋𝑝,𝑛
𝑡 (𝑝𝑝,𝑛

𝑡 , 𝑝̅𝑡) = 𝑎𝑒,𝑛
𝑡 𝑝𝑝,𝑛

𝑡 + 𝑏𝑒,𝑛
𝑡 𝑝̅𝑡 + 𝑐𝑒

𝑡                                                                                                                               (4) 

 

 

       Where, 𝑎𝑒,𝑛
𝑡  and 𝑏𝑒,𝑛

𝑡  are positive constants and 𝑐𝑒
𝑡  is the time-of-use pricing term, which could be different during 

the day. 𝑝̅ represents the average consumption of all parking lots. 

 

𝑝̅ =
1

𝑃
 ∑ ∑

1

𝑁
𝑝𝑝,𝑛𝑛𝜖𝑁𝑝𝜖𝑃   (5) 

 

𝐶𝑝,𝑛(𝑞𝑝,𝑛
𝑡 ) is the battery degradation cost and is defined as 
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𝐽𝑝,𝑛(𝑞𝑛 , 𝑝̅) = 𝜋𝑝,𝑛
𝑡 (𝑝𝑝,𝑛

𝑡 , 𝑝̅𝑡)𝑝𝑝,𝑛
𝑡 + 𝐶𝑝,𝑛(𝑞𝑝,𝑛

𝑡 ), (6) 

 

         Where, 𝑒 and 𝑓 are positive constant parameters [38]. Each residential building has non-EV electrical loads and 
also may be supplied by solar energy [39] as well. The amount of non-EV electrical loads is defined by 𝑑𝑝,𝑛

𝑡 , which 

can be estimated for the next day. Therefore, the total load of the EV owner 𝑛 ∈ 𝑁 in the parking lot 𝑝 ∈ 𝑃 including 
the consumption of EV is as follows. 

 

𝐽𝑝,𝑛(𝑞𝑛 , 𝑝̅) = 𝜋𝑝,𝑛
𝑡 (𝑝𝑝,𝑛

𝑡 , 𝑝̅𝑡)𝑝𝑝,𝑛
𝑡 + 𝐶𝑝,𝑛(𝑞𝑝,𝑛

𝑡 )  (7) 

 

The goal of each EV owner is to minimize its cost function to obtain the optimal values of 𝑞𝑝,𝑛
𝐶,𝑡  and 𝑞𝑝,𝑛

𝐷,𝑡  over 

𝑋𝑝,𝑛 = {(𝑞𝑝,𝑛)|(1) and (7)}. 

Lemma 1: When 𝜋𝑝.𝑛
𝑡 (𝑝𝑝.𝑛

𝑡 , 𝑝̅𝑡) increases over the feasible set 𝑋𝑝,𝑛 in solution to the optimization problem, we will 

have 𝑞𝑝,𝑛
𝐶,𝑡  𝑞𝑝,𝑛

𝐷,𝑡 = 0, ∀𝑡 ∈ 𝑇. 

Proof. Proof is provided in [13]. 

 

3.  ONLINE CONTROL SCHEME FOR TIME VARYING NETWORK OF EV PARKING LOTS 

3.1.  Hierarchical Mean Field Control 
As mentioned, each parking lot has its aggregator which is connected to its neighbors. With common term 𝑝̅ in 

the cost function of all EVs, information is exchanged only between EVs and their local aggregator. Each aggregator 
estimates the local mean-field value with the participation of neighboring aggregators for the next stage through a 
directed communication graph. Then aggregator broadcasts it to its EVs. This estimation helps the EVs to compute the 
best response of their cost function for the next iteration. This calculation continues in each parking lot’s interaction 
with its local aggregator until all parking lots converge to a multi-population 𝜀-Nash equilibrium [21]. 

Definition 1 (mean-field Nash equilibrium): A set of strategies 𝑥∗ ∈ 𝑋 is a mean-field 𝜀-Nash equilibrium with 

multi population and 𝜀 > 0, if for all 𝑛 ∈ 𝑁 and 𝑝 ∈ 𝑃 we have 

 

𝐽𝑝,𝑛(𝑥𝑝,𝑛
∗ ,

1

𝑃
 ∑ ∑

1

𝑁
𝑥𝑝,𝑛𝑛𝜖𝑁𝑝𝜖𝑃 ) ≤ 𝜀+ min𝑦∈𝑋𝑝,𝑛

𝐽𝑝,𝑛(𝑦,
1

𝑃𝑁
𝑦 +

1

𝑃
∑

1

𝑁
𝑥𝑝,𝑛

∗
𝑛′𝜖𝑁−{𝑛} +

1

𝑃
 ∑ ∑

1

𝑁
𝑥𝑝,𝑛

∗
𝑛′𝜖𝑁−{𝑛}𝑝′𝜖𝑃−{𝑝} )  (8) 

 

𝑥∗ is a multi-population Nash equilibrium if (8) holds with 𝜀 = 0. 
 

Algorithm 1: 𝜀-Nash equilibrium determination algorithm in several parking lots. 

Initialization 𝑘 ←  1, ∀𝑝 ∈ 𝑃 

Iteration 𝑘 

Optimization: for each 𝑝 ∈ 𝑃 

𝑥𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = arg min𝑦∈𝑋𝑝,𝑛

𝐽𝑝,𝑛(𝑦, 𝑧𝑝(𝑘)), 𝑛 = 1,2, … , 𝑁, 

𝑔(𝑧𝑝(𝑘)) =
1

𝑁
∑ 𝑥𝑝,𝑛

∗ (𝑧𝑝(𝑘))𝑁
𝑛=1 , 

Communication and update: 
𝑧𝑝(𝑘 + 1) = (1 − 𝜇𝑘  ) ∑ 𝑣𝑝,𝑝′(𝑘)𝑝′∈𝑃 𝑧𝑝′(𝑘) + 𝜇𝑘𝑔(𝑧𝑝(𝑘)), 

𝑘 ←  𝑘 + 1. 

 

Each local aggregator updates the local mean-field term by running the Krasnoselskii-Mann iteration [40, 41] 

and sends it to its EVs until they reach a consensus on the overall mean-filed term. This optimization algorithm is 

summarized in Algorithm 1 which is based on the mean-field method. Based on Algorithm 1, at the bottom level as 

solving the optimization problem, EVs in every parking lot calculate their optimal solution and each aggregator 𝑝 

calculates the local mean value 𝑔(𝑧𝑝(𝑘)). At the top level as communication and update, 𝑧𝑝(𝑘) is updated by 

aggregator 𝑝 via exchanging information with neighboring aggregators. 𝑣𝑝,𝑝′(𝑘) are elements of communication 

weights of adjacency matrix 𝑉(𝑘) of the communication graph 𝐺. The element 𝑣𝑝,𝑝′ is in (0, 1] if (𝑝, 𝑝′) in 𝑉, and zero, 

otherwise. 𝑧𝑝(𝑘) and 𝑧𝑝′(𝑘) are the local mean-field estimations at iteration 𝑘 by the local aggregator of parking lots 𝑝 

and 𝑝′, respectively, and are broadcasted to their EVs. 𝜇𝑘 ∈ (0,1) is the learning rate such that ∑ 𝜇𝑘
∞
𝑘=0 = ∞ and 

∑ 𝜇𝑘
2∞

𝑘=0 < ∞. The strategies of aggregators converge to the fixed point of 𝑔(𝑧𝑝(𝑘)). 

It is proved that the aggregators reach a consensus on the overall mean-field term, 𝑧̅, over the whole population 

after 𝑘 iterations [20] where 𝑧̅ is defined as follows. 
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𝑧̅𝑘 =
1

𝑃
∑ 𝑧𝑝(𝑘)𝑃

𝑝=1   (9) 

 

For an infinite population of EVs, Algorithm 1 converges to the unique Nash equilibrium point of the game. 

 

3.2.  Event-based Predictive Optimization 
Hierarchical optimization between local aggregators of parking lots based on the mean-field game is proposed to 

control the charging of EVs in networked parking lots. It is assumed that the number of vehicles in each parking lot 

and the daily power production profiles of solar panels vary every hour. Due to the uncertainties, the implementation 

of the receding horizon approach provides the required feedback to optimize the charge/discharge information every 

hour. These uncertainties could cause problems in grid reliability and therefore motivate one to solve the optimization 

problem online. This, however, could increase the complexity of the calculations when the number of EVs increases. 

Here, the use of an event trigger scheme could reduce the number of optimization runs significantly, i.e., the 

optimization is executed when an event condition such as uncertainties is detected. Besides, communication between 

aggregators may be disrupted through attacks or communication failure. Therefore, the parking lot aggregators will 

have a time-varying network and some of them may be disconnected for some hours and reconnected again. A 

disconnected communication problem will also be defined as an event. According to the parking lot conditions, two 

types of events are defined. The first event relates to uncertainty and the second depends on the disconnection between 

aggregators. The allowable range for the changes in the mean-field value of each parking lot including vehicles and 

local aggregator is defined. All changes outside the permissible range for the mean-field value of each parking lot are 

considered an event. The proposed event condition has the following form 

 

𝑧𝑝(𝑡) − 𝑧𝑝(𝑡 − 1) ≤ 𝛼 𝑧𝑝(𝑡 − 1), 𝑝 ∈ 𝑃, 0 ≤ 𝛼 ≤ 1. (10) 

 

According to this rule, the threshold depends on the error of  the estimated signals in the last two hours. The 

closer α is to one, the quality of the response is similar to offline conditions, and fewer events are detected in the 

system. When α is chosen near zero, more events are detected, and the volume of calculations increases, but the result 

is better. The optimization problem in (2) is performed when the event is identified based on real-time monitoring of 

the local mean-field values of each parking lot. This reduces the amount of computing and execution time and 

eliminates the need to perform optimization every hour. At the same time, the difference between the overall mean 

field value in (9) and the mean-field value of each parking lot is also monitored. If this difference is more than the 

permissible range, it will be assumed that a communication link has been broken. The proposed event condition has 

the following form 

 

𝑧̅(𝑡) − 𝑧𝑝(𝑡) ≤ 𝛽 𝑧̅(𝑡),   𝑝 ∈ 𝑃,   0 < 𝛽 < 1. (11) 

 

According to this rule, the threshold depends on the error of the overall mean-field value and mean-field value of 

each parking. The parameter β can be selected between zero and one. As long as this condition is met, there is no 

disconnection between aggregators. This condition will not be fulfilled when there is no signal from one of the parking 

lots. 

When a parking lot is disconnected, the related aggregator does not send the mean-field value to the neighboring 

parking lots. Therefore, the difference between the overall mean-field and the unreceived signal will be an indication 

of information loss. In this case, a new topology is replaced, and the optimization problem in (2) is run again for the 

new condition. Whenever the broken link is restored, the network topology is reset to the previous condition. Note that 

when an event occurs in one parking lot, the information of all connected parking lots is updated because of 

aggregator connections. In this implementation, the convergence of the mean value based on (9) has been confirmed. 

Exactly the same as mentioned, Fig. 2 illustrates the proposed event-triggered scheme and how components 

relate to each other. When the event conditions are met, the optimization program will be executed. Therefore, the 

future requested charging of EVs in the parking lots is determined. Also, the mean-field values will be updated by 

local aggregators. Each aggregator optimizes its mean value and sends it again to the EVs under its control. Its mean 

value is optimized according to the optimal response of vehicles in the parking lot as well as the mean values of the 

neighboring parking lots, which is determined based on the communication graph. For example, as shown in Fig. 2, 

the first parking lot also receives information about the local mean value of the fifth parking lot. The sixth parking lot 



Majlesi Journal of Electrical Engineering                                          Vol. 18, No. 1, March 2024 
 

81 

 

also uses the local mean-field value of the fourth parking lot in its calculations. Otherwise, if an event is not detected, 

the corresponding values of the previous hour will be used  without running the optimization problem at the next 

sampling time. 
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Fig. 2. Schematic of event-based predictive optimization. 

The suggested optimization is explained in Algorithm 2. According to this algorithm, each parking lot 𝑝 plans its 

optimal strategy, and the local aggregator estimates its mean-field value based on the communication graph at each 

iteration, and sends it back to EVs in parking lot 𝑝. 

 

Algorithm 2: The proposed event triggered hierarchical mean filed algorithm. 

Initialization 𝑧(0), 𝑘 ← 0, trig_num, 𝑡 = 1, 𝑇_conv, 
Optimization: 

For 𝑡 = 1, 
For each 𝑝 ∈ 𝑃 
Iteration: 

For 𝐾 ∈ 𝑇_conv 
For 𝑛 ∈ 𝑁𝑝 

𝑞𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = arg min 𝐽𝑝,𝑛(𝑞𝑝,𝑛 , 𝑧𝑝(𝑘)), 

𝑛 = 1,2, ⋯ , 𝑁𝑝, 

𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = 𝑑𝑝,𝑛 + 𝑞𝑝,𝑛

𝐶∗ (𝑧𝑝(𝑘)) − 𝑞𝑝,𝑛
𝐷∗ (𝑧𝑝(𝑘)), 

End 

     𝑔(𝑧𝑝(𝑘)) =
1

𝑁𝑝

∑ 𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘))

𝑁𝑝

𝑛=1 , 

     𝑧𝑝(𝑘 + 1) = (1 − 𝜇𝑘  )(∑ 𝑣𝑝,𝑝′(𝑘)𝑝′∈𝑃 𝑧𝑝′(𝑘)) + 𝜇𝑘𝑔(𝑧𝑝(𝑘)), 

𝑘 ← 𝑘 + 1, 
End 
Monitoring: 

while (𝑧1(𝑡) − 𝑧1(𝑡 − 1) ≤ α𝑧1(t − 1))& (𝑧2(𝑡) − 𝑧2(𝑡 − 1) ≤ α𝑧2(t − 1))& 

 (𝑧3(𝑡) − 𝑧3(𝑡 − 1) ≤ α𝑧3(t − 1))& (𝑧4(𝑡) − 𝑧4(𝑡 − 1) ≤ α𝑧4(t − 1))& 

 (𝑧5(𝑡) − 𝑧5(𝑡 − 1) ≤ α𝑧5(t − 1))& (𝑧6(𝑡) − 𝑧6(𝑡 − 1) ≤ α𝑧6(t − 1)) 

 &(𝑧(𝑡) − 𝑧1(𝑡)) ≤ β𝑧(𝑡) 
do 

𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = 𝑑𝑝,𝑛 + 𝑞𝑝,𝑛

𝐶∗ (𝑧𝑝(𝑘)) − 𝑞𝑝,𝑛
𝐷∗ (𝑧𝑝(𝑘)), 

𝑙𝑝(𝑡) = ∑ 𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘))

𝑁𝑝

𝑛=1 , 𝑡 = 1,2, ⋯ ,24, 

𝑔(𝑧𝑝(𝑘)) =
1

𝑁𝑝
 𝑙𝑝(𝑡) 

     𝑧𝑝(𝑘 + 1) = (1 − 𝜇𝑘  )(∑ 𝑣𝑝,𝑝′(𝑘)𝑝′∈𝑃 𝑧𝑝′(𝑘)) + 𝜇𝑘𝑔(𝑧𝑝(𝑘)), 

Otherwise 

Set 𝑚 = 𝑡 
Uncertainty event Trigger optimization: 

For 𝑡 ∈ 𝒯 
For each 𝑝 ∈ 𝑃 
𝑃 = 1,2, ⋯ ,6. 
Iteration: 

For 𝐾 ∈ 𝑇_conv 
For 𝑛 ∈ 𝑁𝑝 

𝑞𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = arg min 𝐽𝑝,𝑛(𝑞𝑝,𝑛 , 𝑧𝑝(𝑘)), 

𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = 𝑑𝑝,𝑛 + 𝑞𝑝,𝑛

𝐶∗ (𝑧𝑝(𝑘)) − 𝑞𝑝,𝑛
𝐷∗ (𝑧𝑝(𝑘)), 

𝑡 = 𝑚, ⋯ ,24, 𝑛 = 1,2, ⋯ , 𝑁𝑝, 

End 
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𝑔(𝑧𝑝(𝑘)) =
1

𝑁𝑝

∑ 𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘))

𝑁𝑝

𝑛=1 , 

𝑧𝑝(𝑘 + 1) = (1 − 𝜇𝑘  )(∑ 𝑣𝑝,𝑝′(𝑘)𝑝′∈𝑃 𝑧𝑝′(𝑘)) + 𝜇𝑘𝑔(𝑧𝑝(𝑘)), 

𝑘 ← 𝑘 + 1. 
End 

Set trig_num = trigg_num + 1. 
Set 𝑡 = 𝑚 and back to monitoring 
Disconnection event Trigger optimization: 

For 𝑡 ∈ 𝒯 
For each 𝑝 ∈ 𝑃 
𝑃 = 1,2, ⋯ ,5. 
Iteration: 

For 𝑘 ∈ 𝑇_conv 

For 𝑛 ∈ 𝑁𝑝 

𝑞𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = arg min 𝐽𝑝,𝑛(𝑢𝑝,𝑛, 𝑧𝑝(𝑘)), 

𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘)) = 𝑑𝑝,𝑛 + 𝑞𝑝,𝑛

𝐶∗ (𝑧𝑝(𝑘)) − 𝑞𝑝,𝑛
𝐷∗ (𝑧𝑝(𝑘)), 

𝑡 = 𝑚, ⋯ ,24, 𝑛 = 1,2, ⋯ , 𝑁𝑝, 

End 

𝑔(𝑧𝑝(𝑘)) =
1

𝑁𝑝

∑ 𝑝𝑝,𝑛
∗ (𝑧𝑝(𝑘))

𝑁𝑝

𝑛=1 , 

𝑧𝑝(𝑘 + 1) = (1 − 𝜇𝑘  )(∑ 𝑣𝑝,𝑝′(𝑘)𝑝′∈𝑃 𝑧𝑝′(𝑘)) + 𝜇𝑘𝑔(𝑧𝑝(𝑘)), 

𝑘 ← 𝑘 + 1. 
End 

Set trig_num = trig_num + 1. 
Set 𝑡 = 𝑚 and back to monitoring 

 

Mean-field values of parking lots and overall mean-field value are monitored every hour for detecting 

uncertainties and communication disconnection that may occur in the system and computations are performed by the 

idea of feedback in MPC for the next hours. When the values exceed the pre-defined settings, the optimization 

program runs again. Otherwise, charging is performed according to the data obtained in the previous hours. 

 

3.3.  The Proposed Topology 
As said before, communication between aggregators may be interrupted through attacks or communication 

failure. Therefore, the parking lot aggregators will have a time-varying network, and the links among them may be 
disconnected for some hours and reconnected again. It is proposed that disconnections can be detected by examining 
the difference between the overall mean-field value and the mean-field value of the disconnected parking lot. As a 
solution to remaining convergence conditions in the parking lots network, links to a disconnected parking lot from 
other parking lots will now connect to a parking lot that no longer receives disconnected parking information. Also, it 
is assumed that the information is sent by the aggregators concurrently. A case study is described for clarifying and 
simulated as follows. Consider parking lot 1 calculates 𝑧1 based on its information and information of parking lot 5 
according to (9) and sends it to parking lot 2. Now consider that the communication signal between these two parking 
lots (1 and 5) is cut off which could be detected by the value of 𝑧̅ − 𝑧1. Therefore, based on the proposed topology, 𝑧5 
is sent to parking lot 2 as the received signal of parking lot 1. In this example, parking lot 1 had only one received 
signal from other neighboring parking lots (parking lot 5). This issue can be expanded to all incoming values to 
disconnected parking lot and will be sent to the parking lot that no longer receives the information. In disconnection 
status, five parking lots exchange information with each other and reach a consensus. When a connection is interrupted, 
information about the interrupted parking lot is updated locally, but it is not able to communicate it. When the connection 
is reestablished, the parking lots network will return to the previous topology with six parking lots. It is assumed that the 
communication links exist between all parking lots, but information exchange is based on a communication graph. The 
equations of the mean-field of each parking lot are given in Algorithm 1. According to this algorithm, the final value of 
the Nash equilibrium point should converge to the overall mean field value of 𝑧.̅ 

In this study, the link disconnection of parking lots 1, 2, and 6 is investigated randomly. The topology of the 
parking lots’ communication at the time of disconnection of parking lots 1, 2, and 6 is shown in Fig. 3.  
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Fig. 3. a) Link disconnection between P1 and P2, b) Instead of P1, P5 is connected to P2, c) Link disconnection 
between P2 and P4, d) Instead of P2, P1 is connected to P4, e) Link disconnection between P3 and P6, and f) Instead 

of P6, P4 is connected to P3. 

 

When all parking lots exchange information with each other, the following equations could be considered for 
example for 𝑧1 and 𝑧2. 

𝑧1(𝑘 + 1) = (1 − 𝜇)𝑧5(𝑘) + 𝜇
1

𝑁1

∑ 𝑝𝑛
∗ (𝑧1(𝑘))𝑁1

𝑛=1   (12) 

𝑧2(𝑘 + 1) = (1 − 𝜇)𝑧1(𝑘) + 𝜇
1

𝑁2

∑ 𝑝𝑛
∗ (𝑧2(𝑘))𝑁2

𝑛=1   (13) 

Now assume that 𝑧1 is not received by parking lot 2 due to a disconnection between these two parking lots. Thus, 
instead of 𝑧1 in (13), 𝑧5 could be used in disconnected hours. This is shown in the following equations. 

 

𝑧1(𝑘 + 1) = 𝜔𝑧1(𝑘) + 𝜈𝑧1(𝑘 − 1) (14) 

𝑧2(𝑘 + 1) = (1 − 𝜇)𝑧5(𝑘) + 𝜇
1

𝑁2

∑ 𝑝𝑛
∗ (𝑧2(𝑘))𝑁2

𝑛=1   (15) 

   

    In fact, parking lot 1 uses a linear combination of its previous data during the disconnection hours (14) and parking 

lot 2 uses data from parking lot 5 (15). After reconnection, the previous equations, i.e. (12) and (13), are used again in 

the optimization. Fig. 3.a is explained in algorithm 3 to clarify the proposed topology. 

 

Algorithm 3: Topology change algorithm when disconnecting between two parking lots. 

Initialization 𝑘 ←  1, ∀𝑝 ∈ 𝑃 

Iteration 𝑘 

Disconnected: P1 from  P2 ∈ 𝑃 

Connected:  P5 to P2 ∈ 𝑃 

P1: 𝑧1(𝑘 + 1) = 𝜔𝑧1(𝑘) + 𝜈𝑧1(𝑘 − 1) 

P2: 𝑧2(𝑘 + 1) = (1 − 𝜇)𝑧5(𝑘) + 𝜇
1

𝑁2

∑ 𝑝𝑛
∗ (𝑧2(𝑘))𝑁2

𝑛=1  

Reconnected: P1 connected to P2 again 

𝐏𝟏: 𝑧1(𝑘 + 1) = (1 − 𝜇)𝑧5(𝑘) + 𝜇
1

𝑁1

∑ 𝑝𝑛
∗ (𝑧1(𝑘))𝑁1

𝑛=1   

𝐏𝟐: 𝑧2(𝑘 + 1) = (1 − 𝜇)𝑧1(𝑘) + 𝜇
1

𝑁2

∑ 𝑝𝑛
∗ (𝑧2(𝑘))𝑁2

𝑛=1   

𝑘 ←  𝑘 + 1. 
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3.4.  Convergence 

Based on Theorems 1 and 2 in [21], the local mean-field terms in this work reach a consensus. The weighted 

adjacency matrix of the communication graph of parking lots is doubly stochastic, and the union of the time-varying 

connection graphs is strongly connected over a finite horizon. 

Assumption 1: The weighted adjacency matrix 𝑉 is doubly stochastic, i.e. 

1) 𝑣𝑝,𝑝′ ≥ 0, 

2) ∑ 𝑣𝑝,𝑝′ = 1𝑝′∈𝑃 , for all 𝑝 ∈ 𝑃, 

3) ∑ 𝑣𝑝′,𝑝 = 1𝑝′∈𝑃 , for all 𝑝 ∈ 𝑃, 

4) ∃ 𝜂 ∈ (0,1): 𝑣𝑝,𝑝′ ≥  𝜂 for all (𝑝, 𝑝′) ∈ 𝐸. 

At the time of disconnection of one parking lot, other parking lots will converge according to the proposed 

topology, and the disconnected parking lot data is updated using a linear combination of its previous data. In this 

paper, 𝜔 and 𝜈 in (14) are considered 1 and 0, respectively. When the connection is resumed, all parking lots will 

converge together because convergence does not depend on their initial conditions. Of course, the value of the 

convergence points will be slightly different in these two cases due to the temporary loss of the disconnected parking 

lot data. 

4.  SIMULATION RESULTS 

       In this simulation, six parking lots are considered with an unknown variable number of vehicles per hour, such that an 

average of 100 vehicles is considered in each parking lot. The number of vehicles in each parking lot is allowed to 

decrease/increase by 20% around the average value. Vehicles belong to three groups: Fisker, Nissan, and Toyota. They 

have different battery capacities {22, 24, 27} and maximum charge/discharge rates per hour {4-6} [42, 43]. The initial 

charge of the vehicles is also selected as a variable. Vehicles are either charged or discharged. The parameters of EVs are 

given in Table 1. 

Table 1. Parameters of EVS and network price [11]. 

Parameter Value Description 

𝑒 1.2 Battery degradation cost parameter 

𝑓 0 Battery degradation cost parameter 

𝛿 {22,24,27}kW Battery capacity size 

𝛾 0.95 Charging efficiency 

𝑆𝑜𝐶 [0 1] Lower and upper level on SOC 

𝑎𝑒 1000 Price coefficient 

𝑏𝑒 13.5 Price coefficient 

𝑐𝑒 0 Price coefficient 

 

The profile of solar panels and non-EV electrical loads have been taken from [44] and [45]. In order to run the 
algorithm, we assign 𝜇𝑘 = 0.3/𝑘 where 𝑘 is associated with the iteration number. Also, according to simulation results, 
we select 𝛼 = 0.1 and 𝛽 = 0.25. 

To check the disconnection status between the parking lots and detect the disconnection, following scenario is 

simulated. It is assumed that parking lots 1, 2, and 6 do not send information at some distinct times. Parking lot 1 is 

cut off at 7 a.m., 8 a.m., and 2 p.m. and does not send data to parking lot 2. Parking lot 2 is cut off at 11 a.m., 12 a.m., 

and 8 p.m. and does not send data to parking lot 4, and parking lot 6 is cut off at 6 a.m., 5 p.m., and 6 p.m. and does 

not send data to parking lot 3. The connection and disconnection times of parking lots 1, 2, and 6 are shown in Fig. 4. 
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Fig. 4. Connection and disconnection times of parking lots 1, 2, and 6. 

This scenario has been simulated in two cases. When disconnection is not detected and when it is detected. In the 
remaining hours, the connection between parking lots 1 and 2 is established, and the optimization process is carried 
out with the previous network structure. During the disconnection, the network topology is modified as described 
before to reach the convergence. Considering the difference in the mean values at the time of disconnection, the 
optimization program is run again. Therefore, the number of events increases according to the number of interruptions. 
In this case, it increases from 6 to 9 events. The advantage of having two different signals from the parking lots not 
only enables the detection of uncertainties but also the communication status between the parking lots and the 
information exchanged between them could be updated. The simulation results are shown in Figs. 5 to 7. 

 

 

Fig. 5.  Simulation results for parking lot 1 in detected and undetected disconnection. 

 

 

Fig. 6.  Simulation results for parking lot 2 in detected and undetected disconnection. 
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Fig. 7.  Simulation results for parking lot 6 in detected and undetected disconnection. 

      By detecting the disconnection, the charging and discharging values of the vehicles will be closer to the actual 
values due to optimization. During connected hours, the parking lots topology is fixed but during the disconnected 
hours we will have modified topology. 

 

Fig. 8. Simulation results for parking lot 1 in detected disconnection at 8 a.m. and convergence of other parking lots. 

Fig. 8 shows the convergence of five parking lots when parking lot 1 is disconnected at 8 a.m. This situation is 

recognized, and the optimization program is executed with the modified topology. There is a time-varying network 

between the parking lots. Parking lot 1 does not receive information, and information about parking lot 5 is sent to 

parking lot 2 (Fig. 3b). Meanwhile parking lot 1 uses its previous hour data to solve the optimization. 

 

 

Fig. 9.  Simulation results for parking lot 1 in connected condition at 12 and convergence of all parking lots. 

     Fig. 9 also shows the convergence of six parking lots after the reconnection of parking lot 1 at noon. In this 
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case, the network topology will return to its previous state, and all six parking lots will converge. Fig. 10 shows the 

standard deviation values (𝜎) for each of the six parking lots in detected and undetected disconnection optimization. 

The simulations were performed using MATLAB version R2014a in a computer with the following 
specifications: Processor: Intel Core™ i5-2500 CPU @ 3.30 GHz 3.30 GHz, Installed memory (RAM): 4.00GB (3.49 
GB usable), System type: 32-bit operating system. 

 

 

Fig. 10. Variance values of different parking lots in detected disconnection and undetected disconnection. 

5.  CONCLUSIONS 

Due to the unknown number of electric vehicles in parking lots and the uncertainty of solar energy generation, 
electric vehicle charging and discharging optimization is implemented online through mean-field game theory and the 
receding horizon scheme of MPC. Executing an optimization program every hour causes an increase in the volume of 
calculations, so the event trigger idea is suggested. In the meantime, the disconnection of the parking aggregators is 
also raised along with the existing uncertainties. Several distributed event-triggered control methods introduced 
recently, generally require state estimators to calculate the event-triggered error, the latest states, and the threshold 
which increases the computation cost. However, the proposed event-triggered control method only requires parking 
lots mean-field values to compute the event-triggered conditions, which has a low computational cost. 

Since it is not possible to make a definitive diagnosis by only checking the mean-field value of each parking lot, 
it is suggested to use also the difference between the mean-field values of parking lots and the overall mean-field value 
to determine the disconnection of the communication links. In this case, the optimization program is executed again. 
Actually, this paper is facing two types of events in the system: one related to uncertainties and another related to 
disconnections. So, the optimization is done again according to uncertainty detection or communication disconnection 
in the parking lots. At the time of the link disconnection, a new topology is proposed for the disconnected parking lot 
and the neighboring parking lots in connection with it. Considering that the communication between aggregators is 
strongly connected and only at certain hours this communication link is interrupted, the issue of convergence in this 
system is established. 
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