TY - EJOUR AU - Ashrafian, Ahmadali AU - Mohammad-Taheri, Mahmoud AU - Naser-Moghaddasi, Mohammad AU - Khatir, Mehdi AU - Ghalamkari, Behbod PY - 2024 DA - February TI - A 57-64 GHz High-gain Amplifier using Ultra-wideband Inductors in the IMNs and Optimization by PCA and SDSM T2 - Majlesi Journal of Electrical Engineering VL - 15 L1 - https://oiccpress.com/Majlesi-Journal-of-Electrical-Engineering/article/a-57-64-ghz-high-gain-amplifier-using-ultra-wideband-inductors-in-the-imns-and-optimization-by-pca-and-sdsm/ DO - 10.52547/mjee.15.4.99 N2 - In this paper, the design and optimization of a cascaded common source four-stage millimeter wave amplifier in a 130 nm CMOS technology has been presented. First, Pi-shaped wideband impedance matching networks (IMNs) were used in the input / output impedance matching networks (IOIMNs) and inter-stages. Next, single stubs were converted to symmetrical double stubs in the IOIMNs and an ultra-wideband inductor replaced each stub. Ultra-wideband inductors were also used in series in the inter-stage IMNs to achieve higher gain in wider frequency bandwidth. Then, the impedance matrices of IOIMNs and inter-stages were calculated using planar circuit analysis (PCA), which is based on the planar waveguide model and segmentation/desegmentation methods (SDSM). Finally, by optimizing the length and characteristic impedance of each segment of microstrip line in the IMNs through using an intelligent algorithm in MATLAB, the excellent IMNs were designed, which resulted in an amplifier with  ,  and  in the frequency range of 57- 64 GHz. With this design method, in addition to incorporating the effect of discontinuities, the fringing fields at the edges of the microstrip as well as the conductor and dielectric losses, the effects of dispersion would be minimized by choosing a substrate whose thickness is much smaller than the wavelength and its relative permittivity is low. IS - 4 PB - OICC Press KW - Discontinuity effect, Segmentation, Millimeter wave amplifier, Impedance matching networks, Planar circuit analysis, Dispersion effect, Desegmentation EN -