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Abstract 
        The objective of our study is to analyze the geometry of 2D fracture networks using fractal analysis methods. Three types of 

analyzes reflecting fractal behaviors, namely monofractal analysis, multifractal analysis and fractal anisotropy analysis are introduced 

as typical procedures to examine the density, the heterogeneity or the homogeneity, and the spatial-temporal directional relationship 

between the stress tensor and the fracture pattern generated by the fracture model, respectively. Further, a lacunarity dimension for 

describing the degree of self-organization is presented. An aerial photographic data set was used to extract fracture network 

lineaments from the Tassili-n-Ajjers area, Algeria. The scaling and distribution rules that characterize the spatial distribution of 

fractures were established using classical distribution laws and then revised in the light of Weibull distribution theory. The syn-fault 

fractures increase in frequency near the faults and we interpret the high fracture densities as a damage zones. The study reveals that 

multifractal and lacunarity data provides a more comprehensive understanding of the spatial heterogeneity of fracture networks than 

any monofractal dimension. 

Keywords: Algeria, Tassili-n-Ajjers, Fracture network, Fractal analyses, Weibull distribution 

 

1. Introduction 
This paper investigates the methods involve analyzing 

the geometry of 2D fracture networks in order to 

represent fractured media. The quantitative analysis is 

centered on finding a mathematical rule that governs the 

geometry of fractured networks. We demonstrate how 

the use of a linear recognition, based on aerial 

photographs interpretation, and the fractal analyses, can 

make it possible to establish scale rules characterizing 

the fracture spatial distributions. The fractal principles 

can be applied to fracture networks to predict a generic 

fracture relationship at all scales. In geosciences, 

monofractal, multifractal and fractal anisotropy 

approaches are widely used to provide valuable 

knowledge on the statistical and geometrical properties 

of geological parameters (Table. 1) 

According to Mandelbrot (1982), the concept of self-

similarity is used to describe objects in which parts of 

them appear to be statistically similar to the entire object 

(Feder 1988). The power law distributions govern self-

similarity and their exponents define the fractal 

dimensions (Odling et al. 1999). Several authors invoke 

the power-law distributions as fractal distribution, and in 

contrast to mathematical fractals, geological phenomena 

exhibit fractal behaviour within a limited scales range 

(Table 2). Bonnet et al. (2001) discussed 87 published 

fractal dimensions obtained from two-dimensional 

analyses, which  vary  from  1  to  2,  the  most  frequent  

values clustering around 1.5 and 2.0.  Values equal or 

very close   to 2   probably   correspond   to   non-fractal 

objects. 
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However, power-law does not imply fractality (Bour 

and Davy 1997; Bour et al. 2002), and a general 

characterization should include geometrical parameters 

such as fracture density, lengths distributions, 

orientations, roughness of the surface failure, widths, 

openings and fault displacement (Bonnet et al. 2001; 

Zazoun 2008). In addition, various factors such as 

strength, tectonic history and lithology control the 

fractal dimension of a fractured rock mass (Tran et al. 

2006 and Manjusha and Mukherjee (submitted) for 

other aspects of network of brittle planes (Mukherjee 

2019). 

 This paper investigates the fractal geometry of the 

spatial fracture distribution in Tassili-n-Ajjers area. In 

order to reach this goal. Accordingly, we have:  

1) mapped the fracture network from lineament 

interpretation of aerial photographic data set at scale of 

1/80,000 ; (2) established  the fracture density analysis 

(FDA); (3) studied the fault zones width (FZW); (4) 

analyzed the fracture length distribution (FLD); (5) 

examined the fractures topology (FT) and analyzed the 

fracture connectivity distribution (FCD); (6) analysed 

the fractures spacing (FSA); (7) measured the 

monofractal (mFA) and the multifractal (MFA) 

dimensions of the fracture map using the box-counting 

method (BCM) ; (8) We have also studied the fractal 

anisotropy analysis (FAA), lacuranity and (9) and used 

Weibull theory to describe fracture nucleation and 

growth. 

The questions highlighted is: are there any auto-similar 

properties for the analyzed fracture network in the 

Tassili-n-Ajjers area?.   
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Table 1. Compilation of fractal studies for fracture systems 

 

Authors Field of investigation 

Allègre et al. 1982 Scaling rules in rock fracture and possible implications for earthquake prediction  

Barton and Larsen 1985 Fractal geometry of two-dimensional fracture networks 

Chilès 1988 Fractal and geostatistical methods 

La Pointe 1988 Fracture density characterization and connectivity through fractal geometry.  

Vignes-Adler et al. 1991 Fractal analysis of fracturing  from satellite imagery to ground scale  

Turcotte 1992 Principles of fractals, chaos, and aspects of dynamical systems in the context of geological and geophysical problems 

Cowie et al. 1993 Statistical physics model for spatiotemporal evolution   of faults 

Bour and Davy 1992 Clustering and size distributions of fault patterns (e.g. San Andreas fault )  

Agterberg et al. 1996 Multifractal modeling of fractures (Lac du Bonnet batholith, Manitoba)   

Ouillon et al. 1996 Hierarchical geometry of faulting 

Giaquinta et al. 1999 The fractal properties of geological fault systems (Ethiopan Rift) 

Bonnet et al. 2001 Scaling of fracture systems in geological media 

Bour et al. 2002 A statistical scaling model for fracture network geometry (Hornelen Basin, Norway) 

Darcel et al. 2003a Stereological rules inherent in fractal fracture networks 

Park et al. 2010 The temporal and spatial evolution of the fracture network 

De Souza and Rostirolla 2011 Estimation of fractal dimension and multifractal spectrum of fractures 

Kruhl 2013 Fractal-geometry techniques in the quantification of complex rock structures  (Inhomogeneity and anisotropy)   

 

 
Table 2. Compilation of fractal dimensions for fracture systems (N.A.: Not available) 

 

Authors  Size of the system Fractal Exponent 

Barton and Larsen 1985 200-300m² 1.12 /1.16 

Aviles et al. 1987 ~3x10³m 1.01 

Okubo and Aki 1987 ~15x10³m 1.12 

Hirata 1989 ~25x10³/70x10³/73x10³m 1.49/0.72/1.60 

Davy et al. 1990 ~23x10³m 1.3 

Matsumoto et al. 1992 ~7x10³m/5x10³m 1.05/1.42 

Gauthier and Lake 1993 ~100x10³m 2.20/2.44/2.53 

Gillespie et al. 1993 ~238x10³m 2 

Agterberg et al. 1996 450m 1.98/1.93 

Berkowitz and Hadad 1997 ~3x10³m /4000x10³ 1.52/1.92/1.32/1.77 

Cello 1997 ~15x10³ 1.60 

Bodin and Razack 1999 ~50x10³m 1.56 

Bour and Davy 1999 ~250x10³ 1.65 

Ehlen 2000 N.A. 1.7 

Roy et al. 2007 N.A. 1.56 to 1.79 

Zazoun 2008 ~32x10³m X 65x10³m 1.84/1.91/1.94 

Alizadeh et al. 2010   N.A. 1.41/1.66 

Djezzar et al. 2020 N.A. 1.57/1.71 
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2. Geological background 
The study area (Fig 1) is located on the southeastern part 

of the Algerian Saharan platform usually called the Illizi 

Basin, between the Berkine Basin to the north and the 

Touareg shield to the south. It is situated between 

latitudes 25°00’N and 26°43’N and longitudes 8°00’E 

and 9°00’E. The area of interest (Fig 1b) covers the 

southern branch of the NE-SW trending Fadnoun fault 

(F1).   Near   the  North   Fadnoun   area  (Fig  1b),  it  is  

 

possible to observe en echelon folded structures of 

Upper Devonian to Carboniferous age. The folded 

pattern corroborates the hypothesis of a N040° 

compression event consistent with the Hercynian stress 

field (Fig 1a) (Haddoum et al. 2001; Zazoun 2001 and 

2008). This tectonic event was the origin of many 

inverted faults, mainly oriented N-S, in Paleozoic rocks 

(Galeazzi et al. 2010; Zieliński 2011; Peron et al. 2018).  

 

 
 

Fig 1. (a) Geographical setting of the studied area. The map shows the major structural features as well as the positions of the basins; 

Saharan platform main faults after Guiraud et al. (2000, 2005).  (b) Geological setting of the Tassili-n-Ajjers area.  

 

This paper does not include a detailed stratigraphic 

study. However, a lithostratigraphic succession is 

provided for comprehension purposes. (Fig 2). The 

Paleozoic sedimentary strata are entirely composed by 

siliciclastics, plus carbonates developed during the 

Carboniferous period. These are characteristics of a 

shield domain and stable tectonic conditions (Latrèche 

1982; Fekirine and Abdallah 1998; Fabre 2005; Nosjean 

et al. 2020). The stable platform sedimentation during 

the Late Devonian continued into the Carboniferous 

with widespread deposition of fluvially-dominated 

deltaic sediments (Craig et al. 2008). 
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Fig 2. Lithostratigraphic succession of the Palæozoic formations of the Tassili-n-Ajjers area based on outcrop data (modified from 

Beuf et al. 1968 and 1971; Eschard et al. 2005; Fabre 2005). 

 

(Taconic and Caledonian unconformities after Claracq 

et al. 1958; Late Ordovician glaciation period 

(Hirnantian) after Borroco and Nyssen 1959; Hercynian 

unconformity from Beuf et al. 1971; The first-order 

Lower Gondwana Cycle (Cambrian to Middle 

Devonian) corresponds to the second Arabian Plate 

tectono-stratigraphic megasequence of Sharland et al. 

(2001); the second-order sequences after Fekirine and 

Abdallah 1998). 
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3. Material and methods 
2D lineament mapping was performed on aerial photos 

at 1:80,000 scale, covering an area of about 19602 km². 

This technique is used most often to highlight intense 

fracturing, tabular structure, and sub-vertical fractures 

(Fig 3).  Effectively, the photogeology interpretation 

enables a suitable quantitative approach to fracture 

study.   The fracture trace maps files were created in two 

(2) pre-process stages:  

a- We imported digital aerial photos into Adobe 

Illustrator™ software and drew fractures traces, 

which are underlined as ‘line’ or ‘polyline’ 

elements. 

b- The layer is saved with the fracture traces as an 

Encapsulated PostScript file (.EPS). 

 

In total 2968 fractures were extracted from aerial photos 

(Fig 3); the minimum length was 29.12m, the maximum 

length was 98838.49m, with a mean length of 

1483.66m. Using JMicroVision V1.2.7 Software 

(Roduit 2010), the extracted fracture was decomposed to 

the vertexes and pixels, and interpolation of this point 

produced the fracture density map by using the software 

Surfer Version 7.05. Golden Software, Inc. (1993–

2001). The fracture trace start and the end point data, 

barycentre, length and orientation were exported to an 

Excel datasheet, and the rose diagram, graphs, and 

histograms were created. In this study, we designate all 

the discontinuities under the term of fracture, which 

refers to a representation of discontinuities on a 2D map. 

 

 
 

Fig 3. Map of fracture network of study area generated after the analysis of aerial photographs. 

 

For the monofractal (mFA) and multi-fractal (MFA) 

analyses, FracLac Software (Version 2.0f ©, for Image J 

1.40g) (Rasband 1997; Karperien 2004) was used to 

perform the box dimension method (BCM) (Allègre et 

al. 1982; Berkowitz and Hadad 1997; La Pointe 1988; 

Odling 1992). The box-counting method (BCM) (see 

Appendix A1. Fig 2b) (Chilès 1988; Tanaka et al. 1999; 

La Pointe 1988; Roy et al. 2007) is a suitable method for 

analyzing complex and isotropic 2D patterns, simple 

and non-centered (Kruhl 2013). However, this method is 

strongly affected by finite size effects (Afshari Moein et 

al. 2019) and it is sensitive to a change in fractal 
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dimension with scale (Blenkinsop 1994; Blenkinsop and 

Sanderson 1999). Hobbs et al. (2022) demonstrates that 

the box-counting method (BCM) for a spatial 

distributions of points is a method for calculating the 

nearest neighbour distribution (Carpena and Coronado 

2019) which is a Weibull distribution (Weibull 1951) 

and not Pareto (see Appendix A2. Fig 1). it can 

sometimes seem to be a bifractal but such appearance 

has no physical significance. According to Mašín 

(2003), the Weibull distribution is extensively used in 

geological applications in the analysis of extreme value 

problems (Boadu and Long 1994; Lochmann et al. 

2007) and it is successfully applied in many studies of 

the frequency-size distributions of fractures (Stoyan and 

Gloaguen 2011), dyke thickness (Krumbholz et al. 

2014), rock fragmentation (Mašín 2003), fracture 

spacings (Boadu and Long, 1994) and seismic events 

analysis (Brandt 2019).  The Weibull distribution 

analysis of the box-counting method (BCM) for the 

monofractal analysis and the geometrical parameters of 

fractures will be performed using the DEVELVE 

Software Version 4.13.0.0 (2000-2019) and Microsoft 

Excel (2016).  

In order to estimate the box-counting dimension, the 

Euclidean space containing the pattern is divided into a 

grid of cells of size () and those cells N() are counted 

which contain at least one fracture (Paredes and Elorza 

1999). The process is repeated for a range of values of 

(). 

On a double-logarithmic plot of N() and (), a fractal 

fracture pattern produces a straight line with slope -Db 

(Bonnet et al. 2001; Peternell and Kruhl 2009), such that 

(Eq. 1): 

 𝑁() 
−𝐷𝑏                                                                 (1)   

Where Db is the fractal dimension. For Euclidean 

objects, equation 1 defines their dimension, (e.g. 0<Db≤ 

1 for a one dimensional object or 1<Db≤2 for a two 

dimensional object) (Mandelbrot 1982; Turcotte 1992; 

Gillespie et al. 1993)  

The quantification of anisotropy is important in fracture 

networks because it controls directionality of fluid flow 

(Roy 2013). Several methods for determining the fractal 

anisotropy of structures in 2D have been developed. The 

analysis enables the construction of a fractal ellipse in 

which the directional data are fitted to an elliptical 

distribution (Volland and Kruhl 2004; Gerik and Kruhl 

2009; Mamtani et al. 2012; Kruhl 2013). The method 

proposed is simple. It starts by making a morpho-

lineaments map with aerial photos interpretation. The 

fractal set is then generated using Cantor's Dust Method 

(CDM) (see Appendix A1. Fig 2c) (Chilès 1988; Velde 

et al. 1990) and a compass-counting technique (CCT) 

(Volland and Kruhl 2004; Pérez-López et al. 2005; and 

Pérez-López and Paredes 2006). The fractal dimension 

of the spatial point distribution (D0) and the trend of the 

fracture profile on transect (δ) are obtained as 

parameters.  The fracture profiles are taken with an 

increment of 2°, oriented clockwise from 0° to 360°, 

hence 180 transects are represented.  Plotting these 

parameters (D0, δ) in a polar graph allows the 

determination of an ellipse, defined as the fractal ellipse 

of the lineaments’ spatial distribution. Where the 

maximum fractal dimension (Dhmax) is represented by 

the longest axis, while the shortest axis symbolizes the 

minimum fractal dimension (Dhmin). Best-fit ellipses 

are drawn using a least-squares method (LSM) (Gander 

et al. 1995) performed by FindGraph, Version 2.49 

software ©Uniphiz Lab Software. 2002-2016 (Vasilyev 

2016).  According to Pérez-López et al. (2005), the 

fractal ellipse presents a spatial–temporal directional 

relationship between the stress tensor and the fracture 

pattern generated. (Pérez-López and Paredes 2006). 

It is recognized that the geometry of the fractures and 

the relationships between individual fractures or fracture 

sets play a crucial role in fluid flow properties. 

Regarding the interest of the fracture connectivity, the 

term topology refers to the spatial relationships between 

fracture planes. Manzocchi (2002) invoked the fracture 

connectivity ternary plot (Barton and Hsieh 1989; 

Barton et al. 1989), which uses the three vertices of a 

triangle to represent the I, Y, and X nodes (nd) in the 

fracture network (topological patterns). Nodes are 

labelled as ‘I' (for isolated ends of traces), ‘Y' (for 

branch points, splays, or abutments), or ‘X' (for cross-

cutting intersections) (Sanderson and Nixon 2015) (see 

Appendix A1. Fig 2d). After the patterns were 

normalised (Silva et al. 2021), a ternary diagram was 

created to help define the fracture connectivity. 

(Manzocchi 2002) showed that the connectivity can also 

be expressed in terms of a single parameter, n defined 

by Equation 1, Where, PI = Proportion of I 

nodes, PX = Proportion of X nodes, PY = Proportion of Y 

nodes, with PI + PX + PY =1. 

𝑛 = [4(1 − 𝑃I)/(1 − 𝑃X)]                                          (2) 

The fracture datasets were analysed using the FracPaQ 

toolbox developed in MATLAB™ by (Healy et al. 

2017), which aims to estimate fracture connectivity (see 

Appendix A1. Fig 2d) (Sanderson and Nixon 2005; 

Sanderson et al. 2019). 

It is accepted in the literature, that a power law may be 

assumed to be a reasonable model for geometrical 

parameter (p) of fracture population (Davy et al. 1990; 

Davy 1993; Pickering et al. 1995; Bour and Davy 1997; 

Bour and Davy 1999; Odling et al. 1999; Lasm 2000; 

Bonnet et al.  2001; Darcel et al. 2003a; Hashemi and 

Baizidi 2018; Mansouri et al. 2020) when the 

distribution trend on a log-log graph shows an 

acceptable approximation to a straight line over a 

sufficient scale range. The geometrical parameter 

distribution of natural fractures obeys a power law 

distribution of size such that (eq. 3): 

 𝑁(𝑝) 𝑝−𝑎                                                                  (3) 

Generally, a given geometrical parameter of fracture 

populations is plotted as a normalised cumulative 

frequency distribution, Where N(p) is the number of 

fractures with (p) greater or equal to (p), and (a) is a 
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density constant. When bilogarithmic axes are used, a 

straight line indicates that the (p) distribution is power 

law with an exponent (a) given by the slope of the 

graph. Thus, the data used to generate the curve are 

limited at high values by the truncation artifact 

(resolution limitation) and at low values by the 

censoring artifact (incomplete sampling) which changes 

the distribution appearance. Consequently, only a 

portion of the curve, between (p min) and (p max) has a 

linear behavior and can be fitted with a power law 

expression: (Pickering et al. 1995; Odling et al. 1999; 

Bonnet et al. 2001; Ackermann et al. 2001; Zimmerman 

and Main 2004).  

 

4. Results 
4.1. Quantitative analysis of fracture data (QAFD) 

The strike rose diagram, with an angular increment of 

10° (Fig 4a), reveals that most of the fractures have a 

direction between N030°and N060°, with a cumulated 

percentage of 40.92% of fractures as a proportion and a 

weaker proportion in the N080°-120° direction (Fig 4b).  

Therefore, the fractures orientation is homogeneous and 

does show a two preferential fracturing direction.  

(N030°-N060° and N140°-N160°). As can be seen, the 

highest values of length (≥90000m) have a NE-SW 

(40°-60°) orientation with the proportion of 27.85%. 78 

fractures were identified that have a length below 

1000m with the weaker proportion of 3.37%.   These 

fracture orientations are correlated with a Riedel system 

that defines bundles of fracturing.  According to Zazoun 

(2008), the (40°-50) set, (80°-90) set, (50°-60°) set and 

the (20°-30°) set are interpreted, respectively as R 

(synthetic shear), R’ (antithetic shear), Y and P of 

Riedel shears system (Tchalenko and Ambraseys 1970) 

compatible with the Hercynian shortening direction 

oriented N040° (Figs 1a and 4b) (Boudjema 1987; 

Haddoum et al. 2001; Zazoun 2001). 

The log-log diagram of the cumulative fracture 

orientation frequency shown in Figure 4c attests that the 

fracture orientation distribution follows a logarithmic 

distribution function with correlation coefficient (R²) of 

0.91 (Table 3). (Eq. 4) 

𝑁(≥ 𝑂𝑡) =  −983.1 ∗ ln(𝑂𝑡) + 5427.6                     (4) 

 

 
 

Fig 4. (a) Orientation diagram of the fracture network. (b) Fracture length (l) Vs. fracture orientation (Ot°) and fracture Number Vs. 

fracture orientation (Ot°). (c) Cumulative fracture orientation frequency distribution per 5° class orientation.  



Zazoun / Iranian Journal of Earth Sciences, Vol. 16, No. 1, 2024, 13-39. 

 

 

20 

Table 3. Analyses results of cumulative frequency distribution of fractures parameters 
 

  R² Class Min. Max. Function 

Quantitative analysis of fracture data (QAFD) 0.91 5° 0° 180° Logarithmic 

Fracture density analysis (FDA) 0.95 1 Frac./Km² 1 Frac./Km² 7 Frac./Km² Exponential 

Fault zones width (FZW)   0.22 0.29m 18.16m 988.32m Logarithmic 

Fracture length distribution (FLD) 0.96 7m 29.12 98838.49m Logarithmic 

Fracture connectivity distribution (FCD)  0.99 1 node 1 nodes 11 nodes Exponential 

Fracture spacing analysis (FSA) 0.79 1m 7.23 137.86 Exponential 

 

4.2. Fracture density analysis (FDA) 

One of the most important fracture-related parameters is 

the fracture density or the number of fractures per unit 

area (P20 of Dershowitz and Einstein 1988), which have 

been studied by several authors (Zazoun 2008; Zazoun 

et al. 2015; Andrews et al. 2019; Hashemi and Baizidi 

2018; Mansouri et al. 2020). According to the fracture 

density map (d) (Fig 5a), seven relative fracture density 

classes were produced along with contour line 

generation.  Color is blue for the lowest fracture density 

and red for the highest fracture concentration. Based on 

this map, the strong values of isofracturing (≥5 fractures  

 

/ Km²) are localised along the main faults F1, F4, F5 and 

F6.  The maximum value of density (7 fractures/Km²) 

observed in the region belongs to the Fadnoun and the 

Dider areas. 

Figure 5b shows a log-log diagram of cumulative fault 

density distribution data per 1 fractures/Km² for the 

FDA class. The resulting distribution function is close to 

an exponential function (correlation coefficient R²= 1) 

(Table 3).  

 𝑁(≥ 𝑑) =  8.49E+3 ∗ 𝑒−0.98∗𝑑                                    (5) 

 

 
 

Fig 5. (a) Isodensity fracture map of the study area. Note the damage zones are localised along the main faults. (b) Cumulative 

fracture density frequency distribution.  
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To better understand the relation between fractures and 

faults, we established the graphs of cumulative number 

of fractures versus the fault positions along four 

scanlines oriented perpendicular to the dominant 

fracture strike (Fig 6). The graphs show a clear increase 

of the fractures number near the main faults (F1 to F8). 

(Peacock 2001) showing that the syn-fault fractures tend 

to increase greatly in frequency near the fault.  It is 

commonly assumed that fracture frequency or network 

complexity increases close to the faults and in damage 

zones around them (Fig 6) (Wheeler and Dixon 1980; 

Pohn 1981; Hanks et al. 1997; Peacock 2001; Kim et al. 

2004; Zazoun 2008). 

 

 
 

Fig 6. Graphs of cumulative number against distance along scanline length. Note the evidence of an increase in fracturing near the 

main faults (F1 to F8). 

 

4.3. Fault zones width (FZW)  

According to Choi et al. (2016), mature fault zones can 

be more complex due to the presence of anastomosing 

strands of fault gouge, lenses of damaged rock, and 

localised fault planes within damage zones (Fig 5a), and 

the fracture zones are surrounded by relatively 

undeformed host rock (Faulkner et al. 2003; Kim et al. 

2004; Felici 2016; Choi et al. 2016; Delogkos et al. 

2020). Scholz (2002) proposed an equation that relates 

the fault length to its width (Eq. 6), where Fzw=fault 

zone width, and Lf=fault length. 

Fzw= 0.01 x Lf                                                             (6) 

 

 

The log-log diagram of fault zones width distribution 

data per 0.29 m width class confirms that the fault zones 

width distribution follows an exponential law function 

with a correlation coefficient (R²) of 0.88 (Fig 7 and 

Table 3) (Eq. 7).  In addition, it should be noted that the 

curve does not meet the strict exponential relationship 

within the fault zones width range. A dividing point is 

found at the fault zone with Fzw=4.35m; there is a 

scale-free interval on both sides, where the fitting 

formula is shown in figure 7.  

 𝑁(≥ 𝐹𝑧𝑤) =  27.72 ∗ 𝑒−0.05∗𝐹𝑧𝑤                               (7)  
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Fig 7. Cumulative fault zone width distribution of fracture network. 

 

4.4.  Fracture length distribution (FLD) 

Size length distribution plays an important role because, 

for the same orientation distribution and density, 

collections of short fractures are less well connected 

than collections of long fractures (Balberg and 

Binenbaum 1983; Balberg et al. 1991). Bodin and 

Razack (1999). According to (Spyropoulos et al. 1999; 

Gupta and Scholz 2000; Ackermann et al. 2001), in the 

cumulative length distribution, the observed data at 

higher strains are best fit using an exponential 

relationship, whereas, at lower strains a power-law 

relationship provides a better fit  (Hashemi  and  Baizidi  

 

 

2018. Unfortunately, the log-log plot is often curved 

(Fig 8), suggesting that the power-law distribution is not 

a complete description of the fracture-trace lengths 

(Clark et al. 1999). The distribution would be much 

closer to a Weibull distribution (Fig 14). 

Figure 8 shows the log-log diagram of cumulative 

length distribution data per 7m length class attests that 

the fracture length distribution follows a logarithmic 

distribution function with correlation coefficient (R²) of 

0.96 (Table 3). (Eq. 8) 

𝑁(≥ 𝑙) = −614.9 ∗ ln(𝑙) + 5350.4                            (8)

 
 

Fig 8. Cumulative fracture length frequency distribution. 
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4.5. Topology of fractures (FT) and the fracture 

connectivity distribution (FCD) 

The fracture network in the area of study shows that 

21% of fractures are slay, 36% have intersection with 

each other, and 43% of fractures are isolated. the 

connectivity is dominated by I and X nodes and the 

calculated parameter (n) in our case is equal to 3.56 (Fig 

9a). The connectivity line (CL) in our case is greater 

than 2, and less than 3.57, which makes it possible to 

consider that the network fracture system is connected.  

The log-log diagram of fracture connectivity distribution 

(FCD) data per 1 node (nd) class confirms that the node 

distribution follows an exponential function distribution 

with a high correlation coefficient (R²) of 0.99 (Eq. 9) 

(Fig 9b and Table 3).  

 𝑁(≥ 𝑛𝑑) =  4.86E+3 ∗ 𝑒−0.66∗𝑛𝑑                               (9) 

 

 
 

Fig 9. (a) Connectivity of fracture networks in the study area; 

the connectivity is dominated by I and X nodes. According to 

Sanderson and Nixon (2015), the dashed lines show specific 

numbers of intersections per line, with CL= 2 representing a 

limit above which a spanning cluster is not possible and CL 

=3.57 the value widely reported from random line simulations. 

(b) Cumulative fracture connectivity (I, X and Y nodes) 

frequency distribution per 1 node class.  

 

4.6. Fracture spacing analysis (FSA) 

For fracture spacing analysis, some authors have 

considered the totality of discontinuities (Hudson and 

Priest 1983; Baka et al. 2014); other authors make a 

selection based on orientation and/or type of 

discontinuities (Bouroz 1990). In our approach, the 

spacing is defined as the distance between two 

successive fractures along the sampling line without 

regard to the different sets (ie., orientations). In order to 

investigate the spacing law distribution. We proceeded 

to a representation of the cumulative fracture spacing 

frequency distribution in a log-log diagram (Gillespie et 

al. 1993) (Fig 10b) along scanlines oriented from the N 

to the E, with an increment of 10° (Fig 10a). The 

distribution of the cumulative spacing frequency obeys 

an exponential law distribution such that (Eq. 10) with a 

correlation coefficient (R²) of 0.79 (Table 3): 

 𝑁(≥ 𝑆) =  8.73E+1 ∗ 𝑒−0.02∗𝑆                                       (10) 

The sample statistical parameters (the mean, the median 

and the standard deviation) have been calculated (Fig 

9b). A measure of the spatial distribution is given by the 

coefficient of variation Cv which is defined as the 

standard deviation divided by the mean spacing (Cox 

and Lewis 1966; Odling et al. 1999).  According to 

Odling et al. (1999) and Ackermann et al. (2001), If the 

traces are regularly spaced the standard deviation of 

spacing is small and Cv < 1. If fractures are clustered, 

the standard deviation is large and Cv > 1. The 

coefficient of variation Cv calculated is equal to 5.67 

(Fig 10b). therefore, higher than 1. The model defined 

by the scanline technique is confirmed by the coefficient 

of variation Cv which indicates a negative exponential 

distribution law (Fig 10c). 

 

4.7. Fractal analyses  

4.7.1. Monofractal analysis (mFA) 

Several authors (Bonnet et al. 2001; Riley et al. 2011; 

Kruhl 2013) have used fractal analysis techniques to 

characterise the two-dimensional geometry of fracture 

networks since (Mandelbrot's 1967, 1982, 1985) work 

on the concepts of fractal geometry. In recent years, 

applications of monofractals (Velandia and Bermúdez 

2018) and multifractals (Xie et al. 2010; Ord and Hobbs 

2019) analysis have been increasing in the earth 

sciences.  However, the fracture networks fractal 

dimension does not allow us to understand the state of 

fractures connectivity within the fractures network 

(Bonneau 2014). The 2D fracture networks in the 

Tassili-n-Ajjers have been the subject of a monofractal 

study by Zazoun (2008), however this study is restricted 

to the Fadnoun region (Fig 1a). A monofractal analysis 

(mFA) was undertaken on the structural map to 

determine the fracture spatial distribution.  For the 

monofractal analysis (mFA), the fractal dimension (Db) 

was calculated for the structural map (Fig 11 and Table 

4), and shows the dimension values obtained by box-

counting method (BCM). the points can be fitted by an 

equation expressed as Equation 11. The global fracture 

network showed a monofractal dimension of Db = 1.56. 

 

𝑁(𝜀) = 4.9𝜀−1.56 (R²=0.92)                                       (11) 
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Fig 11. Monofractal analysis (mFA) of the fracture network using the box counting method (BCM). The fractures boxes can thus be 

taken as a fractal system with a dimension 1 ≤Db≤2. 

 

4.7.2. Fractal anisotropy analysis (FAA) 

The line fractal anisotropy analysis (FAA) results for the 

fractures map are shown in Figure 12, and are 

commented on below:  

the maximum horizontal fractal dimension (Dhmax= 

0.89) is oriented N067°, with = 23° and the minimum 

horizontal fractal dimension (Dhmin= 0.74) is oriented 

N157° with (Azimuthal anisotropy of fractal dimension 

(AAD) =1.20 (Fig 12 and Table 4). 

 

 
 

Fig 12. 1-Polar plot of 1-D fractal dimension, calculated by fractal anisotropy analysis (FAA). 

 

4.7.3. Multifractal analysis (MFA) 

According to Khider (2011), when we use several 

methods of calculating the fractal dimension, and we 

find very different results then this means that the object 

is very complex. The fractal dimension alone cannot 

fully characterize the complexity. He found it necessary 

to introduce the local fractal dimension to describe the 

roughness fluctuations at each point (Stoyan and Stoyan 

1994). Indeed, when the fractal dimension changes from 

one point to another, we say that the fractal object is 

inhomogeneous or multifractal (Peitgen et al. 1992). 

Thus, the multifractal analysis (MFA) definition was 

developed to address requirements that the normal 

fractal (‘monofractal') approach could not address. 

Indeed, multifractal analyses can reveal more detail 

about spatial object measurements than monofractal 
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analyses.  The standard partitioning approach within the 

moment-based multifractal model is the box-counting 

method (BCM), in which the studied space is partitioned 

into non-overlapping boxes (Hentschel and Procaccia 

1983; Halsey et al. 1986; Evertsz and Mandelbrot 1992; 

Cheng 1999; Deng et al. 2011: Kruhl 2013). In the case 

of monofractal analysis, scaling is defined by only one 

exponent. While for MFA, a generalised dimensions 

D(q) and   the multifractal spectra f( ) are used to 

describe the fractal characteristics  (Turcotte 1992;  Cao 

et al. 2017; Liu et al. 2021).  According to Bonnet et al. 

(2001), the box-counting method (see Appendix A1. Fig 

2b), which only characterises the scaling properties of 

the fracture network's spatial occupancy, is frequently 

supplemented by the scaling properties of the fracture 

densities via moments of order (q). The system is first 

covered in a regular mesh of squares with side lengths 

()  and total length Li,  and the probability Pi () is 

defined as follows (Eq. 12): 

𝑃𝑖() = 𝐿𝑖()/ ∑ 𝐿𝑖()𝑛
1                                              (12) 

Where the sum is applied to all boxes and simply returns 

the total cumulative length of all fractures. After that, 

the moments of order q are then constructed (Eq. 13): 

𝑀𝑞() = ∑ 𝑃𝑖
𝑞𝑛

𝑖=1 = 𝜀𝜏(𝑞)                                           (13)   

The multifractal is confirmed when the slopes of fitting 

(q) satisfies the power law relationship (Eq.14) for a 

range of values of q. 

𝑀𝑞() 𝜏𝑞                                                                 (14) 

Where (q) is called the mass exponent of q order and 

the generalized fractal dimension is calculated as 

follows: (Eq. 15). 

𝐷(𝑞) =
1

𝑞−1
lim
𝑟→0

(
𝑀𝑞(𝜀)

ln 𝜀
) =𝑛 𝜏(𝑞)

𝑞−1′
                                 (15) 

The multifractal spectra as a plot of f(α) against - α can 

be obtained as follows: (Eq. 16 and 17). 

𝛼(𝑞) =
𝑑𝜏(𝑞)

𝑑𝑞
                                                               (16) 

𝑓(𝛼) = 𝑞(𝛼)𝑞 − 𝜏(𝑞)                                                (17) 

where the α(q) is a singular exponent and a monotone 

decreasing function, which reflects the singularity 

intensity of fractures and represents the probability of 

fractures in the area of the study. The selection of 

appropriate box sizes and the range of moment orders is 

critical for multifractal analysis (MFA). We used a 

criterion based on evaluating the linear behaviour of the 

mass exponent D(q) as a function of q to find these 

ranges. Figure 13a shows plots of D(q) vs. q for various 

q values.  The dimensions used are known as q=0 (the 

capacity or the fractal metric dimension), q=1 (the 

information dimension or the Shannon entropy) and q=2 

(the correlation dimension) (Saucier and Muller 1999; 

Bonnet et al. 2001).  According to Hentshel and 

Procaccia (1983), for the multifractal analysis (MFA), 

D(q) behaves predictably, decreasing as q increases. The 

procedure for calculating the multifractal spectra is 

carried out with q ranging from -10 to +10, in 

increments of 1. Korvin (1992) asserts that equality in 

these three dimensions occurs only when the geometry 

is monofractal or single fractal. The results of the 

multifractal analysis (MFA) indicate that the fracture 

intensity spatial distribution has a heterogeneous fractal 

structure, with generalized positive fractal dimensions. 

Indeed, the nonlinear slopes characteristic of the 

exponent D(q), adjusted in the partition functions for 

each moment q, make it possible to ensure that there is 

multifractal behaviour in the analyzed two-dimensional 

fracture fields (Fig 3). As a result, D(q) follows a 

predictable pattern, non-decreasing as q increases: 

(D0=1.84>D1=1.81>D2=1.80>D3=1.79>D4=1.78>D5=

1.77>D6=1.76>D7=1.75>D8=1.74>D9=1.7).   

 (Fig 13a and Table 4). For a monofractal, all the 

dimensions become similar to D0. The value of 

D0=D1=D2 indicates that the distribution is 

homogeneous and exhibits perfect self-similarity.  

Nevertheless, for the multifractal analysis D0>D1>D2 

(Biswas et al. 2012). As shown in Figure 13b, a graph of 

multifractal spectra f () vs () reveals a multifractal 

behaviour. Indeed, if the graph is arched, the scaling is 

considered multifractal. Conversely, if the dimensions 

converge, the scaling is considered mono- or non-fractal 

(Kaperian, 2004).  A quadratic equation fitting (f 

(q)=A²+B-C) was adjusted and calculated for the 

fitting curve, where the parameter (B) describes the 

symmetry of the fractal spectra. When B=0, then f(q) is 

symmetric, While, when B≠0, f(q) is asymmetric (Liu et 

al. 2021).  In our study, the multifractal spectra f () 

appears as an asymmetrical parabola, and it reaches a 

maximum at  (q)=2.44, with B=15.06 (>0) and 

f=0.51 (>0). The multifractal behavior should be 

confirmed by the convex shape of the  (q) curve. The 

Figure 13c shows that the shape of the curve is not 

really convex.  Even if the error bars on D0, D1 and D2 

could not be calculated. It is highly likely that the 

behavior is monofractal. 

Likewise, the minimum value of multifractal parameters 

(min=1.67) corresponded to q = 9, and the maximum 

value (max=2.61) corresponded to q = -8.  The 

calculated value of  (max - min) and the 

asymmetrical index (AI) in our case, are respectively 

equal to 0.94 and -0.57 (Fig 13b and Table 4).  

4.7.4. The lacunarity () 
The term lacunarity comes from the Latin word 

“Lacunas” which means hole or gap. According to Sahu 

et al. (2020), in the case of deterministic fractal fracture 

models, the fractal dimension is not a unique identifier 

of the properties of connectivity or flow. In fact, it is the 

fracture networks clustering that is used to understand 

connectivity, because there is a notable correlation 

between the connectivity and lacunarity parameter 

which quantifies scale-dependent clustering.  The term 

lacunarity is a parameter that measures the degree of 

clustering at a given spatial resolution and characterizes 

the distribution of spaces or gaps in a pattern as a 

function of scale (Mandelbrot 1982; Plotnick et al. 

1996).  For both fixed box (overlapping or sliding) and 
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non-overlapping box counting method, lacunarity is 

determined from the probability distribution for pixels 

from the binary image of the fracture network. Its 

implementation is simple. It suffices to calculate the 

variance σ²() and the mean µ(), in all non-zero pixel 

size boxes (), then to deduce the fractal lacunarity 

() given by the formula  (Eq.18) (Plotnick et al. 

1996).  

Λ(𝜀) =
𝜎2(𝜀)

(𝜇 (𝜀))2 + 1                                                      (18) 

This operation is repeated for each box size () as many 

times as necessary to deduce all the values of the curve 

of the lacunarity (The calculated value of variance 

(σ²()) and the mean (µ()) for the global fracture 

network, range respectively 0.09≤ σ²() ≤651.21 and 

1.1≤ µ() ≤10.5. 

Figure 13d illustrates the linear relationship between the 

lacunarity index (()) and the box size () in the bi-

logarithmic plot. The data show that the lacunarity value 

(decreases from 6.90 to 1.07 as the value of the 

box size increases from 1km to 95km. That is, the 

lacunarity depends heavily on the size of the model 

(Allain and Cloitre 1991; Plotnick et al. 1993; Giri et al. 

2016). The data can be fitted by a straight line only 

between, =1Km m and =56Km exhibiting multifractal 

behavior over that range. According to Marwan et al. 

(2007), this linear decrease reveals a large amount of 

self-similarity. However, for all data, the obtained 

values can be fitted using a linear function law with 

correlation coefficient (R²) equal to 0.90. (Eq. 19), 

corresponding to a beta lacunarity exponent of -2.13. 

Λ(𝜀) = 0.49(𝜀) + 0.86                                              (19) 

 

 
Table 4. Fractal analyses results. For the multifractal analysis (MFA), the Renyi dimensions (D0, D1, and D2) calculated are close in 

values, which indicates that the fractures network is probably monofractal. 

 

 
Monofractal analysis 

(mFA) 

Multifractal Analysis 

(MFA) 

Fractal anisotropy analysis 

(FAA) 

Db 1.56 - - 

R² 0.92 - - 

D0 - 1.84 - 

D1 - 1.81 - 

D2 - 1.80 - 

D0-D1 - 0.03 - 

D1/D0 - 0.98 - 

Dhmin - - 0.74 (N157°) 

Dhmax - - 0.89 (N067°) 

AAD - - 1.20 

 - 0.94 - 

L - 0.20 - 

R - 0.74 - 

AI - -0.57 - 

f - 0.51 - 

 

 

5. Weibull distribution of the geometrical 

parameters of fractures 
The Weibull distribution is a continuous probability 

distribution and is one of the most popular distributions 

in analyzing skewed data (see Appendix A2. Fig 1). The 

reason to use a Weibull distribution is because of its 

flexibility, due to its different forms of probability 

density functions (PDF) and due to the monotonicity 

property of the hazard function. It has a closed form 

cumulative distribution function (CDF) and it can be 

used very effectively for analyzing censored data (Lai et 

al. 2006; Joarder et al. 2011).  

The results of Weibull distribution of fractures 

parameters (Fig 14) are reported in table 5.  From this 

table, it is evident that all the shape  

parameter () calculated for each geometrical parameter 

is >1. So we can consider that Weibull analysis 

estimates that these parameters increase with time. 

According to Hobbs et al (2022), the physical 

significance of the Weibull probability distribution 

function (PDF) corresponds to systems that nucleate 

quickly, grow competitively and have short extinction 

times due to relatively strong competition (Lavenda 

1995). 
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Fig 13. Multifractal analysis (MFA) of the fracture network: (a) Generalized dimension graph; D0=1.84, D1=1.81 and D2= 1.80. (b) 

Original and fitted multifractal spectra; According to Peng et al. (2018), (α)min, (α)max, (Δα), (Δα)L, (Δα)R, (Δ)f, AI are the fractal 

parameters; (α)min and (α)max are α values corresponding to the maximum and minimum q, respectively; α0 is the value of (α) when 

q equals zero. (c) Mass exponent graph (or (q) curve); the value of moment q ranges from −8 to 9, with steps of 1. (d) Lacunarity 

distribution of the global fracture network shown on a (()) vs () plot; local slopes plotted as d [log ()]/d [log ] against log (. 
(CDC: concave downward curve; CUC: concave upward curve). 

 

 
Fig 14. Probability density function (PDF) and survival distribution function (CDF) plots for Weibull distribution. 
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Table 5. Weibull distribution results for the geometrical parameters of fractures ( is the shape parameter,  is the scale parameter). 

 

    Mean Median 
STDE

V 
Kurtosis Skewness Min. Max. 

Right 

tail 

Left 

tail 

Q1 

(25%) 

Q3  

(75%)  
R² Unit 

Fault zones width 

(FZW)   
1.05 20.7 25.21 14.33 51.98 143.04 10.11 0.29 988.3 65.24 0.29 28.96 4.61 0.95 m 

Fracture length 

distribution (FLD) 
1.05 2.07 2.52 1.43 5.2 143.05 10.11 0.029 98.83 6.52 0.03 2.90 0.46 0.95 Km 

Fracture spacing 

analysis (FSA) 
1.58 28.49 33.38 13.39 38.65 1.14 1.58 7.23 137.86 82.85 7.23 39.78 9.48 0.69 m 

Monofractal analysis 

(mFA) 
4.68 1.9 1.77 1.59 0.59 0.54 1.11 1.17 3.63 3.28 1.17 2.07 1.25 0.78 NA 

 

6. Discussion 
The fractal dimension does not completely define the 

geometry of the fracture system, and a complete 

characterization should include various geometrical 

attributes (e.g. fracture density, length distribution, 

fracture spacing, fracture orientation, roughness of the 

fracture surface, width, aperture and shear displacement) 

(Bonnet et al., 2001). 

6.1. Fracture density  

The curve of cumulative fracture density frequency for 

all fracture sets show a nonlinear behavior in a log-log 

plot and can be fitted by an exponential law (Fig 5b), 

this suggests that the fracture network is not strictly self-

similar. Because, the fracture mapping is certainly not 

qualitatively uniform and the fracture network (Fig 3) is 

heterogeneous in terms of density (Fig 5a). According to 

Peacock and Mann (2005), the lithological competence, 

the tectonic setting and the stress regime can control the 

geometry and fractures density (Hashemi and Baizidi  

2008). The strong fracturing densities observed are to be 

related to what they call fault damage zone. Damage 

zones structures includes en echelon extension fractures, 

antithetic and synthetic faults and rotated blocks with 

associated triangular openings at the intersections 

between faults. It is commonly assumed that fracture 

frequency increases in damage zones around faults (Wu 

and Groshong 1991; McGrath and Davidson 1995; 

Peacock 2001; Kim et al. 2004). The fracture density 

map (Fig 5A) shows the main zones of iso-fracturing in 

which the strong values are localised along the main 

faults, and consequently are considered as wall-damage 

zones.  

6.2. Fracture length 

Several fields studies have demonstrated that fracture 

populations have a power law length distribution (Davy 

et al. 1990; Davy 1993; Sornette et al. 1993; Pickering 

et al. 1995; Bour and Davy 1997 and 1999; Odling et al. 

1999; Lasm 2000; Bonnet et al. 2001; Darcel et al. 

2003a).  The power law exponent (a) is generally in the 

range 1 < a < 3 (Segall and Pollard 1983; Davy 1993; 

Berkowitz et al. 2000; Bonnet et al. 2001). According to 

Stoyan and Gloaguen (2011), the fit of statistical laws to 

empirical fracture distribution is difficult. This difficulty 

can be illustrated by a number of laws used to describe 

fracture process in the literature: power law (Velde and 

Dubois, 1991), exponential law (Villemin and Sunwoo, 

1987), log-normal law (Castaing et al. 1995) and gamma 

law (Bonnet et al. 2001). 

In this study, the resulting distribution function of 

fracture length obeys a logarithmic law (Fig. 8a). Cowie 

et al. (1993) found that the length distribution follows an 

exponential law during the first increments of 

deformation which, when fractures begin to interact, 

evolves toward a power law. It is recognized that 

resolution and finite size effects on a power law 

population can also result in distributions that appear to 

be exponential or lognormal (Bonnet et al. 2001). Davy 

(1993), in a study of over 5000 faults in the San Andreas 

system, demonstrated that the distribution of fracture 

lengths had Weibull tails for lengths greater than about 

1000m. However,  

for Lavenda (1995), the fracture length distribution 

follows the Fréchet distribution.  

6.3. Fracture spacing 

For the cumulative fracture spacing frequency 

distribution, the resulting distribution function Is close 

to exponential law (Fig 12b), that the fracture network 

of this area is not strictly self-similar with respect to 

fracture trace spacing for all fracture sets.  According to 

Soliva et al. (2006), the nonfractal distribution justifies 

the use of scanlines. The coefficient of variation (Cv) 

calculated is 5.67, therefore, higher than 1 (Fig 10b). 

According to Odling et al. (1999) and Ackermann et al. 

(2001), if the fractures traces are clustered, the standard 

deviation of spacing is large and Cv > 1. Inversely, if the 

fractures are regularly spaced, the standard deviation is 

small and Cv < 1. The model defined by the scanline 

technique is confirmed by the coefficient of variation 

(Cv) which indicates a negative exponential distribution 

law (Fig 10c) and the clustered fractures model.  Bonnet 

et al. (2001) discuss the relationship between the type of 

distribution of parameters such as the length, spacing 

and opening, and the stage of development of fracture 

networks. These authors demonstrate that undeveloped 

networks show an exponential law, while more mature 

networks follow a power law. Rives et al. (1992) 

concluded that fracture spacing destructions vary along 

different stage of fracture development. The distribution 
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is negative exponential at a stage with only few 

fractures, log-normal at intermediate fracture density, 

and tends toward normal at high fracture density. 

According to must publications the relative frequency of 

fracture spacing can be described by different 

distribution laws. Log-normal, normal, exponential, 

gamma and Weibull distributions were fitted to the 

spacing frequency histograms (Alizadeh et al. 2010). 

According to Hobbs et al. (2022), the Fréchet or 

Weibull distribution are to be expected from current 

theories of fracture spacing. Boadu and Long (1994), in 

a study of fracture spacings in Lake Strom Thurmond, 

(Georgia, U.S.A) showed that the distribution of fracture 

spacings follow a fractal and Weibull distribution which 

implies that they were formed as a result of a repetitive 

fragmentation process. 

6.4. Monofractal analysis 

According to Lasm (2000), for the monofractal analysis 

(mFA), and the multifractal analysis (MFA) the high 

values of Db observed (eg. in our case: Db=1.56 and 

D1=1.81, respectively) (Figs 11 and 12), can be 

attributed to the structural complexity of the fracture 

network which indicates the presence of more than one 

phase of deformation in the study area (Boudjema 

1987), and Db depends on fracture density, rather than 

clustering (Berkowitz and Hadad 1997).    

Using computer simulations of fracture networks, La 

pointe (1988) suggests that the fractal dimension is most 

sensitive to the fractures number (n) of or cells size (), 

rather than their length (l) variability, and orientation 

(Ot). According to Zazoun (2008), the difference in the 

fracturing density observed in the Fadnoun region (Fig 

1a), obtained by performing a monofractal analysis for 

three sectors; a northwestern sector, a central sector and 

a southeastern sector, the fractal dimension Db 

calculated are respectively equal to 1.84, 1.91 and 1.94. 

Indeed, the change of the fractal dimension from one 

sector to another observed by this author has shown that 

the fractal object is inhomogeneous or multi-fractal, 

hence the need to have undertaken a multifractal 

analysis. Using the box-counting method (BCM), 

Djezzar et al.  (2020) examine the fracture network in 

the Mouydir region, located to the west of the study area 

(Fig 1a), and obtain a monofractal dimension (Db) of 

1.57. The fracture length distribution analysis by these 

authors showed a value of the power-law exponent (a) 

equal to 2.89.  According to Liu et al. (2015 and 2016), 

when Db (or D1) exceeds a particular value (>1.5), the 

flow rate distribution becomes more uniform, and 

shorter fractures dominate the preferential flow paths. 

Thus, the fracture permeability become more stable. The 

observed greater values of the power-law exponent (a) 

of the fracture length distribution indicate that short 

fractures are more important in strain accommodation 

than long fractures (Ackermann et al. 2001). In the 

study area, the cumulative fracture length distribution 

shows a smaller value of (a) (=0.44) (Fig 8) and the Db 

values equal to 1.56 and 1.81, respectively for the 

monofractal and the multifractal analyses (Figs 11 and 

13), which allows one to consider the opposite 

observation of these authors. Thus, short fractures are 

less important in strain accommodation than long 

fractures. The spatial distribution of fractures using the 

box-counting method is respectively consistent with a 

fractal character (1 ≤ Db ≤ 2) and obey a power law 

function (Fig 10), and this is in relevance to all 

directions and all fracture lengths confounded over the 

whole study area (Figs 1 and 3).  

According to Bonnet et al. (2001), a fractal network is 

defined as a spatial correlation and organization 

between fractures that can be quantified using the fractal 

dimension, and is independent of the distributions of 

other fracture traces. On the other hand, the fractures 

may be arbitrarily distributed in space (i.e., nonfractal), 

whereas other fracture characteristics, such as length, 

spacing or orientation, may follow power law 

distributions (Bour and Davy, 1997). For the pairs 

[,N()], reported in Figure 11, the points fall into a 

straight line from an () value of more than 30m and in 

Figure 7, the fit by a power law is valid for a fracture 

length of more than 108.54 m and for a fracture spacing 

of more than 3m.  The causes of behavioral tendency 

have been recalled by Velde and Dubois (1991), 

Gillespie et al. (1993), Bodin and Razack (1999) and 

Zazoun (2008). According to these authors, these 

restrictions can be explained by several factors, such as 

the limit of photogeological resolution of the sampling 

data method or the lower break reached up scale. 

Unfortunately, the concepts of truncation and censoring 

artifacts cloud all the interpretations with no attempt to 

show us that these artifacts actually exist (Clark et al. 

1999). This is to be expected since the standard box 

counting procedure for spatial data points is a way of 

determining a nearest neighbour distribution which is by 

definition a Weibull distribution (Hobbs et al. 2022). 

6.5. Multifractal analysis 

The multifractal dimension of the most intensive 

clustering in the heterogeneous set is represented by the 

value D9=D. The maximum value of D(q)=1.84, 

corresponds to q equal to -8, while The minimum value 

of D(q) = 1.73, corresponds to q equal to 9.  The 

generalised dimension D(q) showed a slow rate decrease 

in relatively homogeneous samples, leading to a 

convergence toward a constant value for moments q≥0 

(Fig 13). According to Jouini et al. (2011), this 

observation confirms that generalised dimensions D(q) 

can be used to determine the degree of data 

heterogeneity. Effectively, the low value of the 

difference D0-D1 (=0.03) and the ratio D1/D0 (=0.98) 

near 1 observed indicate a low degree of fracture density 

(Fig 5a). The Renyi dimensions (D0, D1, and D2) 

(Feder 1988), show respectively, 1.84, 1.81, and 1.80. 

The dimensions (D0, D1, and D2) remain quite close in 

values, which indicates that the fractures network is 

probably monofractal. 
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The fractal spectra f () from multifractal analysis 

(MFA) reveals an asymmetric parabola (Figs 11 and 

12). According to Liu et al. (2001), this would reflect a 

variability in the lengths of observed fractures.  The 

value of the amplitude difference (f) observed between 

the values of f() at αmax and αmin for the multifractal 

analysis is equal to 0.51 and the multifractal spectra f() 

shows an asymmetrical curve, with a left deviation, and 

the asymmetrical index AI is equal to -0.57 (left-hook 

curve) (Fig 13b).  According to these authors, when the 

asymmetry (f) > 0, which reveals that the fractures 

with longer lengths were more common than shorter 

fractures and the fractures are medium-small scale and 

are discontinuous in space (Fig 4b and 5a). The 

calculated value of  is equal to 0.94. According to 

Biswas et al. (2012), a large value for , indicates a 

multifractal behavior. The fracture networks are well 

known for displaying self-similarity in many 

circumstances, and their connection and flow behavior 

are influenced by their fractal dimensions (Roy et al. 

2006).  

6.6. Fracture connectivity  

Bour and Davy (1997), Bonnet et al. (2001) and Darcel 

et al. (2003b) have shown that the connectivity of the 

fracture networks depends on the power law exponent 

(a) and on the fracture density. Berkowitz et al. (2000) 

analyzed the fracture connectivity on the light of 

relation of exponent (a) to capacity fractal dimension 

D0, for a>D0, the connectivity does not depend of scale, 

inversely for a<D0, the connectivity threshold is 

reached only at a critical value. In the study area, with 

a= 5.79 and D0=1.84 (Tables 1 and 2), it is attempting 

to say that fracture connectivity is largely independent 

on scale. In some cases, where large damage area 

develops as displacement accumulates, both the fractal 

dimension and connectivity may increase together 

because the area of damage zone is controlled by the 

extent of slip (de Joussineau and Aydin 2007; Park et al. 

2010). The lacunarity value () calculated ranges 

0.07< ( < 5.90., because the value of the lacunarity 

is not a constant but depends heavily on the size and 

density of the sampling box (Wu et al., 2013).  As noted 

by Plotnick et al. (1996), when the fractal object is 

homogeneous and invariant by translation, the 

lacunarity is of very low value in the presence of 

relatively low size gaps. Conversely, it takes an 

important value for large size gaps for a heterogeneous 

and non-translationally invariant geometric objects.  

This heterogeneity can be observed on the isodensity 

fracturing map (Fig 5a) and it results in a clustered 

fracture patterns, underlined by a negative exponential 

distribution law for spacing distribution (Fig 10c). The 

lacunarity ( decreases for increasing ( (Fig 13d). 

According to Marwan et al. (2007), because larger 

boxes will be more translationally invariant than smaller 

boxes. Figure 13d shows that global fracture network 

presents a higher lacunarity exponent (-2.13). The 

greater beta lacunarity exponent confirms greater 

heterogeneity in the distribution of fractures. While, the 

lower beta exponent of lacunarity indicates more 

uniform fracture distribution. Additionally, a concave 

downward lacunarity curve (CDC) represent fracture 

network that are composed of clustered fractures and 

have high lacunarity. Conversely, concave upward curve 

(CUC) shows fracture network fracture with randomly 

distributed gaps and low lacunarity values. Figure 13d 

shows the local slopes of the log (()) versus log  

curve calculated at each  and denoted by d [log 

)]/[d(log )]. It can be seen from this figure that the 

fracture network behaves like the multifractal pattern 

and displays somewhat of a “flat segment” in the d[log 

)]/[d(log )]versus log  plot. Such observations have 

been corroborated by the studies of Plotnick et al. 

(1996) and Roy and Perfect (2014).  

6.7. Fractal anisotropy 

Our study shows that the orientation of Dhmax (N067°) 

is close to the maximum stress tensor axis orientation 

(1: N040°), recorded during the Hercynian 

compressional event (Boudjema 1987) and the main 

orientation of fractures (Fig 12). As a result, the fractal 

ellipse displays a spatial-temporal directional 

connection between the maximum stress tensor (1) and 

the fracture pattern produced. By using a 1-D fracture 

profile on transect, it is possible to determine the fractal 

anisotropy (FA) of spatial fracture distribution, active 

during a paleostress field, and this appears to be a 

valuable method to characterize the geometrical and 

structural configurations resulting from fracture patterns 

(Pérez-López et al. 2005 and 2007). In their study of the 

Variscan granitic massif ‘’El Berrocal’’ in the Gredos 

Mountain Range of Spain, Pérez-López and al. (2005) 

and Pérez-López and Paredes (2007) show a 

relationship between the fractal anisotropy ellipse of the 

spatial faults distribution and the paleostress field, i.e. 

that the orientation of 1 is normal to the orientation of 

Dhmax. In our study, the N040° Hercynian maximum 

stress tensor (1) is expected to be normal to Dhmax 

(N067°). Unfortunately, a large deviation of 63° 

between these two parameters was observed (Fig 12), 

this would probably be the result of a fracturing 

mechanism occurring during the different geological 

tectonic events emphasizing the superposition of the 

phases of fractures generation. Indeed, the cause of 

fractal characteristics depends on the formation and 

development of tectonic processes (Liu et al. 2021). 

 

7. Conclusions 
The fracture study carried out in the Tassili-n-Ajjers 

area from the analysis of fracture density by the box 

counting method shows a single fractal character and the 

Weibull distribution for the monofractal analysis. The 

spacing law between the fractures direction shows a 

negative exponential distribution consistent with the 

clustered fractures model. The syn-fault fractures tend to 
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increase in frequency near the faults and we interpret the 

strong fracture density as damage zones. The curves of 

cumulative length frequency and the fracture orientation 

shows a nonlinear behavior and can be fitted by a 

logarithmic law. The cumulative fracture spacing 

frequency of fracture traces, the fracture density and the 

fracture connectivity distributions for all fracture obey 

an exponential law function. Basically, the geometrical 

parameters of fractures are scale dependent and should 

be approximated by a classical distribution laws. 

However, the Weibull distribution remains more 

appropriate, especially with regard to fractal analysis by 

the box counting method (BCM). The data analyses 

reveal that multifractal and lacunarity informations 

provides a more comprehensive understanding of the 

spatial heterogeneity of fracture network than any 

monofractal dimension. 
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Appendix A1. Overview of fracture definition 

A natural fracture is a term adopted for planar 

macroscopic discontinuity, as a result of brittle failure in 

the presence of an imposed stress field (Nosjean et al. 

2020).  Fractures within the rock are shown as veins, 

joints, and faults, and they exist at a different variety of 

scales, from the microscopic scale to the macroscopic 

one. The fracture description requires a concept 

prioritization, namely from the most elementary (the 

individual fracture or fracture set) to intermediaries who 

are the fractures’ family, then the fractures’ system, and 

up to the more global network (Macé 2008). Fractures 

that belong to the identical system are the consequence 

of the application of the same stress field (National 

Research Council 1996). In outcrops, the fractures 

appear as continuous and straight traces bearing no 

traces of displacement (Cacas et al. 2001). The fracture 

networks organization (FNO) is often divided into two 

groups (Rives et al. 1992; Cacas et al. 2001; Putot et al. 

2001; Sanderson and Peacock 2019): 

(1) Systematic fracture networks (SFN), whose fracture 

networks is regular in terms of spacing and orientation 

(see Appendix A1. Figs 1a-b and 2a). 

(2) fracture corridor or fracture cluster (Fc), which are 

spatially heterogeneously distributed. They are usually 

associated with fault zones and occur with strong sub-

vertical development (swarm) (Zazoun 2008; Matar et 

al. 2010; Nosjean et al. 2020) (see Appendix A1. Fig 1c-

d and 2a).  

 

 
 

Fig A1. 1. Photographs showing fracture network geometry in the Tassili-n-Ajjers area: (a-b) Systematic fractures observed in the 

Silurian sandstones (Tifernine formation ‘’Silurian’’, Oued Taïni station; X: 08° 03' 490 E / Y: 25° 44' 180 N). (c-d) Fracture swarms 

in Ordovician sandstones (Cambro-ordovician formations, Djebel Assar station; X: 08° 26' 82" E / Y: 25° 10' 57" N). 
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Fig A1. 2. (a) The fracture networks organization (FNO): Systematic fracture networks (SFN) and fracture corridor or fracture cluster 

(Fc) (Modified from Bazalgette 2004).  (b) The box-counting method (BCM) measuring the fractal dimension by superimposing a 

sequence of regular meshes with different cell sizes ( over the fracture map (M) and counting the number of occupied boxes N(. 

The fractal dimension (a=Db) is derived as the negative slope of the linear regression line of data points (, N) plotted in logarithmic 

axes (Lei et al. 2014). The multifractal analysis (MFA) derived from the box-counting method for which each box of size ( is 

weighted by the total length (Li) included in it (Bonnet et al. 2001). (c) Cantor's Dust Method (CDM): The solid line of unit length is 

divided into 3 parts, r=1/3, and the center third is removed, the process is repeated. The Cantor dust has a fractal dimension (D) 

between 0 and 1 (From Turcotte 1989) (d) Classification of node types. X type: fractures are crossed, I type: fracture start and end, Y 

type: fracture abutment with another fracture (Modified from Sanderson and Nixon 2015).  

 

Appendix A2. Weibull distribution 
In probability theory and statistics, the Weibull 

distribution is a continuous probability distribution 

(https://en.wikipedia.org/wiki/Weibull_distribution). 

The Weibull distribution (Weibull 1951) and theory 

have found many applications in reliability and fracture 

theory (Bažant and Planas 1998; Krajcinovic, 1996; 

Munz and Fett, 2001), and it is one of the best-known 

lifetime distributions. It describes observed failures of 

many different types of components and phenomena 

(Brandt 2019). 

The two common forms of the Weibull distribution 

forms of the distribution function are as follows:  

The formula for the probability density function (PDF) 

of the general Weibull distribution is: (Eq. A2.1) (Figs 

A2. 1). 

𝑓(𝑥) =
𝑘


(

𝑥−𝜇


)(𝑘−1) exp(−(((𝑥 − 𝜇)/)𝑘)    𝑥 ≥

𝜇; 𝑘,  > 0     (A2.1) 

The formula for the cumulative distribution function 

(CDF) of the general Weibull distribution is: (Eq. A2.2) 

(Figs A2. 1). 

𝐹(𝑥) = 1 − 𝑒−(𝑥 ⁄ )𝑘
    𝑥 ≥ 0;  𝑘 > 0                               

(A2.2) 

Where  is the shape parameter, also know the Weibull 

slope or the threshold parameter,  is the scale arameter, 

also called the characteristic life parameter and is the 

location parameter or the shift parameter.  

The Weibull distribution includes the exponential ( = 

1) and the Rayleigh distribution ( = 2) as special cases. 

According to Brandt (2019), the shape parameter () 

determines the class of failure mode: 

 A value of  < 1 indicates that the failure rate decreases 

over time. 

A value of  = 1 indicates that the failure rate is constant 

over time. 

A value of  > 1 indicates that the failure rate increases 

with time. 

A value of  > 4 indicates that the failure rate rapidly 

increases with time 
 

 
 

Fig A2. 1. Probability density function (PDF) and cumulative 

distribution function (CDF) plots for Weibull distribution 

(After Leitch, 2010  

https://en.wikipedia.org/wiki/Weibull_distribution) 

 

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Probability_distribution
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