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1.  INTRODUCTION 

The reduction of mutual coupling within antenna arrays has been a central focus of research in the antenna field for 

many years. This is of particular significance due to the escalating demand for high-gain antennas across various 

wireless communication systems. Array antennas, which involve placing antennas near each other at a distance of half 

a wavelength, are commonly employed to achieve heightened gain. However, the inherent proximity of these antennas 

gives rise to surface wave propagation and subsequent alterations in current distribution, leading to a decrease in 

antenna gain [1, 2]. Consequently, researchers have persistently explored strategies to augment the number of antennas 

in an array and reduce the interspacing between them while upholding optimal performance [3]. 

Numerous techniques have been explored for mitigating mutual coupling. One approach entails integrating side 

metallic walls with a minor resistive film on both sides of the dipole antenna [4]. Another method involves the 
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utilization of a one-dimensional electromagnetic bandgap and a split-ring resonator positioned near two monopole 

antennas to curtail mutual coupling [5]. Furthermore, compact structures composed of electric dipoles, magnetic 

dipoles, and circular components have been employed as intermediary structures between two patch antennas to 

achieve mutual coupling reduction [6]. The emergence of metasurfaces has also proven effective in addressing mutual 

coupling reduction [7, 9]. 

In the face of the rapid progress of contemporary wireless communication systems, there is an escalating demand 

for broadband antennas characterized by consistent gain, catering to various generations of mobile Internet. The World 

Radiocommunications Conference in 2015 (WRC15) pinpointed frequency bands within the 24-86 GHz range as 

prospective candidates for future communications [10]. The Magneto-Electric (ME) dipole antenna emerges as a 

fitting contender for such applications owing to its favorable electrical attributes, encompassing substantial impedance 

bandwidth, stable gain, commendable front-to-back ratio, and low cross-polarization. ME dipole antennas possess the 

capacity to function across an extensive spectrum of wireless communication bands, including ultra-wideband systems 

[11, 12]. Notably, these antennas exhibit wideband characteristics while upholding stable gain [13]. 

A magneto-electric dipole antenna is a type of antenna that combines both magnetic and electric dipole elements to 

transmit or receive electromagnetic waves. The structure of a magneto-electric dipole antenna is illustrated in Fig. 1. 

This antenna comprises a half-wavelength electric dipole oriented horizontally (J) and a quarter-wavelength vertical 

cavity positioned above it, radiating similarly to a horizontal (M). The magnetic and electric dipoles are excited in an 

orthogonal and simultaneous manner. A feeding line, capable of exciting both the magnetic and electric dipoles 

simultaneously, is positioned at the center of the antenna and connected to the SMA connector [14-15]. 

M

M

J
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Fig. 1. How to combine electric dipole and magnetic dipole. 

 

The radiation mechanism of a magneto-electric dipole antenna is illustrated in Fig. 2. In the horizontal (H) plane, 

the radiation pattern for magnetic dipoles takes the shape of an O, while in the vertical (E) plane, it resembles an 8. 

Conversely, electric dipoles exhibit the opposite radiation pattern in both planes compared to magnetic dipoles. 

However, when both magnetic and electric dipoles are excited with equal amplitude and proper phase, a cardioid-

symmetric radiation pattern is achieved in both the E and H planes. This configuration effectively reduces radiation 

behind the antenna [16]. 
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Fig. 2. Radiation mechanism of magneto-electric dipole antenna. 

 

2.  METASURFACE POLARIZATION –ROTATOR WALL 

Fig. 3 illustrates the metasurface structure of the Metasurface Polarization-Rotator (MPR) Wall employed in this 

study. The size specifications of this structure are provided in Table 1. In a previous work referenced as [17], a 7x1 

array of the same MPR structure is employed between two dielectric resonator antennas, serving the purpose of 

frequency conversion. In the current study, the identical MPR structure is utilized. In the present study, the same MPR 

structure is used except that a 4x1 array MPRs is used in this work. The number of unit-cell MPR used is experimental 

and definitely, the higher the number, the greater its effect on reducing the mutual coupling. 

The metasurface material used in the Wall is Rogers RO5870, possessing a relative permittivity (εr) of 2.33. The 

metallic component of the MPR structure is fabricated using copper. 
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Fig. 3. The geometry of the MPR unit-cell. 
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Table 1. Dimensions of the used unit-cell MPR. 

Parameter Value/mm Parameter Value/mm 

LR1 49.8 LS 63.20 

LR2 50.3 W0 6 

LR3 28.8 TSB 1 

G1 2.5 G2 2.5 

 

2.1.  Antenna Configuring 
Fig. 4 illustrates the geometry of the proposed antenna, while Table 2 provides the values of its parameters. In Fig. 

2a, there are two vertical planes and two horizontally symmetrical planes featuring triangular corners, forming an 

electric dipole. The antenna is equipped with a V-shaped feeding structure, as shown in Fig. 4b. Fig. 4c provides a 

depiction of the MPR wall placed between the antennas. 
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Fig. 4. (a) Magneto-electric dipole, (b) feed line, (c) overall view of the antenna with a 4x1 array MPR wal. 
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Fig. 5. (a) Impedance bandwidth diagram, (b) gain and axial ratio diagram, (c) front-to-back ratio diagram, (d) S21 

diagram, and (e) radiation efficiency. 
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Table 2. Dimensions of the used ME Antenna. 

Parameter Value/mm Parameter Value/mm 

WG 145 L7 25 

LG 145 L8 30 

HH 11.25 Lf1 2.5 

S 24 Lf2 16.5 

H 29 Lf3 3.2 

L1 42 Lf4 6.5 

L2 43.9 Lf5 6.5 

L3 45.7 φ 2 

L4 19 b 21 

L5 14.7 BW 8 

L6 4.4 dc 13.4 

 

Fig. 5 displays the diagrams for the impedance bandwidth, gain, axial ratio, front-to-back ratio, and S21 for the 

cases with and without the MPR wall. 

According to Fig. 5a, the impedance bandwidth diagram suggests that there is no significant difference between 

the antenna with and without the MPR Wall. Referring to Fig. 4, the impedance bandwidth for the antenna with the 

MPR Wall, where |S11| < [-10 dB], covers 61.4% of the frequency range from 2 GHz to 3.75 GHz. Similarly, for the 

antenna without the MPR Wall, the impedance bandwidth spans 59.64% of the frequency range from 2 GHz to 3.7 

GHz. 

Referring to Fig. 5b, the addition of the MPR wall between the two mutually coupled ME antennas results in a 

reduction of over -20 dB in |S21| compared to the antenna without the MPR Wall. The magnitude of the S21 values at 

frequencies 2 GHz, 3.1 GHz, and 3.7 GHz is approximately -40 dB, -55 dB, and -45 dB, respectively. 

In Fig. 5c, the presented antenna with the MPR wall achieves a maximum front-to-back ratio (FBR) of 37.6 dB at a 

frequency of 2.5 GHz. Conversely, for the setup without the MPR wall, the FBR is 37 dB at a frequency of 3.5 GHz. 

Referring to Fig. 5d, the axial ratio bandwidth for the structure with MPR wall, with an AR < [3 dB], extends 

across 63.36% of the frequency range from 2.07 GHz to 3.99 GHz. In contrast, the axial ratio bandwidth for the 

structure without the MPR wall encompasses 52.73% of the frequency range from 2.15 GHz to 3.69 GHz. The axial 

ratio for the structure with the MPR wall setup exhibits an 11% increase. 

Continuing with Fig. 5d, the maximum right-hand circularly polarized gain for the antenna with the MPR wall 

configuration is 9.91 dB at a frequency of 3 GHz. Conversely, for the structure without the MPR Wall, it is 9.92 dB at 

a frequency of 3.1 GHz. Fig. 5e displays the radiation efficiency of the proposed antenna. Observe that it is above 0.95 

across the whole band. 

Upon comparing and analyzing the simulation results for the structures with the MPR wall and without the MPR 

Wall, it becomes evident that the MPR wall does not significantly affect the gain, front-to-back ratio, and impedance 

bandwidth curves. 

The radiation patterns of the antenna for the structure with the MPR wall are depicted in Fig. 6. From the figure, it 

is evident that the right-hand components dominate, and there is a noticeable cross-polar discrimination between the 

right-hand and left-hand components. 
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(e) 

Fig. 6. The right-hand and left-hand radiation patterns for the antenna with MPR wall at (a) 2.2 GHz at (b) 2.6 GHz 

at (c) 3 GHz at (d) 3.5 GHz and (e) and 3.8 GHz for the used antenna. Solid blue and dashed black lines are 

measured and simulated RHCP components. 
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3.  CONCLUSION 

Using MPR walls for circular polarized antennas can pose challenges. The alteration in wave direction and 

refraction caused by the MPR wall, aimed at reducing cross-coupling, can directly impact the axial ratio plot. This 

challenge becomes crucial when applying MPR walls to Right-Hand Circularly Polarized (RHCP) ME dipole 

antennas. These antennas are typically designed with sidewalls that enhance the high aspect ratio plot by eliminating 

the sidewalls. This dilemma results in either a low-bandwidth antenna or the likelihood of the metal sidewalls 

substantially diminishing the effect of the additional surface wall from the polarization converter. Consequently, the 

performance of the MPR wall could be compromised. However, in this paper, the authors managed to overcome these 

challenges for the first time and achieve a notable reduction in cross-coupling by implementing an MPR wall between 

two RHCP ME dipole antennas. 

In our proposed antenna design, which is the first instance of mutual cross-coupling between two circularly 

polarized magneto-electric dipole antennas, we achieved an impedance bandwidth of 61.4% for |S11| < [-10dB]. The 

axial ratio bandwidth for AR < [3 dB] is 63.36%, indicating an 11% increase compared to the configuration without 

the MPR Wall. The maximum right-hand circular polarization gain is achieved at 3 GHz. Upon comparing and 

scrutinizing the simulation results for the cases with and without the MPR Wall, it becomes apparent that the MPR 

wall does not significantly affect the parameters of gain, front-to-back ratio, and impedance bandwidth. By 

introducing the MPR wall between the two mutually coupled ME antennas, a reduction of over -20 dB is observed in 

comparison to the antenna lacking the MPR Wall. The S21 values at frequencies of 2 GHz, 3.1 GHz, and 3.7 GHz are 

all above -40 dB, -55 dB, and -45 dB, respectively. 
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