skip to main content
Menu
Original Article

A systematic approach for planning a Geochemical survey for Hydrocarbon exploration: An overview

Authors

Abstract

Exploration of oil and gas seepages employing geochemical techniques has helped to discover new hydrocarbon resources across the world. Oil and gas exploration techniques had substantial advancements in the late 2000s. Numerous geophysical and geochemical techniques have been created and are constantly improving along with the advancement of digital technologies. Geochemical techniques are being used with remarkable success in the hydrocarbon exploration business to take informed decisions on project viability. These techniques contributed to determining the different hydrocarbon types, the degree of basin maturity, and the reliability of other petroleum system components. Combining precise geological and geophysical techniques with geochemical approaches can considerably improve the prospect chance of success. The current study offers a thorough discussion of geochemical exploration methodology and recommends an appropriate design process for geochemical surveys. It presents a methodical overview of various survey types as well as the advantages and disadvantages of geochemical techniques in comparison to other techniques used in hydrocarbon exploration.

Keywords

References

Anifowose, F. A., Labadin, J., & Abdulraheem, A. (2017). Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization. Journal of Petroleum Science and Engineering, 151, 480–487. https://doi.org/10.1016/j.petrol.2017.01.024

Bacal, M. C. J. O., Hwang, S. G., & Guevarra-Segura, I. (2019). Predictive lithologic mapping of South Korea from geochemical data using decision trees. Journal of Geochemical Exploration, 205, 106326. https://doi.org/10.1016/j.gexplo.2019.06.008

Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1–2), 314–324. https://doi.org/10.1016/j.oregeorev.2006.10.002

Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, S., Li, W., & Qinglin, X. (2011). A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers and Geosciences, 37(5), 662–669. https://doi.org/10.1016/j.cageo.2010.11.001

Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3–4), 294–313. https://doi.org/10.1016/j.jhydrol.2008.02.015

Deditius, A. P., Reich, M., Simon, A. C., Suvorova, A., Knipping, J., Roberts, M. P., Rubanov, S., Dodd, A., & Saunders, M. (2018). Nanogeochemistry of hydrothermal magnetite. Contributions to Mineralogy and Petrology, 173(6). https://doi.org/10.1007/S00410-018-1474-1

Frost, B. R., & Frost, C. D. (2008). A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11), 1955–1969. https://doi.org/10.1093/PETROLOGY/EGN054

Ge, Y. Z., Zhang, Z. J., Cheng, Q. M., & Wu, G. P. (2022). Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia, China. Journal of Geochemical Exploration, 232, 106888. https://doi.org/10.1016/J.GEXPLO.2021.106888

Guartán, J. A., & Emery, X. (2021). Regionalized Classification of Geochemical Data with Filtering of Measurement Noises for Predictive Lithological Mapping. Natural Resources Research, 30(2), 1033–1052. https://doi.org/10.1007/S11053-020-09779-0

Hawkes, H. E., & Webb, J. S. (1963). Geochemistry in Mineral Exploration. Soil Science, 95(4), 283. https://doi.org/10.1097/00010694-196304000-00016

Heath, C. J., & Campbell, I. H. (2004). A new geochemical technique for gold exploration: Alkali element mobility associated with gold mineralization in the West Australian Goldfields. Economic Geology, 99(2), 313–324. https://doi.org/10.2113/GSECONGEO.99.2.313

Horvitz, L. (1985). Geochemical Exploration for Petroleum. Science, 229(4716), 821–827. https://doi.org/10.1126/science.229.4716.821

Hosseini, A., Saberi, M. H., & Zarenezhad, B. (2022). Significance of petroleum seepages in hydrocarbon exploration-case study of Khourian Desert, Central Iran. 12, 1649–1663. https://doi.org/10.1007/s13202-021-01440-7

Jones, V., Matthews, D. & Richers, D. (1999). Light hydrocarbons for petroleum and gas prospecting. In Handbook of Exploration Geochemistry: Gas Geochemistry, 7, 131–202.

Joshi, D., Patidar, A.K., Mishra, A. et al.  (2021) Prediction of sonic log and correlation of lithology by comparing geophysical well log data using machine learning principles. GeoJournal, https://doi.org/10.1007/s10708-021-10502-6 

Kirkwood, C., Cave, M., Beamish, D., Grebby, S., & Ferreira, A. (2016b). A machine learning approach to geochemical mapping. Journal of Geochemical Exploration, 167, 49–61. https://doi.org/10.1016/j.gexplo.2016.05.003

Kirkwood, C., Everett, P., Ferreira, A., & Lister, B. (2016a). Stream sediment geochemistry as a tool for enhancing geological understanding: An overview of new data from south west England. Journal of Geochemical Exploration, 163, 28–40. https://doi.org/10.1016/j.gexplo.2016.01.010

Kilrani, N., Prajapati, P. and Patidar, A.K. (2021) Contrasting machine learning regression algorithms used for the estimation of permeability from well log data. Arabian Journal of Geoscience, 14, 2070.  https://doi.org/10.1007/s12517-021-08390-8

Kuang, L., Liu, H., Ren, Y., Luo, K., Shi, M., Su, J., & Li, X. (2021). Application and development trend of artificial intelligence in petroleum exploration and development. Petroleum Exploration and Development, 48(1), 1–14. https://doi.org/10.1016/S1876-3804(21)60001-0

Kumar, A. (2019). A Machine Learning Application for Field Planning. "Paper presented at the Offshore Technology Conference, Houston, Texas”. https://doi.org/10.4043/29224-MS

Larsen, E., Alaei, B., Economou, D., & Jackson, C. (2017). Artificial intelligence-assisted petroleum geoscience: Next generation exploration technology.

Leonte, M., Wang, B., Socolofsky, S. A., Mau, S., Breier, J. A., & Kessler, J. D. (2018). Using Carbon Isotope Fractionation to Constrain the Extent of Methane Dissolution Into the Water Column Surrounding a Natural Hydrocarbon Gas Seep in the Northern Gulf of Mexico. Geochemistry, Geophysics, Geosystems, 19(11), 4459–4475. https://doi.org/10.1029/2018GC007705

Luofu, L., Suping, Z., Lixin, C., & Hong, H. (2005). Distribution of major hydrocarbon source rocks in the major oil-gas-bearing basins in China. Chinese Journal of Geochemistry, 24(2), 116–128. https://doi.org/10.1007/BF02841154

Mishra, M., Patidar, A. K. (2022). Post-drill geophysical characterization of two deep-water wells of Cauvery Basin, East Coast of India. Journal of Petroleum Exploration and Production Technology 13, 275–295. https://doi.org/10.1007/s13202-022-01550-w

Mishra, A., Sharma, A. & Patidar, A. K. (2022). Evaluation and Development of a Predictive Model for Geophysical Well Log Data Analysis and Reservoir Characterization: Machine Learning Applications to Lithology Prediction. Natural Resources Research 31, 3195–3222 (2022). https://doi.org/10.1007/s11053-022-10121-z

Nadoll, P., Mauk, J. L., Leveille, R. A., & Koenig, A. E. (2015). Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita, 50(4), 493–515. https://doi.org/10.1007/S00126-014-0539-Y

Razaz, M., di Iorio, D., Wang, B., Daneshgar Asl, S., & Thurnherr, A. M. (2020). Variability of a natural hydrocarbon seep and its connection to the ocean surface. Scientific Reports, 10(1), 12654. https://doi.org/10.1038/s41598-020-68807-4

Rumbiak, U., Lai, C. K., al Furqan, R., Rosana, M., Yuningsih, E., Tsikouras, B., Ifandi, E., binti Abdul Malik, A. I. A., & Chen, H. (2022). Geology, alteration geochemistry, and exploration geochemical mapping of the Ertsberg Cu-Au-Mo district in Papua, Indonesia. Journal of Geochemical Exploration, 232. https://doi.org/10.1016/j.gexplo.2021.106889

Sechman, H., Guzy, P., Kaszuba, P., Wojas, A., Machowski, G., Twaróg, A., & Maślanka, A. (2020). Direct and indirect surface geochemical methods in petroleum exploration: a case study from eastern part of the Polish Outer Carpathians. International Journal of Earth Sciences, 109(5), 1853–1867. https://doi.org/10.1007/s00531-020-01876-y

Talebi, H., Mueller, U., Tolosana-Delgado, R., Grunsky, E. C., McKinley, J. M., & Caritat, P. de. (2019). Surficial and Deep Earth Material Prediction from Geochemical Compositions. Natural Resources Research, 28(3), 869–891. https://doi.org/10.1007/S11053-018-9423-2

Teruiya, R. K., Paradella, W. R., dos Santos, A. R., Dall’Agnol, R., & Veneziani, P. (2008). Integrating airborne SAR, Landsat TM and airborne geophysics data for improving geological mapping in the Amazon region: The Cigano Granite, Caraja’s Province, Brazil. International Journal of Remote Sensing, 29(13), 3957–3974. https://doi.org/10.1080/01431160801891838

Thiombane, M., Zuzolo, D., Cicchella, D., Albanese, S., Lima, A., Cavaliere, M., & de Vivo, B. (2018). Soil geochemical follow-up in the Cilento World Heritage Park (Campania, Italy) through exploratory compositional data analysis and C-A fractal model. Journal of Geochemical Exploration, 189, 85–99. https://doi.org/10.1016/j.gexplo.2017.06.010

Wang, J., Zuo, R., & Xiong, Y. (2020). Mapping Mineral Prospectivity via Semi-supervised Random Forest. Natural Resources Research, 29(1), 189–202. https://doi.org/10.1007/S11053-019-09510-8

Wang, W., Zhao, J., & Cheng, Q. (2014). Mapping of Fe mineralization-associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China. Journal of Geochemical Exploration, 141, 6–14. https://doi.org/10.1016/j.gexplo.2013.11.008

Wu, G., Chen, G., Cheng, Q., Zhang, Z., & Yang, J. (2021). Unsupervised Machine Learning for Lithological Mapping Using Geochemical Data in Covered Areas of Jining, China. Natural Resources Research, 30(2), 1053–1068. https://doi.org/10.1007/S11053-020-09788-Z

Zavatsky, M. D., Veduta, O. v., & Naumenko, V. O. (2022). Prospecting terrain for surface geochemical exploration of oil and gas in West Siberia. Geology, Ecology, and Landscapes, 1–11. https://doi.org/10.1080/24749508.2022.2132007

Zhang, J., Yin, X., Zhang, G., Gu, Y., & Fan, X. (2020). Prediction method of physical parameters based on linearized rock physics inversion. Petroleum Exploration and Development, 47(1), 59–67. https://doi.org/10.1016/S1876-3804(20)60005-2

Zhang, M., & Zhao, H. (2004). Reservoir geochemistry of the Kuche petroleum system in the Tarim Basin, China. Chinese Journal of Geochemistry, 23(2), 163–168. https://doi.org/10.1007/BF02868980

Zhi, X., Song, Y., Frey, F. A., Feng, J., & Zhai, M. (1990). Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology, 88(1–2), 1–33. https://doi.org/10.1016/0009-2541(90)90101-C