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1. INTRODUCTION 

Agriculture is the main occupation of people in India but due to challenges like poor seeds, lack of fertilizers, 
inadequate irrigation facilities, absence of mechanization, soil erosion, and others, the yield of the farmers and 
cultivators remains low. Due to poor farm practices, the overall share of agriculture has decreased from 51.8% in 1951 
to 15.8% in 2019. The major factors (seed replacement, crop intensity, irrigation, and others) that reduced the profits 
of Indian agriculture are shown in the below Figure.   
     Based on  Fig.1, it can be said that poor extension, poor seed quality, and gaps in inputs such as fertilizer and 
agrochemicals cause under-development of the agriculture sector in India.1 Apart from this, the survey conducted by 
the Centre for Study of Developing Societies (CSDS), revealed that due to farming challenges, 76% of the farmers do 
not prefer to continue farming activities. About 70% of the farmers stated that issues such as unseasonal rains, pest 
attacks, floods, and drought create challenges for them to carry out farm practices. 

ABSTRACT: 
Plant phenotyping is one of the recent research areas that play an essential role to develop a better understanding 
of plant traits, genotypes, stresses, and other related features. It is regarded as essential concept as it facilitates 
development in several fields such as botany, agronomy, and genetics. Plant phenotype helps in acquiring relevant 
information about plant organs and whole features that allows the farmers to make informed plant cropping 
decisions. It includes the use of Deep Learning (DL) which is part of a machine learning technique that makes use of 
several processing layers to provide reliable outcomes from abstraction. DL-based approaches are highly useful in 
providing a sufficient amount of data related to plant strapping, stresses, and growth indices. Deep learning 
approaches are highly efficient in analysing plant phenotype and characterizing the phenotyping aspects by 
classifying the plant stress datasets into open, labelled, and broad-spectrum.  In this paper, a review work makes an 
attempt to explore the efficiency of deep learning and filtering approaches in plant phenotyping.  The recent works 
related to the DL principles have been utilized for digital image–based plant stress phenotyping. Then a comparative 
assessment of DL tools against other existing techniques, with respect to decision accuracy, data size requirement, 
and applicability in various scenarios. Therefore, it is strongly recommended in the study to use the imaging data 
process so that there is the attainment of accurate information from training datasets by using high-throughput 
systems like UAVs and other autonomous systems. 
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Fig. 1. Factors related to low productivity and high average cost in India. 

(https://www.niti.gov.in/sites/default/files/2020-01/Presidential_Address.pdf) 
 

All these challenges adversely impacted the condition of farmers in India reduced farm productivity, and 
increased food security pressure on land. Under such conditions, plant phenotyping is to be included in agriculture 
practices to gain a better understanding of crops, plant traits, genotypes, stresses, and other related features and 
perform adequate crop management activities. It will help agriculturists, farmers, plant breeders, and cultivators to 
make important crop and farming decisions that support a sustainable farming environment. It provides a wide range 
of plant information such as biochemical, anatomical, biochemical, and historical features that help in the breeding and 
selection of plants to increase productivity over time.2  

  
2. PHENOTYPING COMMUNITIES 

Plant phenotyping is the quantitative evaluation of the complicated features of the plant features. It helps in 
acquiring relevant crop information and promotes plant research. It helps in acquiring relevant information about plant 
breeding, quality assessment, and product development.3 Based on phenotyping communities, plant phenotyping is 
categorized into three parts which are structural, physiological, and temporal.  

 
2.1. Types of Phenotyping Communities 

Focusing on structural phenotype is related to the morphological features of the crop, while physiological 
phenotypes refer to the peculiarity of the crops. It considers all the conditions and features that are related to the 
regulation of plant growth processes and metabolism. On the other hand, the temporal phenotype is referred to the 
identification of growth patterns of the plants which is one of the major forces to differentiate between several plant 
species. Temporal cues are very beneficial in developing differentiation between plants that have similar features and 
appearances.4 While focusing on the structural phenotyping of the plant, it is associated with acquiring detailed 
information about the plant in terms of physical attributes such as root, stem, leaf, flower, fruit, and seed. Structural 
phenotyping plays an important role in identifying plant features and carrying out different activities such as gene 
discovery, yield estimation, and precision agriculture. 

On the other hand, based on different plant features, plant phenotyping is classified into two parts which are plant 
organ phenotyping and whole-plant phenotyping plant organ phenotyping includes the structural, physiological, and 
temporal classification of plants. Structural plant organ phenotyping describes the morphological features of the plant 
that are related to shape, area, angle, and others. It also includes other traits such as water content, chlorophyll content 
that impact the metabolism and growth of the plant.5 It includes above-ground and below-ground organ phenotyping 
so that there is the determination of morphological changes and growth aspects of the plant.  

Physiological phenotyping is an essential component of the plant research process that provides in-depth insights 
into plant breeding during climate change. It also helps in testing and monitoring plants and the development of 
methods through which plant treatments could be improved. The physiological phenotyping of plants includes 
acquiring information about biotic and abiotic features of the crop/plant in the multifactorial environment. It provides 
information related to quantitative and qualitative traits of the crop by analyzing their different parts such as organ, 
tissue, and entire organism level.6   

While focusing on temporal phenotypes, it is classified into two types which are trajectory-based and event-based. 
The temporal phenotypes provide information about the genetic variability of the plant such as insights about 
trajectories of stem angle, plant growth rate, and leaf elongation rate. The determination of temporal features of the 
plant could be executed with the help of line graphs so that there is the attainment of insights about the length of leaf, 
mid-leaf curvature, stem angle, integral leaf skeleton, apex curvature, and others. It helps in determining the genetic 
influence on a plant that brings variations in its growth and characteristics. Apart from this, adaptive hierarchical 
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segmentation and optical flow-based tracking methods are also used to identify plant features and patterns. Based on 
the above facts, it is said that plant phenotyping is an essential procedure to acquire information about a plant in terms 
of its characteristics, features, and differentiation from another plant that has similar traits.7  

 
2.2. Segmentation Process in Plant Phenotyping 

The plant organ segmentation is carried out by using different methods such as Otsu, Adaptive thresholding, Edge 
detection fuzzy numerical morphology calculation, Canny edge detection, and others so that there is the determination 
of valuable insights about plant organs such as flower, leaf, stem, fruit, and others.8 For example, the Otsu method is 
used to determine the efficiency of plant organs such as flowers and fruit. However, its use is limited owing to pixel 
grey value and lack of spatial details. On the other hand, canny edge detection is used to accurately position the edge 
and carry out a fast computing process. However, its use is limited owing to the closure of edges and non-suitable for 
different kinds of edges.9 

The whole plant phenotype is associated with 3D phenotyping and identification of plant stress. By using 3D 
phenotyping, there is the attainment of reliable insights into the complex plant structure and diversity within the 
species. The 3D plant phenotyping is based on three applications which are 3D image acquisition, 3D image 
processing, and 3D image analysis. The Figure below provides details of the different 3D phenotyping methods and 
implications.  

 

 
Fig. 2. The pipeline of 3D plant phenotyping. 

 
Additionally, 3D plant phenotyping is carried out with the help of different methods such as Laser triangulation, 

Terrestrial laser scanning, Time of flight, and others to identify plant features. For example, Laser triangulation 
provides accurate measurement accuracy and high resolution at a low cost. However, its use gets restricted owing to 
no colour information, and heavy computing requirements. On the other hand, Terrestrial laser scanning provides a 
wide measurement range and high resolution with the help of a mature algorithm. However, the use of this technique 
is restricted owing to the high cost and time-consuming assessment.10 

Plant stress phenotyping is also included in the study which provides insights into different diseases and pest 
attacks on plants. It includes biotic stresses and abiotic stresses that impact the growth of plants adversely. Therefore, 
to bring improvements in the organ and whole plant phenotyping, it is essential to advance technology-based tools 
such as deep learning techniques and filtering approaches in plant phenotyping so that there is a classification of plant 
traits and detection of plant stresses.  

 
3. PLANT PHENOTYPING ENVIRONMENTS AND TECHNIQUES 
3.1. Controlled environment 
i) Imaging sensors:  

Different imaging techniques such as RGB imaging, thermal imaging, multispectral imaging, hyperspectral 
imaging, and others are used to obtain valuable insights about crop features. Considering the RGB method, visible 
light is used to carry out the morphological study of the plant. It includes studying the plant from the stage of shoot 
emergence to reach the ground area to form the canopy.  For example, 2D and 3D-based RGB imaging are used to 
carry out greenhouse studies and conduct proximal sensing of the plant. As a result, by using RCB, reliable 
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information is acquired about the plant roots which facilitates further study process. However, the use of RGB imaging 
is restricted owing to the limited assessment of physiological when using the technology with other systems.13 The 
RGB image is captured from the camera by creating syntax with the camera board. In the case of using the mycamera 
application, the camera is connected to the camera board by using MATLAB software. It helps in taking a photograph 
and recording video by creating a connection with Raspberry PiTM hardware.  

Thermal imaging is another method that helps in acquiring information about the physiological features of a crop. 
This method is related to studying the surface temperature of the leaf or canopy so that reliable insights are gained 
about stomatal conductance. It helps in carrying out research related to plant stress when there is the emergence of 
different climatic conditions such as droughts or famines. However, the conduct of the thermal imaging process is 
highly challenging as it includes assessing information related to the temperature of the soil, air, wind, and humidity.14 
For example, Near-infrared cameras based sensors are used in the agriculture sector to capture raw data related to 
whole shoots, leaf tissues, and time series. It is based on pixel-based map resolution of surface temperature that helps 
in capturing phenotype parameters in the field-controlled environment. As a result, there is the detection of insect 
infestation and canopy or leaf temperature in crops such as barley, wheat, maize, rice, and grapevine.15 

In Multispectral imaging near-infrared range of the light, spectrum is used to acquire plant features. It facilitates 
the process of leaf biochemistry and provides valuable insights into leaf pigment and water content. It also helps in 
assessing vegetation indices (VIs) so that there is the quantification of nitrogen and biomass. However, this process 
has certain limitations owing to the provision of discrete spectral information. As a result, it limits the multifaceted 
study of canopy and leaf biochemistry.16 The image-based techniques were more useful than the manual separation 
process, however, their use was restricted owing to the lack of attainment of 3-D information.17 The recent 
developments in light detection and ranging (LiDAR) helped in eliminating the 3-D image processing limitations and 
provided valuable 3-D information about plant/crop from the vegetation.18 

On the other hand, in Hyperspectral imaging, a continuous spectrum is used to acquire information about plant 
physiological characteristics. It includes the use of the entire visible and near-infrared region, to carry out complex 
studies of the crop. As a result, this process helps in acquiring information about biochemical compositions, water 
composition, vegetation indices, and pigmentation. Hyperspectral imaging also helps in identifying plant diseases in 
both indoor and outdoor conditions. It helps in analyzing the wind effect on the plant when measuring the optimal 
signal-to-noise ratio.19 The hyperspectral camera is based on spectroscopy and advanced digital imaging technology to 
capture the image. The hyperspectral cameras play an important role in agriculture by detecting bruises on apple trees, 
inspecting citrus fruits, and sorting potatoes. It also helps in the planting of seeds, ascertaining the freshness of fish, 
assessing the distribution of sugar in melons, and thereby, ensuring the quality of food and securing food chains. 
Though the implementation of hyperspectral images is costly, it is increasingly used to monitor crop health. On the 
other hand, hyperspectral-based imaging spectrometers are used to detect varieties of grapes in Australia. It also 
provides warning signals against disease outbreaks in the plants.20     
 
ii) Computer vision Imaging techniques:  

In computer vision imaging technique, a machine is used to recognize, track, and evaluate plants and crops in 
place of human beings. It includes the use of different types of sensors and methods to determine plant morphology, 
measure plant growth, and diagnose nitrogen content. For example, the Canon PowerShot SX20 sensor is based on the 
use of a non-invasive method to ascertain plant morphology. The technique exhibits strong versatility at low cost in a 
simple manner that helps in monitoring crop health and growth aspects.21  

Drone type DJI 3 type Phantom senor is used along with Gray level co-occurrence matrix (GLCM) methodology 
to monitor palm oil plantations. It is a UAV-oriented monitoring technique. The computer vision imaging technique is 
known to be the most accurate that helps in obtaining accurate information about the crop health, roots, disease, and 
phenolic parameters quickly.22 

Apart from this, the Raspberry Pi Camera Module v2 sensor along with Raspberry PI is used to count and identify 
flying insects over the crops. The technique is easy to use and provides real-time intelligent monitoring facilities with 
an accuracy of 92.50% levels. The average classification accuracy of the Raspberry Pi Camera Module v2 sensor-
based computer vision imaging technique is 90.18% which helps in chemical analysis of the crop and identification of 
plant stress.23  

0.9R-G Otsu algorithm Canny operator Hough transform type sensor along with robot vision system identification 
method is used identify cherries in the natural environment. The technique reduces the difficulty and high cost related 
to picking and brings improvement in efficiency by recognizing cherries with 96% accuracy. It also supports automatic 
harvesting of crops because of which there is a significant reduction in human labor costs for harvesting.24  

Machine learning methods such as deep learning methods are also used in the structural plant phenotyping process 
so that valuable information is gained about plant features. The deep learning method includes the use of 
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Convolutional neural networks (CNN to detect, segment, and categorize objects. For example, CNN has been 
successfully used for the identification of diseases in rice panicles. It helped in acquiring reliable information related 
to species classification, crop stress, and segmentation.30 Additionally, advancements have been made in the field of 
CNN phenotyping because of which 3D information analysis is included in the image-based CNN classification. It 
includes the use of different methods such as octree, voxel, point cloud, multi-surface, and others so that reliable 
insights are gained about the structural phenotypic of plants.25 

Additionally, Deep learning algorithms such as AlexNet, GoogLeNet are used for the classification and 
identification of biotic crop stresses such as Tomato yellow leaf curl virus, tomato mosaic virus, target spot, spider 
mites, Septoria spot, leaf mold, late blight, early blight, a bacterial spot in tomato plantation.26 Deep learning 
algorithms such as AlexNet are used for the identification, classification, and quantification of biotic and abiotic 
stresses like Bacterial blight, bacterial pustule, frog eye leaf spot, Septoria brown spot, sudden death syndrome, iron 
deficiency chlorosis, potassium deficiency, herbicide injury in soybean crop plantation. On the other hand, Deep 
learning tools such as AlexNet, GoogLeNet, VGGNet-16, ResNet20 are used to identify stresses such as Alternaria 
leaf spot, mosaic, rust, a brown spot in apple plantations. 

 
3.2. Field Environment 
i)  Imaging sensors 

Imaging of plants is more than just capturing pictures and aims at measuring the phenotype characteristics of the 
plants quantitatively by analyzing the interaction between light and plants. It includes evaluating the photons against 
each component cell of the plant so that there is the attainment of information related to absorbing, reflecting, and 
transmitting qualities of the plant. For example, the visible-light imaging technique is used in a field environment to 
cover canopy color, canopy, and color information. It includes the use of 3D stereo reconstruction from several 
viewpoints to capture the images of the canopy structure. It does not require any specific spectral calibration and take 
measurements automatically. However, its use is limited owing to under or over-sunlight and shadow conditions in the 
absence of spectral calibration.27 

Fluorescence imaging techniques in the field conditions such as field tractor and agriculture machinery to 
determine the photosynthetic status of the plant. It also helps in the indirect assessment of the biotic and abiotic stress 
experienced by the plant. However, the use of this technique is limited because of the small signal-to-noise ratio. As a 
result, the soar-induced fluorescence is restricted to be used remotely.28 

The imaging spectroscopy technique is used in field conditions to acquire information about the biochemical 
composition of the canopy or leaf. It also helps to acquire information about leaf area index, leaf growth, panicle 
health status, and coverage density. However, the use of this technique is restricted because of an absence of sensor 
calibration. Due to a lack of sensor calibration, the technique could not be used to record changes in the light 
conditions which limits its use for assessing the influence of canopy structure.29 

LiDar method is another useful imaging technique that is also used to acquire vital plant information in terms of 
threshold levels and geometry levels. The threshold level provides plant information by analyzing intensity, 
multiwavelength, and waveform threshold, while the geometry level uses machine-learning-based and point-based 
techniques to acquire reliable information related to waveform width and intensity.30 The use of the threshold-based 
method for plant phenotyping is less as it includes the implementation of full-waveform LiDAR systems. The use of 
this method also gets limited as it could not identify differences between the features of plants that have similar stems 
and leaves. On the other hand, the geometry-based method makes use of point –oriented approach to create 
differentiation between the plant features and record valuable information about them.31  

 
ii) Computer vision 

Convolutional Neural Networks is a Deep Learning (DL) computer vision technique that is used for the image 
classification of plants. It includes the use of the AlexNet model for image classification purposes, while the RCNN 
family model is used for object detection purposes. The other models such as FCN, U-Net are based on Fully 
convolutional architecture and encoder-decoder architecture to carry out semantic segmentation of the plant. The 
ground-Based Remote Sensing technique is used to acquire environmental, field, and phenotype information on 
individual plants. It is based on the use of advanced technologies such as automation and robotic precision so that 
there is the tracking of plant growth and determination of biomass amount. The information related to plant stem 
position, leaf area, crop plant count, leaf count, and inter-crop spacing. For example, robots such as BoniRob are used 
to collect information about real-world conditions. The robot also helps in tracking plant growth which helps the 
farmers and breeders to make the crop-growing decision. 

Artificial Intelligence (AI), a subset Machine Learning (ML) is used to exploit plant feature learning and identify 
patterns. It is based on neural networks so that high-quality information is acquired about plant phenotype in terms of 
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yield, roots, stress, disease, phenolic features, and chemical analysis. All the information that is acquired from the DL-
based tool is stored in different datasets such as CropDeep, Arabidopsis, and others. The use of the DL technique helps 
in panicle and spike detection that allows the breeders to carry out panicle segmentation process. 

 
4. DEEP LEARNING AND FILTERING TECHNIQUES IN PLANT PHENOTYPING 

The concept of deep learning came into form in the year 1960 with the use of multiple layers of non-linear 
features in polynomial activation functions. The implementation of deep learning in the agriculture sector has 
simplified the conduct of traditional activities such as assessing plant growth rate, leaf count, crop plant count, 
biomass amount, and others because of which they are performed seamlessly.32 It is classified into different categories 
such as supervised, semi-supervised, and unsupervised. Supervised learning techniques include labeled data, while 
semi-supervised learning technique includes deep Reinforcement Learning (DRL) or Reinforcement Learning (RL). 
On the other hand, the unsupervised learning technique is based on labeled data and the representation of important 
features within the input data.33  

While focusing on the application of deep learning and filtering techniques in plant phenotyping, it includes three 
approaches which are ground-based remote sensing, unmanned aircraft vehicles, and satellites. Ground-based remote 
sensing for plant phenotyping is related to the use of automation and robotic technology in the agriculture sector. The 
success of the implementation of advanced technology-based tools depends on the availability of information about 
the environment. It includes the use of available data, computer vision-based deep learning, and robots such as 
BoniRob to promote autonomous farming practices.34  

The use of robots for plant-specific treatment can be enhanced by equipping farming robots with a crop 
identification and classification system. It provides reliable information to the robots and they would perform actuator 
activity with the desired action in real-time.35 For instance, Weeds do not have any nutritional or medicinal value, and 
cannot be used for food purposes. They harm the growth of actual crop plants by taking their nutrients and space. 
Moreover, the manual conduct of the weeding process consumes a lot of time, and effort, and increases the cost of 
production. Therefore, extensive research is carried out in this direction to create differences between crop vs. weed 
identification, crop vs. weed classification, and crop seed classification.36 It helps in introducing an automated process 
of weeding so that significant crop losses and increased farming costs are reduced.37 Technology-based weed control 
practices promote precision framing by modulating the herbicide spraying process.  

In-plant phenotyping, crop detection, and segmentation are some of the most crucial processes to carry out farm 
management activities. Crop detection and segmentation include different tasks such as monitoring of crop growth, 
real-time detection of crop disease, yield estimation, and visual crop classification. However, a major limitation with 
the present deep learning network technology is that it is not suitable to carry out farm-based activities such as 
spraying pesticides, fertilization, irrigation, and picking. The major reason behind the limited use of deep learning 
networks is the lack of benchmark datasets that could facilitate agricultural processes. The only reliable database that 
is available for detection is acquired from CropDeep, while others such as databases such as Rosette plant or 
Arabidopsis provide information about crop/weed segmentation, Sorghum-Head, Crop/Tassle segmentation, and 
others. Fig. 3 below shows a few examples that have been extracted from the CropDeep dataset. On the other hand, 
Fig. 4 signifies the multi-modal annotations that have been acquired from the Rosette Plant Phenotyping dataset.  

 

 
Fig. 3. Some annotation examples from the CropDeep dataset. 
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Fig. 4. Visual illustration of all types of annotations available in Rosette Plant Phenotyping dataset. 

 
The adoption of modern technologies has enhanced the capacity of cultivators to produce sufficient food products 

so that the food needs of more than 7 billion individuals are met. However, the food security achieved by the 
cultivators is impacted by several factors such as plant diseases, reduction in pollinators, climate change, and reduced 
capacity to grow.38 Due to plant diseases, Indian farmers lose 35% of their crop yield, while developing countries lose 
more than 50% of their produce. It also adversely impacts the earning level of smallholder farmers and increases the 
risks of pathogen-derived disruptions in the food supply. Therefore, implementing crop disease and pest recognition 
techniques is necessary to be introduced to bring improvements in agricultural practices.39 

However, a major issue with real-time disease and pest identification is that there is a lack of sufficient 
information among the farmers.  Under such conditions, the farmers have to rely on the government-aided helpline and 
fellow cultivators to seek pest control advice. Therefore, to reduce the issues that are faced by the farmers, several 
researchers researched this segment and developed public datasets such as PlantDoc and PlantVillage.40  Through 
these datasets, the farmers could gain relevant information about pests and crop diseases. The datasets also provide 
valuable insights related to the control of crop disease and pest recognition. Figs. 5- 10 below describe the identified 
crop disease and the expected outcome of the trained disease detection model. 

 

 
Fig. 5. Entire plant affected by the banana bunchy top virus (BBTV). 

 

 
Fig. 6. Leaves affected by black Sigatoka (BS). 
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Fig. 7. Cut pseudostem of Xanthomonas wilt (BXW) affected plant showing yellow bacterial ooze. 

 

 
Fig. 8. Fruit bunch affected by Xanthomonas wilt (BXW). 

 

 
Fig. 9. Cut fruit affected by Xanthomonas wilt (BXW). 

 

 
Fig. 10. Corm affected by banana corm weevil (BCW). 

 
Unmanned aircraft vehicles (UAVs) are increasingly used in the civilian sector to carry out remote sensing and 

photogrammetry activities. As compared to manned aircraft vehicles, UAVs are considered to be more beneficial as 
they provide flexibility, high spatial resolution, and easy operational facilities. The high efficient and low-cost features 
of UAVs make them highly useful to carry out remote sensing, inspection, construction inspection, and search & 
rescue activities. As a result, UAVs can be utilized for performing precision farming, monitoring, and crop 
management practices.41 UAVs also help in the identification of weeds, spraying pesticides, recognizing insects, 
detecting an agricultural pattern, and scheduling irrigation. UAV adoption facilitates farm administration, weed 
supervision, and pest control processes. The conduct of all these activities by UAVs helps in improving crop yields, 
increasing the productivity of the farm, and augmenting profitability in agricultural systems.  

UAVs are used to carry out monitoring activities and quantify factors associated with irrigation, crop water need, 
amount of rainfall, availability of soil water, and assessment of the effectiveness of the irrigation system.42 It is also 
utilized in the farming process to evaluate the spatial distribution of the surface soil and assess the level of moisture 
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for the crop cultivation process. It also helps in monitoring the temporal and spatial patterns of plant diseases during 
different phases of plant growth. Due to the use of UAV, there is the detection of the pests in the early phase which 
helps in reducing crop losses for cultivators.43 The features of UAV also make it well efficient to capture thermal 
images and analyzing the texture of soil for crop cultivation. It also helps in evaluating the temperature differences on 
the land surface by considering the homogenous climatic conditions. 

The thermal images that are captured by UAVs provide valuable information about wind and water. It also 
determines the variability in crop residue that is essential for carrying out tillage practices by developing a protective 
layer on farmlands. The accuracy of the thermal images of UAVs is such that it can explain more than 95% variability 
in crop residue cover in comparison to 77% visibility provided by IR images.44 UAV implementation in the agriculture 
sector also helps in determining harvest time and monitoring the crop maturity of the crops. As a result, by using 
UAVs, the farmers acquire accurate information related to the yield of product that helps them to make decisions 
related to crop insurance, storage arrangements, harvest planning, and budgeting cash flow activities.45 For example, 
UAV was utilized in Thailand to evaluate total produce levels and biomass quantity of the rice crop, while it was 
utilized in Germany to make predictions about corn yields during the crop growth stages.  

UAVs feature of the combined aerial and ground-based system is highly helpful in carrying out precision 
agriculture activities. It has additional features such as relaxed flight regulations, geo-referencing, machine learning 
algorithms, and mosaicing help to conduct crop and soil monitoring activities.41 Additionally, satellites are used for 
carrying out plant phenotyping activities. As the climate change conditions are unpredictable, it becomes difficult for 
the cultivators to save their yield from environmental uncertainties. Under such conditions, satellite imagery provides 
crucial information related to weather and soil conditions. Satellite imagery helps in reducing scouting efforts of the 
cultivators because of which there is optimal utilization of nitrogen and water schedules. It also helps in estimating 
field efficacy and benchmarking them to analyze levels of soil erosion and risks of drought and mineral exhaustion. 
India has specifically designed seven satellites to provide benefits to the cultivators. 

Satellites and their imagery features are applied in the farming sector to estimate crop yields, soil moisture, types 
of crops, pH of the soil, and salinity levels in the soil.57 The implementation of radar and optical sensors in the satellite 
provides an accurate image of the land that is to be cultivated and differentiates between crop types in terms of health 
and maturity. Additionally, the optical satellite sensors can detect different rays such as infrared- wavelengths and 
visible rays on agricultural land. The combination of the different rays helps in determining the condition of the crop 
and provides early warning related to famine or crop failure.46 

The satellites for plant phenotyping are used for carrying out efficient precision agriculture practices where 
satellite images are used to characterize fields in detail. It is used in combination with geographical information 
systems (GIS) so that there is the facilitation of efficient farming practices. For instance, it recommends different crops 
for different fields and helps the farmer to make optimum utilization of fertilizer.47 Moreover, satellite imagery plays 
an important role in developing trust between several agricultural-oriented parties such as cultivators, governing 
agencies, and private bodies involved in farming. Satellite imagery encourages the use of different web-based 
platforms such as Earth Data Search, Geocento, Google Earth Engine, and others that help the farmers to acquire all 
the past and present information about the crops, fields, and allied practices that must be implemented to increase the 
efficiency of the produce.48 Based on the facts, it can be said that deep learning-based plant phenotyping plays an 
important role in acquiring relevant information about the crop, soil, fertilizer, soil types, fertilizer usage, climate 
change, and others that help in increasing the productivity of the farm and income of the farmers. 

The factors that controlled the features of deep learning in the forecasting model were explored.49 Initially, plant 
pathology was studied to determine the factors of plant diseases. While carrying out in-depth analysis, the shortcoming 
of deep learning was presented. The examination was conducted over the 50, 000 images from the academic views. 
The factors such as inefficient size, annotated datasets, symptom analysis, shift variable analysis, the background of 
the images, and the image capturing constraints. This study has explored the scope of CNN architectures in plant 
disease identification.  Improper labeling and capturing conditions have delayed the train and test set ratio in deep 
learning.  

Detecting the plant diseases using visualization of saliency map was explored 50; under the CNN framework of 
GoogleNet and AlexNet   some deep learning architectures have vented out the qualities of the black boxes prevailing 
the features. Here, the features were examined using a saliency map which has helped to visualize the data 
consumption rate, hardware utilization and extraction module. Data augmentation during the training process has 
incorporated several complexities over the network input layer. The pixel by pixel exploration and mapping toward the 
input layer have increased the estimation of image gradient scales. This system has obtained 0.9976 accuracy by 
analyzing the deep and broad approaches.  

Mobile technologies have also intervened in the production rate of the wheat crop by intelligently predicting the 
diseases in an early stage, which is explored by.51 In the preparation to reduce the loss of crop production, the 
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treatment of the crops was improved by developing an association among the crops using resistivity features. Though 
it leveraged the automated classification module, forecasting it early is a pending process. Thus, the use of mobile 
technologies has significantly reduced the forecasting time using an improved image processing algorithm. Just, it 
drew the statistical inference among the images to discover the affected diseases. The analyzed metrics and receiver 
Operating Characteristics (ROC) curve have shown the efficacy of mobile technologies.   

The qualitative and reliable measures using phenotypic features of an image were studied.52 It was observed that 
the least works were done under phenotypic features of the leaves. Here, canopy hyperspectral data was analyzed 
using normalized difference water index (NDWI) and Partial Least Squares (PLS) regression models. The analysis has 
stated that the 93% accuracy obtained at kappa=0.60 detected the plant disease named Septoria tritici blotch (STB) 
disease. Though it has improved detection efficiency, the disease-resistance is higher among breeding of the pants.  

The growth of spectral data has been constantly increasing with the growth of technologies which have also 
improved the detection accuracy. In other aspects, the variations prevail in the Leaf Area Index (LAI).53 Here, Support 
Vector Regression (SVR) and Gaussian Vector Regression (GVR) were studied to explore the performance of SVM 
classifiers. It was operated on the different wavelengths of the leaf region. System has improved the detection 
accuracy with a reduced error rate of 8.5%. Additionally, it has also predicted the severity score of the diseases. When 
the dataset size varies, the error rate increases and the accuracy rate tends to decrease.  

Wheat disease diagnosis model of the in-field was studied by.54 The health status of the crops and its monitoring 
process involves a huge time as well as a significant task. Multiple instance learning models were studied by stating 
the image-level annotations. Performing localization schemes over the training images has improved the recognition 
accuracies. Wheat Disease Database 2017 was used for experimental purposes. Compared to the conventional CNN 
architectures, the designed localization based CNN has maintained a lowered error rate. Bounding box was applied in 
the image segmentation process that deliberately enhanced the error rate while addressing the network layers.  

Some studies make use of disease symptoms for earlier forecasting processes using optimization models.55 To 
improve the classification process, the segmentation technique was devised. The survey has stated the scope of the 
image segmentation process which is devised in this study using genetic algorithms. It performs with the set of 
solutions known as population. Relied upon the feedback given by the previous population, the objective functions and 
the new population surfaced. This has helped to increase the probability of converged solutions and also reduced the 
searching time. The system has reduced the computational steps, however, the logic behind the classification process 
has fuzzed the environment.   

A deep CNN was used for exploring the identifying the rice diseases.56 The identifying the diseases based on 
similar patterns has developed an interest among the researchers, specifically CNN architecture was studied. The 
report states, there are 10 common rice diseases available. Thus, the authors have introduced a 10 fold-cross validation 
process of the CNNs and obtained 95. 48% accuracy. It has reduced training time but the data augmentation process 
over the colored channels increases the convoluted filter rate. It is not suitable for large-scale datasets.  

Plant disease based on visible ranges images and its challenges were reviewed by (Jayme Garcia, 2016).58 The 
study has stated the complex challenges prevailing in the image analysis of different parts of plants and the diseases 
associated with them. Most studies have stated that due to the complex backgrounds of the images, the accuracy of the 
segmentation process is observed. Along with this, several boundaries of the diseases have also collapsed the 
classification process leading to an error rate. The effectiveness of image processing is still in the developmental stage 
due to the above-mentioned challenges.  

The disease identification models for the soybean leaf using UAV images were studied.59 The image processing 
analysis over the captured UAV images has to deal with the complex backgrounds. It is studied using deep 
convolutional neural networks. Black boxes passing on the labeled images were demodulated by adjusting the network 
weights. The different parameters of the transfer learning modules were fine-tuned under the categories of leaf 
diseases. SLIC superpixels algorithm was used to segment plant leaves in the images. The segmented images were 
then observed on the Inception-v3, Resnet-50, VGG-19, and Xception. It has achieved 99.04% classification accuracy, 
however the image training has anticipated different training models due to the variation prevailing in the background 
images.   

One of the deep NN was combined with the Jaya algorithm was studied to detect the disease class of the paddy 
leaf.60 In general, the leaves of the plants are spotted with normal, bacterial blight, brown spot, sheath rot, and blast 
diseases. These color variations portrayed the stage of the disease. During the background analysis process of RGB 
into HSV images, the saturation and hue of the images are distorted and bring an effect over the segmentation process. 
It does not differentiate between normal and diseased parts. Hence, an optimized Jaya algorithm was used to improve 
the post-processing results. System has achieved an accuracy of above 90% for all color variations.  Visual features 
affect the training module when the color and size gradually increase, which was not focussed by the researchers.  
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Mobile technologies to enhance the production rate of the wheat crop by intelligently predicting the diseases in an 
early stage have been introduced.51 Though it leveraged the automated classification module, forecasting it early is a 
pending process. Thus, the use of mobile technologies has significantly reduced the forecasting time using an 
improved image processing algorithm. Just, it drew the statistical inference among the images to discover the affected 
diseases. The analyzed metrics, Receiver Operating Characteristics (ROC) curve has shown the efficacy of mobile 
technologies.  

Northern-side maize plants and their leaf diseases were analyzed.61 The detection of leaf blight disease prevailing 
in the northern side is a complicated task due to its time consuming process. To ensure the reliability of the detection 
model, CNN was designed to leverage the pipeline related to the computational efforts. The affected regions of the leaf 
were classified into small and large lesions. Both are analyzed separately and the heat maps were generated to yield 
the converged solutions. The designed model has achieved 96.7% accuracy which has resolved the disease resistance 
rate, usage of pest amount, and high-throughput.  

The scenario of the leaf rust in the wheat crop is explored in which, Puccinia triticina Erikss (Pt), a fungal disease 
was detected using genes-based algorithms.62 Due to the invasion of the Non-Host Resistance (NHR), the production 
of wheat crops decreases with the highest prevalence of Pt genes. It has been found that the APR genes such as Lr34, 
Lr46, Lr67, Lr68, and Lr77 were the main reasons to form leaf rust in the wheat crop. While doing the data 
augmentation process, the similar characteristics of the genes developed a contradiction towards the identification of 
leaf rust.  Triticum aestivum L is one of the fungal diseases that cause leaf rust in the wheat family by altering the 
genes of the auxins response factor.63 Auxin Response Factor (ARF) is one of the plant-transcription factors that has 
affected the wheat plant during its developmental stage. The accumulation of high DNA nuclei has to be localized 
under image processing techniques which are a complex task.   

Due to the accumulation of leaf rust, the economic returns from wheat cultivation are declining dramatically in the 
southwestern region of Iran.64 Therefore, the intensity of the diseases was measured under the aspect of economics in a 
varied region. It has proven that an improper use of fungicides on the crop has introduced new diseases that were not 
able to be predicted earlier. Prediction systems become complex due to different forms of diseases according to the 
climatic conditions. The presence of hazardous materials has affected the wheat soil systems65; in which Bioavailable 
arsenic and amorphous iron oxides were not easily predicted. The bioavailable arsenic extracted by NH 4 H 2 PO 4 
has altered the humidity of the wheat soil. Risk assessments of the soil capability have reduced the prediction ability. 
Detection of Fusarium head blight of wheat has been explored using spectral images.66 Principal Component Analysis 
was used to reduce the dimension of the hyperspectral images. Finally, the decision tree has improved the optimized 
feature selection process. Then, the affected part of the leaf was classified using deep neural networks. Some color 
space of the images was not easily executed on large datasets.  

The detection of aphid diseases in wheat leaves using computer vision approaches was explored.67 Identification 
of the aphids is a critical task and thus, image processing techniques were applied to it. Maximally stable extremal 
region descriptors were used to extract the affected regions from the background. Then, histogram analysis was done 
on the gradient features. Finally, SVM was used to classify the aphid diseases. The results have stated that the 86.81% 
of detection accuracy with 8.91% of error rates.  Though it has decreased the detection time, the segmentation 
accuracy is not calculated. Detection of wheat diseases based on spectral indices and kernel discriminant analysis was 
explored.68 Spectral vegetation indices-based kernel discriminant approach (SVIKDA) for the detection and 
classification of yellow rust, aphid, and powdery mildew in winter wheat at the leaf and canopy level was designed. 
By using 5-cross validation models, the disease classes were identified. Then, a gaussian kernel function was also 
employed to form a nonlinear framework. Disease Indices (DI) were provided with the high coefficients of 
determination.  Since the identification was done at the canopy level, the time taken for the detection process is high.  

The use case model for the automatic detection of plant diseases was explored.51 Hot spot candidate detection 
models with statistical inference were employed to detect the diseases under three winter areas. With the help of 
mobile devices, the affected leaves were easily predicted with a reduced error rate 0.1. It does not perform well in 
some suspected regions.  An observation model was designed during the wheat heading stage.69 Illumination while 
capturing images created a problem in the image segmentation process. Thus, it was improved by a coarse detection 
process on the higher-level features. Scale-Invariant Feature Transform (SIFT) and Fish Vector (FV) encoding were 
used for better representation of images. It has increased the robustness rate of early detection processes. Yet, the 
classification model of those images is not studied. The water stress detection for the cause of wheat leaf diseases 
using SVM classifier models was explored.70 Septoria tritici infection is one of the dangerous diseases that causes 
stress in water plants. With the help of the Least Square Support Vector Machine (LSVM), the stress rate was 
investigated. The system fails in the cases of lowered energy during optical fusion.   

Color change detection of affected wheat leaves plays a significant contribution in the segmentation process.71 An 
improved Chan-Vese model was suggested for segmentation wheat leaf lesion. By developing adaptive weighting 
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models, the three color channels were devised and the segmentation accuracy was improved. The wheat biomass 
estimation based on the crop height was studied.72 Based on the plant coverage and the heighting measurements, the 
growth stages of the wheat using NDVI and NIR image segmentation approaches. With the use of k-means, Partition 
Around Medoids (PAM), and the fuzzy clustering approaches, the images were clustered. This was very useful for the 
biomass estimation as well as the leaf growth monitoring. It is observed that the error rate increases as the threshold 
height value increases.   

Genetics-oriented leaf diseases were studied on each species.73 Bipolaris sorokiniana is a common genetic disease 
that prevails in the tissues of wheat and barley.  By analyzing the tissues using pathogen-specific primers COSA_F/R 
derived from the melanin biosynthesis pathway Brn1 locus, the disease was detected.  However, the risk factors of the 
affected leaves are not studied.  The risk of the Pyrenophora tritici-repentis diseases in the wheat plant using a 
phototypic process was studied.74 Initially, the pigments of the wheat leaves were explored. Then, by ANOVA test, 
the presence of fungus and bacterial pigments were studied. Though it was helpful to reduce the risk of spreading 
diseases, the classification process is not studied. The pre-symptomatic wheat leaf rust detection was studied.75 With 
the help of fluorescence signatures of the healthy and unhealthy leaves, the frequency oscillations between those 
leaves were investigated. The pre-symptomatic pathogen identification has helped a lot in classifying diseases with 
low training samples. The classification accuracy was 93%, yet the robustness of the inoculation process is a bit low. 

Fusarium species is one of the causes of changing the colors in wheat leaves. Thus, multispectral image analysis 
was studied to detect the head blight diseases of the wheat plant.76 The chlorophyll defects of the wheat leaf were 
segmented using binarization methods. It has increased the flexibility of morphological operations, yet some defects 
on head blight are not visible due to the maturation of wheat plants. The detection of wheat dwarf virus by using PCR 
methods was studied.77  Coat protein of the gene sequence was analyzed using gel-based PCR. This model has 
detected the sensitivity rate of virus diseases.  Though the detection was easier, it could not accommodate the large 
datasets.  

The leaf level detection using continuous wavelet analysis which summarized the correlation between disease 
severity and the power of wavelets was studied.78 Here, 22 conventional spectral features were analyzed for disease 
severity and then the training methods were conducted on the linear regression models. Absorption rates of the 
systems are not focussed on the verification of the normal areas. The genetic correlation on the transpiration efficiency 
of the wheat leaves was discovered.79 The synthesis of wheat leaves was explored and then the contribution of each 
synthesis was correlated. This combined analysis of stress at high temperatures revealed the level of affected leaves. 
This has been efficiently detected at the breeding stage of wheat diseases.  Moreover, some chemical syntheses have 
altered over time which poses serious challenges. Real-time weed detection systems on wheat fields were studied.80 
Here, two optical weed sensors and control modules were networked under the controller area network. Classification 
accuracy was greater than 90% due to the efficiency of training models. The installation cost is too high.  

The effects of bixafen in wheat fields were discussed.81 The presence of fungal diseases has been studied in the 
applications of fungicides. The temperature of ears and leaves was negatively correlated to grain yield. Lower tissue 
temperature of fungicide-treated plants was a suitable indicator of tissue vitality and higher photosynthetic activity due 
to the retardation of ear and leaf senescence. Two optical weed sensors and the control modules were developed and 
embedded into the real-time network along with the global positioning systems.82 With the help of controller area 
networks, the accuracy of weed detection was achieved at 70%. The obtained classification accuracy has improved the 
positioning of the sensor systems. The stress inducing greenbugs using remote sensing images was discovered.83 By 
using SAS PROC MIXED statistical analysis procedure and ratio-indexed based approaches, the bands were analyzed 
and discovered the stress inducing bands. 

The detection of rice leaf diseases such as leaf smut and brown spot diseases using the k-Nearest neighbor 
algorithm was discussed.84 It has achieved 97% accuracy than the decision tree and logistic regression.  It fails to 
operate on optimum local strategy. A similar study is extended that explored the disease detection module by 
improving the image segmentation process.85 Though it has achieved 99% accuracy, the ROI values of the image 
edges are distorted which brings practical infeasibility.  The classification of all plant diseases was explored using a 
combination of machine learning and image preprocessing techniques.86 As a large number of plants suffer from 
common plant diseases related to brown spots, an improved and intelligent detection of plant diseases was designed. 
The performance analysis of all ML classifiers has achieved a better accuracy rate. The role of hyperparameters in 
each classifier is ignored due to time constraints.  

The drought stress detection module using ML techniques, so as to improve the cost efficiency is explored.87 The 
seasoning of images was collected and preprocessed using time-series scale data. The information acquisition process 
has affected the stress factor analysis which brings in collinearity issues among the developed data patterns. Weed 
control in pasture using machine learning techniques was studied by [88]. With the use of local binary patterns, the 
textures of the plants are extracted. Due to the improper monitoring process, the weeds are stressed. However, the 
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scalability of the ML techniques is not assured. Disease detection in potato leaf was done by (Md. Asif Iqbal, 2020).89 
The segmentation of the potato leaf was improved by extracting the optimal global feature descriptors.  Compared to 
the random forest classifiers, DT and LR outperformed in terms of better segmentation accuracy.  Similarly, the 
disease in tea leaves was studied.90 Convolutional Neural networks have introduced several pooling layers that resolve 
the image denoising during the image construction process. This has improved the classifier accuracy, however, it is 
not suitable for the real-time applications. 

A deep learning-based approach that provides an accurate classification for wheat varietal level classification 
(VLC) was studied.91 Particularly, the Convolutional Neural network (CNN) was used to classify the wheat grain 
image into four varieties (Simeto, Vitron, ARZ, and HD). Furthermore, five standard CNN architectures were trained 
based on Transfer Learning to boost the classification performance. To assess the proposed models’ quality, we used a 
dataset of 31,606 single-grain images collected from different Algeria regions, and their images were captured using 
different scanners. The results showed that the test accuracy ranged from 85% to 95.68% for varietal-level 
classification.  

 
5. PERFORMANCE MEASURES AND METRICS- FOR DIFFERENT TYPES 

High throughput plant phenotyping is an essential requirement in the current agricultural practices so that there is 
a reduction in the cost related to breeding trials and crop management. It includes the use of Automated Machine 
Learning (AutoML) to reduce efforts in manual ML practice. It provides end-to-end ML pipelines that help in data 
preparation, feature engineering, and model generation purposes. AutoML is based on the use of neural architecture 
search (NAS) that facilitates the construction of well-performing architectures to carry out the selection and 
combination of fundamental modules in search spaces that are already defined.92 

The four sensing modalities of the Multi-Modality Plant Imagery Database (MSU-PID) help in analyzing the 
morphological and physiological phenotypes. For example, it uses a 730nm to 750nm based chlorophyll fluorescence 
tool to measure the efficacy of photosynthetic abilities of the plant. It also helps in the assessment of the 
photosynthetically active compounds present in the chlorophyll-containing leaf area.  

Unmanned Aerial Vehicles (UAVs) and thermal imaging sensors are used to promote precision agricultural 
practices and plant phenotyping activities. The use of UAV thermal cameras such as ICI 8640 P-series, FLIR Vue Pro 
R 640, and thermoMap are commonly available and can be bought cheaply to carry out plant monitoring activities and 
identification of vegetation stress. For example, these cameras were flown over the forests of Columbia, Maricopa, 
and Arizona to analyze forest environments, detect plant stress, and acquire high throughput phenotyping.93 

The qualitative and reliable measures using phenotypic features of an image were studied.52 Here, canopy 
hyperspectral data was analyzed using normalized difference water index (NDWI) and Partial Least Squares (PLS) 
regression models.  Though it has improved detection efficiency, the disease-resistance is higher among breeding of 
the pants. in other aspects, the variations prevailing in the Leaf Area Index (LAI).53 Here, Support Vector Regression 
(SVR) and Gaussian Vector Regression (GVR) were studied to explore the performance of SVM classifiers. It was 
operated on the different wavelengths of the leaf region which has given detection accuracy with a reduced error rate 
of 8.5%.   When the dataset size varies, the error rate increases and the accuracy rate tends to decrease. 

Some studies make use of disease symptoms for earlier forecasting processes using optimization models.55 To 
improve the classification process, the segmentation technique was devised.  It performs with the set of solutions 
known as population. Relied upon the feedback given by the previous population, the objective functions and the new 
population surfaced. This has helped to increase the probability of converged solutions and also reduced the searching 
time. The identifying the diseases based on similar patterns has developed an interest among the researchers, in 
specific to, CNN architecture was studied.56 The report states, there are 10 common rice diseases and achieved 95.48% 
accuracy. It has reduced training time but the data augmentation process over the colored channels increases the 
convoluted filter rate. It is not suitable for large-scale datasets.   
 
6. COMPARATIVE STUDY 

The comparative study is made to find out the discovered stresses and the review of designed the deep learning 
architectures.  
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Table 1. Instances of DL approaches in plant stress image based phenotyping. 
DL algorithm Plant Stress type Stress name Refs 

LeNet architecture Banana  Biotic stress  Early scorch, cottony 
mold, ashen mold, late 
scorch, tiny whiteness 

Amara, J. et al. 
(2017)12 

AlexNet, GoogLeNet, 
VGGNet-16, ResNet20 

Apple Biotic stress  Alternaria leaf spot, 
mosaic, rust, brown 
spot 

Liu, B. et al. 
(2018)94 

Inception-v3, ImageNet Cassava Biotic stress Cassava brown streak 
disease, cassava 
mosaic disease, brown 
leaf spot, cassava 
green mite damage, 
cassava red mite 
damage 

Ramcharan, A. et 
al. (2017)95 

AlexNet, ALexNetOWTBn, 
GoogLeNet, Overfeat, VGG 

apple, banana, 
blueberry, cabbage, 
cantaloupe, cassava, 
celery, cherry, corn, 
cucumber, eggplant, 
gourd, grape, onion, 
orange 

Biotic stress Bacterial spot, apple 
scab, cedar apple rust, 
black rot, banana 
sigatoka, banana 
speckle, brown leaf 
spot, cassava green 
spider mite, 
Cercospora leaf spot, 
common rust, northern 
leaf blight, 

Ferentinos, K.P. 
(2018)96 

AlexNet, GoogLeNet  Apple, blueberry, 
cherry, corn, grape, 
peach, bell pepper, 
potato, raspberry, 
soybean, squash, 
strawberry, 

Biotic stress Apple scab, apple 
black rot, apple cedar 
rust, cherry powdery 
mildew, corn gray leaf 
spot, corn common 
rust, corn northern leaf 
blight, grape black rot, 
grape black measles, 
grape leaf blight, 
orange huanglongbing 
(citrus greening), 
peach bacterial spot, 
bell pepper bacterial 
spot, potato early 
blight, potato late 
blight, squash powdery 
mildew, strawberry 
leaf scorch, 

Mohanty, S.P. et 
al. (2016)97 

Modified LeNet Olive Biotic stress Olive quick decline 
syndrome 

Cruz, A.C. et al. 
(2017)98 



Majlesi Journal of Electrical Engineering                                               Vol. 18, No. 1, March 2024 
 

231 
 

CNN Cucumber Biotic stress Melon yellow spot 
virus, zucchini yellow 
mosaic virus, cucurbit 
chlorotic yellows 
virus, cucumber 
mosaic virus, 

Fujita, E., et al. 
(2016)99 

CaffeNet, ImageNet Pear, cherry peach, 
apple, grapevine 

Biotic stress Porosity (pear, cherry, 
peach), powdery 
mildew (peach), peach 
leaf curl, fire blight 
(apple, pear), apple 
scab, powdery mildew 
(apple), rust (apple, 
pear), grey leaf spot 
(pear), wilt 
(grapevine), mites 
(grapevine), downy 
mildew (grapevine), 
powdery mildew 
(grapevine) 

Sladojevic, S. et 
al. (2016)100 

VGG-A, CNN Radish Biotic stress Fusarium wilt Ha, J.G. et al. 
(2017)101 

AlexNet Soybean Biotic and abiotic 
stress 

Bacterial blight, 
bacterial pustule, 
frogeye leaf spot, 
Septoria brown spot, 
sudden death 
syndrome, iron 
deficiency chlorosis, 
potassium deficiency, 
herbicide injury 

Ghosal, S. et al. 
(2018)102 

 
 

Table 2. Comparative study on recent deep learning techniques. 
References Techniques Achieved 

outcomes 
Scope of the 
future work 

Ghosal, S. et al. (2018) An 
explainable deep machine vision 
framework for plant stress 
phenotyping. Proc. Natl. Acad. 
Sci. U. S. A. 115, 4613–4618 

A deep learning framework was used to 
develop a DCNN framework that helped to 
identify, classify and quantify eight stresses 
of the soybeans. An unsupervised approach 
was used in this framework to find out the 
stress region of the plant leaf and isolate the 
visual clues. DCNN model uses visual clues 
for decision-making. Stress is quantified 
using the unsupervised localization of visual 
clues. The study helped in identifying plant 
stress by developing a plant stress 
quantification scheme. The framework 
generally avoids the use of expensive stress 
annotations and uses an image-based 
phenotyping process to carry out precision 

The overall 
classification 
accuracy of 
the model is 
94.13%   

The major 
limitation of 
the study was 
related to 
inconsistency 
that occurred 
because of 
different image 
content and 
features in 
convolutional 
nets and 
network 
parameters.  
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agricultural practices.  
Zhang, J. et al. (2017) Computer 
vision and machine learning for 
robust phenotyping in genome-
wide studies. Sci. Rep. 7, 44048 

The study specifies the use of a Machine 
Learning-based approach for the 
classification of five stress classes of plants. 
It includes using automated severity 
classification and hand-crafted feature 
extraction to quantify the abiotic stress 
among crops on the scale of 1% to 100%. 
The study majorly focused on the 
identification of iron deficiency chlorosis in 
soybean by making use of a smartphone 
app-based framework. Additionally, the 
study included the use of hierarchical 
classification with multiclass SVM and 
Deep Learning-based frameworks so that 
there was automation in the feature 
extraction and categorization phase.  

Accuracy and 
average per-
class 
accuracy 
were 99.4% 
and 95.9%, 
respectively, 
using this 
hierarchical 
SVM+SVM 
classifier. 

The major 
limitation of 
the study was 
that it required 
the use of 
HTTP tools to 
acquire real-
time 
information 
about plant 
phenotyping 
when using 
UAV.  

Fuentes, A. et al. (2017) A robust 
deep-learning-based detector for 
real-time tomato plant diseases 
and pests recognition. Sensors 
(Basel, Switzerland) 17, 2022 
Trends in Plant Science, Month 
Year, Vol. xx, No. yy 15 
TRPLSC 1707 No. of Pages 16 

The study describes the use of the Deep 
learning approach for the identification of 
biotic stresses such as diseases (e gray mold, 
leaf mold, canker, plague, powdery mildew) 
and pests (leaf miner and whitefly) on the 
tomato crops. The study also focused on 
detecting abiotic stresses that were related to 
analyzing temperature and estimating 
nutritional excess in the crops. The study 
included the use of a non-destructive 
imaging protocol to detect stresses in field 
settings. It also helped in capturing images 
by considering different plant aspects such 
as background, color, size, and shape of 
tomato fruit. Apart from this, deep learning 
tools such as AlexNet, ZFNet, VGG-16, 
GoogLeNet, ResNet-50, ResNet-101, and 
ResNetXt-101 were used to capture 
different crop images. It also includes the 
use of object detectors such as Faster 
RCNN, R-FCN, and SSD to detect stresses 
such as whitefly, leaf mold, leaf miner, and 
grey mold canker. 

The classifier 
with data 
augmentation 
is 83.06% 

The study was 
limited as it did 
not provide 
valuable 
information 
about stresses 
in real time.  

Deng, J., et al. (2009) ImageNet: 
a large-scale hierarchical image 
database. In 2009 IEEE 
Conference on Computer Vision 
and Pattern Recognition, pp. 
248–255, IEEE 

The study was conducted to identify biotic 
and abiotic stresses in tomato plantations. It 
included inspecting and imaging viral, 
bacterial, and fungal diseases that impact 
the growth of tomato plants. The study 
captured about 14828 images and found that 
the sample tomato species taken into 
consideration was inflicted by 9 stresses. It 
included viral stress such as yellow leaf curl 
virus and tomato mosaic virus, fungal stress 
such as target spot, leaf mold, late blight, 
and early blight. The bacterial stress 
includes bacterial spots and the pests such 
as spider mites were also recognized that 
impacted the tomato plant. Therefore, the 
study focused on the implementation of 

 The study was 
limited as 
accuracy levels 
of GoogLeNet 
and AlexNet 
were not 
compared.  
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train deep architectures such as GoogLeNet 
and AlexNet to identify network weights.  

Amara, J. et al. (2017) A deep 
learning-based approach for 
banana leaf diseases 
classification. In Lecture Notes 
in Informatics (LNI), pp. 79–88, 
Gesellschaft für Informatik 

The study includes the use of LeNet 
architecture on image datasets to detect and 
classify diseases among the crops. The 
entire data was categorized into three 
categories such as healthy, black Sigatoka, 
and black speckle to identify the biotic 
stresses. The study included the use of open-
source data PlantVillage to acquire relevant 
insights about automating disease 
identification. Additionally, the study also 
included the use of a deep learning approach 
for the classification and detection of 
challenging conditions with the help of 
different images. As a result, there was the 
attainment of insights about resolution size, 
background, orientation, and the 
illumination of the crop. Apart from this, the 
study also included two-class classification 
in which healthy and diseased conditions of 
the plant were compared. 

Classifier has 
yielded 
92.06% 
accuracy for 
80% training 
dataset with 
10% testing 
dataset.  

The study was 
limited as there 
was a small 
learning rate 
for the 
attainment of 
précised 
outcomes.  

Mohanty, S.P. et al. (2016) Using 
deep learning for image-based 
plant disease detection. Front. 
Plant Sci. 7, 1419 http://dx.doi. 
org/10.3389/fpls.2016.01419 

The study includes 54 306 images that have 
been captured with the help of DCNN 
(AlexNet and GoogLeNet) architectures to 
detect stresses and diseases among different 
crop species. The study included 14 
different crops and focused on identifying 
26 diseases from which the plants were 
infected. To determine the F1 score of the 
sample, an assessment metric was included 
and found that GoogLeNet outperformed 
AlexNet. As per the study analysis, it was 
recorded that AlexNet showed accuracy 
levels of 99.35% while GoogleNet showed 
accuracy levels of 85.5% while considering 
the PlantVillage dataset.  

The trained 
model 
achieves an 
accuracy of 
99.35% on a 
held-out test 
set, 
demonstrating 
the feasibility 
of this 
approach. 

The major 
limitation was 
related to the 
use of the 
traditional 
assessment 
metric process 
which 
consumed a lot 
of time for 
assessment and 
procuring 
outcomes.  

Ferentinos, K.P. (2018) Deep 
learning models for plant disease 
detection and diagnosis. Comput. 
Electron. Agric. 145, 311–318 

The study included the use of advanced 
technologies such as VGG CNN to identify 
plant stresses. It was found that the tools 
provided better image processing as there 
was the detection of plant stress with 99.5% 
accuracy. The study also included the use of 
model performance but it did not lay any 
major impact on the collecting of 
information and provided better outcomes 
when used with original images. The study 
also included the use of preprocessed 
images but it did not lay any significant 
impact on the prediction accuracy. Its only 
contribution was towards reducing 
computational time.  

The final 
highest 
successful 
classification 
percentage of 
99.53%    
VGG model 

The study was 
limited as the 
models 
included in the 
study did not 
provide robust 
outcomes and 
could not 
validate facts 
when 
comparing 
images from 
greenhouse and 
field settings.  

Lu, J. et al. (2017) An in-field 
automatic wheat disease 
diagnosis system. CoRR 
abs/1710.08299 

The study includes the use of a deep CNN 
model to detect plant diseases. By using the 
trained deep CNN model, there was the 
attainment of valuable information about 

wheat disease 
identification 
tasks has 
yielded the 

The study was 
limited as it 
majorly 
focused on 
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plant diseases with an accuracy of 91% to 
98% resulting in an average accuracy level 
of 96.3%. The study highlights the use of a 
new architecture known as deep multiple 
instances learning (DMIL) to identify plant 
diseases among wheat crops. The Wheat 
Disease Database 2017 was included in the 
study that provided 9230 images of wheat 
amongst its seven classes. It was analyzed in 
the study that the VGG-FCN architecture 
was a better performer as compared to 
VGG-CNN and provide more accurate 
information related to plant disease 
classifications.  

95.12% of 
VGG-FCN-S 
exceeds 
93.27% of 
VGG-CNN-
VD16. 

classification 
and disease 
identification in 
the wheat crop 
that was 
provided by 
Wheat Disease 
Database 2017 
(WDD2017) 
and did not 
consider other 
databases.  

Ramcharan, A. et al. (2017) Deep 
learning for image-based cassava 
disease detection. Front. Plant 
Sci. 8, 1852 

The study included the Inception-v3 model 
to identify and train five cassava diseases 
among different crops. As per analysis, it 
was found that three cassava stresses such 
as cassava brown streak, cassava mosaic, 
and brown leaf spot were accurately 
identified in the study. There was also 
identification of two mite classes such as 
red and green mite that damaged the crop 
fields adversely. By using the Inception-v3 
model, there was an identification of 93% 
accuracy in cassava determination by 
analyzing the images from the test dataset.   

The best 
model 
achieved an 
overall 
accuracy of 
93% for data 
not used in 
the training 
process. 

The study was 
limited as the 
Inception-v3 
model was used 
to provide only 
78.1% accuracy 
with the 
ImageNet 
dataset.  

Mohanty, S.P. et al. (2016) Using 
deep learning for image-based 
plant disease detection. Front. 
Plant Sci. 7, 1419 http://dx.doi. 
org/10.3389/fpls.2016.01419 

The study includes the use of a smartphone-
based algorithm to identify disease among 
the crops.  It helps in the scouting of disease 
by making use of the learned model. It is 
based on the use of a CPU that provides 
consumes less than a second time to analyze 
the data and provide information related to 
queried data.  

The trained 
model 
achieves an 
accuracy of 
99.35% on a 
held-out test 
set, 
demonstrating 
the feasibility 
of this 
approach. 

The study is 
limited as it 
mainly uses 
leaves to 
establish 
comparisons 
between leaf 
canopies that 
have been 
sampled from 
the datasets. 
The study 
needs to focus 
on including 
more diverse 
species for the 
stress imaging 
process.   

Ha, J.G. et al. (2017) Deep 
convolutional neural network for 
classifying Fusarium wilt of 
radish from unmanned aerial 
vehicles. J. Appl. Remote Sens. 
11, 042621 

The study includes the use of Deep 
learning-based architecture to identify plant 
disease in radish plantations. It includes the 
use of unmanned aerial vehicles (UAV) to 
capture aerial images so that there is the 
identification of plant stress. As per the 
analysis, it was found that UAV image 
assessment provided accurate outcomes and 
there was identification plant stress such as 
Fusarium wilt on the sample radish 
plantation.  

CNN 
obtained an 
accuracy of 
93.3% which 
is better than 
standard 
machine 
learning 
algorithm, 
obtaining 
82.9% 

The major 
limitation of 
the study was 
that it only 
focused on the 
use of the UAV 
approach and 
did not 
establish a 
comparison 
with other tools 
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accuracy  that can be sued 
for the 
detection of 
plant stress.  

Yamamoto, K. et al. (2017) 
Super-resolution of plant disease 
images for the acceleration of 
image-based phenotyping and 
vigor diagnosis in agriculture. 
Sensors (Basel) 17, E2557 

The study includes the use of the super-
resolution convolutional neural network 
(SRCNN) to detect diseases in tomato crop 
plantations. SRCNN approach is a 
combination of two approaches such as 
conventional imaging and super-resolution 
imaging that helps in the identification of 
tomato diseases. The model analyzes the 
spatial resolution to identify the disease 
which is more accurate as compared to other 
conventional disease classification methods. 

 The resulting 
classification 
accuracy was 
better with 
super-
resolution 
images than 
with low-
resolution 
images. 

The study is 
limited as the 
high-definition 
SRCNN 
approach 
cannot be used 
with a small 
image. 

 
 

 
Fig. 11. Accuracy analysis of Machine learning algorithms. 

 
 

 
Fig.12. Accuracy analysis of Deep Learning algorithms.  

 
7. LIMITATIONS AND FUTURE SCOPE 

The major limitation with phenotyping is that different techniques are required to carry out phenotyping activities 
such as determination of plant growth rate, leaf count, leaf area, inter-crop spacing, biomass amount, plant stem 
position, crop plant count, and others. Each technique has its set limitations that restrict the conduct of the plant 
phenotyping process. For example, Imaging spectroscopy is limited because of lack of sensor calibration, while 
thermal imaging technique is limited because of changes in the ambient conditions. Under such conditions, it becomes 
difficult to create differences between soil and plant temperatures that restrict the automation of image processing 
activity. However, the present study focuses on providing valuable information related to agriculture status in India, 
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phenotyping, and plant phenotyping environments and techniques that help to meet the literature gaps that had existed 
between previous and current literature. The present study provides in-depth insights about identification, 
classification, quantification of plant stresses, and promotion of plant growth opportunities that help the cultivators 
and breeders to carry out crop management activities. It includes providing valuable insights about deep learning 
approaches that help to bring significant improvement in plant science and the identification of plant phenotyping 
problems. The use of DL approaches provides an end-to-end solution to the plant phenotyping problem and 
streamlines the image and spectrum of plant stress phenotyping. By using DL, there will be positioning of the plant 
phenotypes by focusing on the imaging modalities which help farmers to enhance their product yield. The major 
research challenges are;  

a. Misuse of training classifier: In the perspective of phenotyping stresses, both the detection process differs 
from its controlled environment.  The classification has been trained using deep features.  

b. Class imbalance: In the view of deep learning algorithms, class imbalance is one of the research issues of any 
deep learning techniques. Due to a disproportionate number of samples per class, then the number of benign 
and malignant classes violates the detection rules during the minority classification process. In some cases, 
major classes are detected by ignoring the subclasses which leads to lowered accuracy. 

c. Public benchmarks datasets: The improper collection of dataset differs in the research community. 
Henceforth, appropriate labelling procedures have also decreased the accuracy on different datasets. 
 

8. CONCLUSION 
Plant phenotyping methods help in carrying out crop monitoring activities and executing crop management 

processes.  Plant phenotype helps in acquiring relevant information about plant organs and whole features that allows 
the farmers to make informed plant cropping decisions. Deep learning approaches enhance identification, 
classification, quantification of the plant stresses and provide accurate and reliable outcomes related to plant 
phenotyping.  Deep learning approaches present a great promise to enhance the detection speed, accuracy, reliablity 
and scalablity of the diseases phenotyping systems. The present focuses on adopting Deep learning-based approaches 
so that image data helps in acquiring reliable information about plant characteristics. The analysis of deep learning 
approaches on  image based plant phenotyping from identification, classification and quantification.   It was analyzed 
that different DL approaches such as LeNet architecture, Inception-v3, ImageNet, AlexNet, ALexNetOWTBn, 
GoogLeNet, Over feat, VGG, and others that care extensively used for detecting and categorizing the plant stresses 
such as Early scorch, cottony mold, ashen mold, late scorch, tiny whiteness, Bacterial spot, apple scab, cedar apple 
rust, black rot, banana Sigatoka, banana speckle, brown leaf spot, cassava green spider mite, and others. The study 
identified that DL-based approaches are highly useful in providing a sufficient amount of data related to plant 
strapping, stresses, and growth indices. It also helps in the exploration of hyperparameters by making use of DL-based 
architecture such as computational hardware, computation resource, and normalization techniques. As a result, by 
using different algorithms there is a validation of data at low over lifting value levels. It also helps in checking the 
robustness of the data by using the model perturbation process. It also includes the intermediate feature visualization 
aspects so that there is the attainment of accurate outcomes by comparing the plant phenotyping features. Based on the 
above facts, it can be said that Deep learning approaches are highly efficient in analyzing plant phenotype and 
characterizing the phenotyping aspects by classifying the plant stress datasets into open, labeled, broad-spectrum.  
Plant phenotyping using hyperspectral imaging is a particularly promising avenue, where the individual datasets (i.e., 
each hyperspectral cube) themselves become quite large. Here novel DL approaches, for example 3D CNN 
architectures, would be promising candidates. Therefore, it is strongly recommended in the study to use the imaging 
data process so that there is the attainment of accurate information from the training dataset by using high-throughput 
systems like UAVs and other autonomous systems. As a result, there is it attainment of more robust fine-tuning 
features throughout the entire network. It includes attaining insights about smaller learning rates, convolutional nets, 
and network parameters without changing the data dramatically. 
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