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Review Paper Abstract:

Superhydrophobic surfaces (SHSs) exhibit exceptional water repellency characterized by a high
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25 April' 2024 These properties, attributed to the surface’s unique micro- and nano-structures or tailored chemical
Accepted: composition, induce a non-wetting behavior. SHSs hold significant promise for a wide range
5 May 20'2 4 of applications due to their captivating functionalities, including efficient oil-water separation,
Published online: drag reduction, anti-fogging, anti-biofouling, self-cleaning capabilities, and more. Their inherent
10 October 202 4' durability and diverse functionalities render them attractive for various commercial and everyday
applications. This review provides a comprehensive overview of the materials and fabrication
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cal modification strategies, and superhydrophobic coating deposition methods. We further delve
into the extensive and multifaceted applications of SHSs across the transportation, energy, and
biomedical engineering sectors. Despite their demonstrated potential, challenges persist in the
development and practical implementation of SHSs. addressing these challenges necessitates
continued research and innovation. This review aims to stimulate further progress in the field
by identifying potential future research directions and unlocking the full potential of SHSs for
groundbreaking applications.
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1. Introduction

The remarkable self-cleaning behavior observed on lotus
leaves, where water droplets readily roll off the surface, has
been a scientific curiosity for some time. This phenomenon,
known as the “lotus effect,” arises from the unique sur-
face architecture of Nelumbo (lotus) leaves. Barthlott et
al. proposed the superhydrophobicity of these leaves origi-
nates came from a combination of surface features. These

features include: (1) a waxy epicuticular layer and (2) a
hierarchical micro/nanoscale roughness with micropapillae
(microscopic bumps) and nano cuticular wax crystals [1-7].
Nature offers a treasure trove of inspiration for scientists
due to the remarkable properties exhibited by biological
materials with intricate microscopic structures. Numerous
examples exist, including lotus leaves [2], water striders’
legs [8], spider silks [9], desert beetle shells [10], fish scales,
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butterfly wings, Redmond rose petals, mosquito eyes, and ci-
cada’s wings. These surfaces display exceptional hydropho-
bicity, causing water to form droplets that minimize their
contact area with the surface, resulting in a very small con-
tact angle. This phenomenon is attributed to a synergistic
interplay between the surface chemistry and the hierarchical
micro/nanoscale roughness, often characterized by features
like micropapillae and nanometer-sized waxy protrusions
Replicating these intricate structures in artificial materials
presents a significant challenge, but the potential benefits
make it a worthwhile pursuit [11-13].

Research in the field of superhydrophobicity has witnessed
significant growth since the early 2000s. Numerous review
articles have been published, highlighting various aspects of
these surfaces, from fundamental research to potential appli-
cations [14]. Superhydrophobic materials are characterized
by a water contact angle exceeding 150° and low surface
energy. This unique property, as illustrated in Figure 1,
allows them to repel a wide range of liquids, including wa-
ter, making them highly attractive for diverse applications
[1, 15-18]. Two crucial aspects of superhydrophobic sur-
faces are their self-cleaning and super-repellent behaviors
[4, 19-23]. Superhydrophobic surfaces, also known as arti-
ficial superhydrophobic surfaces (SHSs), have emerged as a
significant area of research due to their diverse potential ap-
plications in engineering, technology, and even biology [22].
These surfaces offer a multitude of functionalities, including
self-cleaning [11, 23], super-repellency, energy conversion,
enhanced sensing capabilities, corrosion resistance, drag
reduction, water-resistant fabrics, microfluidics, and anti-
icing properties. These characteristics make SHSs highly
advantageous for various everyday applications, particularly
in the realm of energy conservation [24—30]. Surface modifi-
cation techniques can be employed to fabricate SHSs. These
techniques typically involve either increasing the surface
roughness or applying a chemical coating to lower surface
energy [31]. A variety of approaches can be utilized to cre-
ate SHSs, including micro- and nano-structuring, chemical
modification, and the use of hydrophobic coatings [32-35].
Parvate et al. [11] explored the development of biomimetic
Nano surfaces, which replicate the water-repellent proper-
ties observed in natural surfaces using advanced fabrica-
tion techniques. Their study analyzes recent advancements
in achieving superhydrophobicity through tailored surface
architecture and chemistry. The research discusses both
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theoretical models and practical fabrication methods for su-
perhydrophobic surfaces. Parvate et al. propose guidelines
for designing durable superhydrophobic coatings. Addition-
ally, the study emphasizes the importance of sustainable
practices in developing environmentally friendly superhy-
drophobic coatings. This focus on balancing high perfor-
mance with eco-friendliness paves the way for robust and
sustainable solutions [11, 36].

This review aims to provide a comprehensive understanding
of superhydrophobic surfaces and their durable functional-
ities. We begin by offering a concise description of these
surfaces, followed by an overview of the theoretical under-
pinnings of surface wettability. Subsequently, we present
established methods for fabricating superhydrophobic sur-
faces suitable for diverse industrial applications [37, 38].
Finally, the review highlights some key challenges and ex-
plores promising future directions for research on the fabri-
cation of superhydrophobic patterns on superhydrophobic
surfaces (SHSs).

2. Addition of different materials for the
fabrication of superhydrophobic surfaces

The development of superhydrophobic nanosurfaces can
be achieved through various techniques. These primarily
fall into three categories: (i) incorporation of nanomaterials
[39], (ii) surface modification with low-energy materials
such as silicones and fluorochemicals, and (iii) a hybrid
approach that combines nanofillers with low-surface-energy
elements for synergistic effects. Figure 2 provides a visual
representation of these strategies and the materials com-
monly employed. This section delves into each approach,
exploring not only the materials themselves but also the
diverse fabrication procedures involved. These procedures
range from straightforward techniques to more sophisticated
methods [13], all intending to achieve superhydrophobic-
ity. Notably, the section on organic and inorganic materials
provides specific examples of hybrid materials. Addition-
ally, it offers a concise overview of methods for creating
various nano-microstructural morphologies using different
types of nanomaterials [40], including nanoparticles [41—
43], microfibers, nanosheets, nanoflakes, nanowires, nan-
otubes [44, 45], and nanorods [11, 16, 46]. Figure 2 further
complements this discussion by classifying commonly used
materials for superhydrophobic surface fabrication based
on their organic or inorganic nature.
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Figure 1. Water droplet scale on a solid surface in various states (0—180° angle) and their relevant wetting behavior.
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Figure 2. List of various materials that are utilized to create superhydrophobic surfaces.

3. Fabrication techniques/methods

A multitude of techniques exist for the fabrication of super-
hydrophobic surfaces (SHSs). Recent advancements have
yielded numerous attractive methods for their synthesis, en-
compassing both chemical and physical approaches. While
some techniques involve complex procedures and expensive
equipment, others offer relative ease of use [14, 47, 48]. To
achieve high-performance SHSs, two key characteristics
are paramount: surface roughness and low surface energy.
These properties synergistically contribute to the overall
functionality of the resulting material [49]. Broadly, two
main approaches govern the synthesis of SHSs: top-down
and bottom-up. These approaches are categorized based
on the underlying fabrication mechanisms. Significantly,
a combined approach utilizing both top-down and bottom-
up strategies can also be employed for SHS fabrication
[49, 50]. Figure 3 provides a comprehensive illustration of
these diverse tactics.

3.1 Micro- and nano-structuring

One of the most popular techniques for creating superhy-
drophobic surfaces is micro and nanostructuring. This ap-
proach involves creating a rough, textured surface at the
micro- or nanoscale using various methods, such as laser
ablation, lithography, and etching. The resulting surface
roughness promotes the formation of air pockets between

the textured features and the water droplet, effectively re-
ducing the solid-liquid contact area. This minimized contact
area leads to a high water contact angle, a key characteristic
of superhydrophobicity [51-53].

Micro- and nano-structuring offers several advantages for
the fabrication of superhydrophobic surfaces. One key ben-
efit is the precise control over surface roughness, allowing
for fine-tuning to achieve the desired water contact angle
[53-56]. This technique demonstrates versatility, as it can
be applied to create superhydrophobic surfaces on diverse
materials such as ceramics, metals, and polymers. Su et al.
[57] exemplified this versatility by employing a combina-
tion of laser treatment and ripple generation to mimic the
micro- and nano-scale leaf structures of lotus plants. These
structures were then replicated onto poly (dimethylsiloxane)
(PDMS) using a polymer casting technique. This approach
yielded PDMS surfaces with a high water contact angle
of 157° and robust hydrophobic properties. Additionally,
this method offers a cost-effective approach for large-scale
production of hydrophobic plastic surfaces [57]. Despite
its advantages, micro- and nano-structuring presents cer-
tain challenges for large-scale superhydrophobic surface
fabrication. The process can be time-consuming and labor-
intensive, particularly for treating extensive areas [58, 59].
While alternative approaches, such as the PDMS nanocom-
posite coating explored by J.H. Markna et al., offer promise
[60, 61], maintaining surface roughness over time remains a
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Figure 3. A schematic showing various methods for producing superhydrophobic surfaces.

concern. Wear and tear, along with dust accumulation, can
lead to a degradation of surface roughness and a subsequent
decrease in water contact angle. Nevertheless, micro- and
nano-structuring continues to be a valuable technique for
creating superhydrophobic surfaces with potential applica-
tions across various sectors [58, 62].

3.2 Chemical modification

The chemical modification offers a versatile approach to
fabricating superhydrophobic surfaces. This technique in-
volves applying a chemical coating to a material’s surface,
specifically to reduce its surface energy and enhance wa-
ter repellency. The coating can be applied using various
methods like dipping, spraying, electrospinning, or spin
coating. This approach demonstrates broad applicability,
as it can be used to create superhydrophobic surfaces on
diverse materials, including metals, polymers, and ceram-
ics [63, 64]. Hydrophobic coatings, typically composed of
a polymer-nanoparticle combination, present another av-
enue for achieving superhydrophobicity. These coatings
can be applied using similar methods as chemical modifi-
cations and often exhibit superior durability and longevity
compared to unmodified surfaces. Y. Zhang et al. [65]
demonstrated the effectiveness of a multi-step approach
for creating superhydrophobic surfaces. Their method em-
ployed electroless plating to generate Ni-B/GO composite
coatings on an AZ91 magnesium alloy, followed by chemi-

cal modification with a stearic acid-ethanol solution. This
approach resulted in a surface with exceptional water repel-
lency, exhibiting a water contact angle of 162.8° [64, 65].
To obtain such superhydrophobic surfaces, various chem-
icals and physical techniques have been utilized, which
are generally divided into two categories: single-step and
multi-step procedures, as shown in Figure 4.

3.3 Etching

Nature’s flora and fauna serve as a significant source of in-
spiration for the development of superhydrophobic surfaces
through etching techniques. Etching involves the controlled
removal of material from a surface using a chemical re-
action, resulting in a textured and roughened topography
[66-68]. This process is highly selective, targeting specific
materials on the surface. Following the generation of micro-
and nano-scale roughness features, a low surface energy
material is introduced to create the superhydrophobic prop-
erty. Etching techniques can be broadly categorized into
wet etching (using liquid solutions), dry etching (using a
plasma environment), laser etching, and chemical etching
[69]. For instance, Li et al. successfully fabricated super-
hydrophobic aluminum alloy surfaces by immersing the
material in an etching solution containing hydrofluoric acid
and ammonium bifluoride [70]. It is worth mentioning that
the use of plasma or laser treatment can induce random
shrinkage in polymers, leading to the formation of rough
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The generation of superhydrophobic surfaces
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Figure 4. The approaches for generating superhydrophobic surfaces.

surfaces. These surfaces can be further manipulated using
etching techniques to create unique and functional patterns
by leveraging the microscopic roughness. Additionally, a
post-treatment with a suitable chemical agent can further
enhance the hydrophobicity of the surface, if desired [71].

3.3.1 Laser ablation

Laser ablation has emerged as a promising technique for
creating superhydrophobic surfaces on various metal sub-
strates due to its ability to generate well-defined micro- and
nano-scale structures with high automation and minimal en-
vironmental impact [72, 73]. In this process, a pulsed laser
beam vaporizes or removes material from the surface, re-
sulting in the formation of microscopic patterns or grooves
that create a roughened texture. This textured surface mor-
phology is a key factor in achieving superhydrophobicity.
Additionally, laser ablation offers several advantages, in-
cluding high repetition rate, stability, and minimal environ-
mental pollution [71, 74, 75]. Picosecond, femtosecond,
and nanosecond lasers are commonly employed for laser
ablation in the fabrication of superhydrophobic surfaces
[76]. For instance, Chen et al. successfully created super-
hydrophobic surfaces on stainless steel using laser ablation
to generate microstructures on the surface through laser
irradiation. A key advantage of laser ablation is its precise
control over the structural properties of the micro- and nano-
structures, such as spacing, size, and depth. This precise
control allows for tailoring the surface properties to achieve

the desired level of superhydrophobicity [77, 78].

3.3.2 Plasma etching

Plasma etching is a vital technique within the broader cate-
gory of plasma treatments for surface modification. Plasma
itself offers a straightforward yet efficient approach to cre-
ating superhydrophobic surfaces [47]. This technique has
the advantageous capability of simultaneously reducing a
surface’s energy and increasing its roughness, both of which
contribute to superhydrophobicity [71]. Plasma treatment
can significantly alter surface structures through a process
called anisotropic etching, which selectively removes ma-
terial from different layers of the surface [66, 79]. Plasma
etching utilizes highly directional plasma (often referred
to as micro-nanofabrication of plasma) to create surface
patterns ranging from coarse and random to well-organized.
The dry etching technique of plasma etching involves the
generation of reactive ions or atoms (such as fluorine, chlo-
rine, and oxygen) through a gas discharge. The high di-
rectionality of ions allows for their acceleration within the
sheath (boundary layer) between the substrate and plasma,
enabling reactive ion etching to produce deep grooves with
steep walls [80].

As previously mentioned, plasma treatment, a dry etching
process, readily generates rough surfaces. Furthermore, de-
pending on the gas employed (e.g., tetrafluoroethane, argon,
ammonia, or oxygen), various functionalities can be incor-
porated into the surface through the introduction of specific
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elements [19]. This plasma system doesn’t need any vac-
uum equipment and runs in an in-line manner as opposed
to a batch mode. This feature facilitates the straightforward
scalability of the method for continuous processing and
treatment of larger substrates. Superhydrophobic coatings
offer promising solutions for deicing and self-cleaning prop-
erties in metals and alloys. However, a significant challenge
lies in the limited durability of these surfaces due to weak
interfacial bonding between the substrate and the coating.
Consequently, current research efforts are heavily focused
on developing superhydrophobic coatings with exceptional
durability [81].

While oxygen plasma offers a straightforward method for
creating superhydrophobic surfaces, a significant challenge
lies in their long-term stability, often referred to as “ag-
ing”. For applications requiring superhydrophobic coatings
with specific optical properties, surface roughness plays
a critical role. Plasma treatment allows for precise con-
trol over surface roughness through controlled etching pro-
cesses. The surface roughness formed by the plasma may
be easily changed, according to the review, P. Dimitrakellis
and their research team’s research delve into the utiliza-
tion of the atmosphere pressure plasmas (APPs) in polymer
plasma etching processes, including cleaning, nanopattern
creation, nanotexturing, and the creation of superhydropho-
bic surfaces. It demonstrates the production of superhy-
drophobic surfaces, damage to thick films, and high-rate,
homogeneous etching of polymers. The study emphasizes
the adaptability and economical processing of APPs. With
low-pressure plasma deposition and an optimized plasma
etching period, surfaces that are superhydrophobic with a
158° water contact angle and 9° hysteresis were produced
[82]. Plasma processing has become a well-established tech-
nique for creating superhydrophobic surfaces, as evidenced
by numerous studies. Pioneering work by Coulson et al.,
and Zhang et al. have established the effectiveness of this
approach [20, 83].

3.3.3 Chemical etching

As previously established, both surface energy and surface
structures play critical roles in achieving superhydrophobic-
ity [84]. To create water-repellent surfaces, a combination
of low surface energy and surface roughness is necessary.
Various techniques have been explored to generate the de-
sired level of roughness on the external surfaces of metals
and alloys. However, many of these methods have limita-
tions, including the requirement for specialized equipment,
expensive materials, or labor-intensive processes. Conse-
quently, industrial applications necessitate straightforward
and scalable techniques such as chemical etching [84, 85].
Chemical etching offers a cost-effective and straightfor-
ward approach for generating micro- and nano-scale surface
structures on metals. This technique involves immersing
metal substrates in either acidic or basic solutions. Com-
mon etchants include strong bases like sodium hydroxide
(NaOH) and strong acids like hydrochloric acid (HCI) and
sulfuric acid (H,SO4). Additionally, chemical etching is
a versatile technique applicable to a wide range of metals
and alloys [86]. Following the creation of a rough sur-
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face texture through etching, the surface is modified by
introducing a low surface energy material to achieve su-
perhydrophobicity. Research has explored the influence of
various etching solutions (e.g., Hydrochloric acid (HCI),
Nitric acid (HNO3)), their combinations, and temperature
on the etching process of stainless steel [87, 88]. For in-
stance, researchers employed continuous chemical etching
to fabricate micro- and nano-structured surfaces on alu-
minum, demonstrating its anti-icing properties for power
transmission lines. After 50 minutes of exposure, the super-
hydrophobic surface significantly reduced ice accumulation.
This ability to repel freezing rain highlights the potential of
such surfaces to prevent power outages and tower collapses
[15].

3.4 Lithography

Lithography stands as a prominent technique for generat-
ing superhydrophobic surfaces with well-defined micro-
and nano-scale patterns. This well-established process in-
volves transferring a desired pattern onto a surface using
a photolithographic technique. Lithography offers excep-
tional control over the surface morphology and structure,
enabling the creation of diverse features with specified di-
ameters, heights, and spacing. Examples include structures
like square and star-shaped posts, and circular or square
pillars [1].

The superhydrophobic properties arise from the replication
of a master pattern onto the substrate surface, essentially
creating a negative replica of the original structure. Pho-
tolithography, a specific type of lithography, involves ex-
posing a photoactive polymer to light (typically ultraviolet)
through a designed mask. The patterned mask dictates the
removal of either exposed or unexposed polymer regions,
resulting in a positive or negative image on the substrate
after light exposure [1]. While ultraviolet light is most com-
mon, other radiation sources like X-rays, electron beams,
and laser beams can also be employed. For applications
requiring superhydrophobic surfaces with precise shapes
and structures, lithography remains a highly valuable tool
[89].

Lithographic techniques, such as photolithography and
nanoimprint lithography, offer precise methods for creating
superhydrophobic surfaces with well-defined patterns. As
an example, Chen et al. employed nanoimprint lithography
to fabricate superhydrophobic surfaces on polydimethyl-
siloxane (PDMS) by transferring a pre-defined pattern from
a PDMS stamp onto a nanoparticle-coated substrate. While
the fundamental concept behind both techniques involves
transferring pre-designed patterns onto a target surface, the
underlying mechanisms differ. Classic photolithography
utilizes a photomask containing the desired pattern. Light
exposure hardens specific regions of a photosensitive resist
layer (photoresist) on the substrate, allowing for subsequent
etching or deposition to replicate the pattern [49, 90]. Due
to its widespread, practical application and great efficiency,
photolithography is among the most commonly employed
techniques for transferring geometric patterns that have
been prepared on a photomask to a thin layer that is reactive
photoresist through light. Soft lithography, a complemen-
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tary technique, offers greater flexibility in material selection.
Unlike photolithography, which is limited to photoresists,
soft lithography can modify a broader range of materials, in-
cluding elastomers, polymers, and gels [1]. This technique
relies on elastomeric molds or masks to replicate patterns
onto the target substrate. PDMS (polydimethylsiloxane) is
a popular choice for soft lithography due to its affordabil-
ity, low toxicity, mechanical adaptability, biocompatibility,
and durability. Significantly, soft lithography can be com-
bined with other techniques like replication molding and
self-assembly to generate micro- and nano-scale structures
[49, 91]. For instance, researchers successfully fabricated
superhydrophobic coatings on silicon using a combination
of wet chemical etching and nanoimprint lithography. This
process involved imprinting a positive photoresist layer with
a glass mold, followed by pattern transfer to Silicon dioxide
(Si0,) and silicon (Si) layers. After photoresist develop-
ment and UV-ozone exposure, the researchers investigated
water contact angles, demonstrating the successful creation
of superhydrophobic silicon surfaces with water-repellent
properties [92].

3.5 Template-assisted assembly

The templating method offers a versatile approach for repli-
cating superhydrophobic and abrasive surfaces. This repli-
cation process involves three key steps: (1) fabricating a
template with the desired micro- and nano-structures (insert,
stamper, or inlay), (2) molding the pattern onto a polymer
material using appropriate evaluation procedures, and (3)
carefully demolding the polymer replica to preserve the
delicate structures [93-95].

This approach involves filling appropriate 2D or 3D sur-
face patterns with a material that is soft in the first phase,
hardening the material, and removing the template while
maintaining the integrity of the copy in the second step. The
key benefit of this approach is how simple it is to replicate
water-repellent surfaces that are natural on a big scale. This
technique is reasonably inexpensive and excellent for de-
signing soft materials like polymers because the design or
template can typically be reused [94, 96]. The templating
method offers a compelling strategy for replicating superhy-
drophobic and abrasive surfaces. However, the demolding
stage presents a significant hurdle, particularly when deal-
ing with delicate polymeric materials. High temperatures
and strong chemicals, often necessary for demolding, can
compromise the integrity of both the replicated structures
and the template itself. This challenge is further amplified
for mesoporous materials, where exposure to extreme con-
ditions can trigger undesirable structural rearrangements or
chemical modifications [97, 98].

To address the demolding challenges associated with tem-
plate replication, particularly for delicate materials, the de-
velopment of easily detachable templates has emerged as
a promising strategy. Recent advancements in this field
focus on chemically modified templates that can either de-
tach organically during the replication process or undergo
complete dissolution in the reaction medium. For instance,
metallic oxide templates have been utilized to facilitate
the polymerization process. These templates can be de-
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signed to undergo a controlled change in oxidation state
as the reaction progresses, ultimately transforming into a
water-soluble phase. This allows for the facile removal of
residual template material through simple washing proce-
dures. Template-assisted chemical vapor deposition (CVD)
offers another effective approach for overcoming demold-
ing challenges. Researchers have successfully employed
this technique to fabricate porous silica-coated copper mesh
(PSCCM), demonstrating its exceptional potential for oil-
water separation. Surface modification of PSCCM with hex-
amethyldisilazane (HMDS) imbues it with superhydropho-
bic and super-oleophilic properties, leading to excellent
separation efficiency and selectivity. Additionally, PSCCM
exhibits remarkable mechanical strength, chemical resis-
tance, thermal stability, and recyclability, highlighting its
promise as a viable solution for the critical challenge of
oil-water separation [99]. Furthermore, template replication
serves as a powerful tool for the large-scale production of
well-defined hierarchical structures, underlining its signifi-
cance in various scientific disciplines [100-103].

3.6 Sol-gel process

The Wenzel and Cassie-Baxter models provide theoretical
frameworks for predicting the behavior of water droplets
on superhydrophobic surfaces. The sol-gel method has
emerged as a prominent technique for fabricating these
surfaces due to its versatility and inherent advantages
[104, 105]. This low-temperature approach offers a cost-
effective and environmentally friendly route to generate
porous network structures with precise control over final
material properties. The sol-gel process leverages solution
chemistry to develop macromolecular networks through the
hydrolysis of metal alkoxide precursors, followed by con-
densation of the resulting Silanols [106-108]. Following
hydrolysis, condensation of the metal hydroxides (Silanols)
in a solvent leads to the formation of a colloidal suspen-
sion, known as a sol. Subsequent gelation, often driven by
further condensation and polymerization, results in a three-
dimensional network. This versatility positions the sol-gel
method as a preferred approach for generating both amor-
phous and crystalline oxide coatings, eliminating the need
for harsh solvents. However, achieving superhydropho-
bicity on metallic substrates with the sol-gel method re-
quires additional modifications. The incorporation of low-
surface-energy chemical components and Nano-sized parti-
cles into the gels is a crucial step for inducing this property
[109, 110]. These modifications alter the surface chemistry
and topography, ultimately leading to water-repellent be-
havior.

The sol-gel method, based on the Wenzel and Cassie-Baxter
models, offers a versatile approach for fabricating superhy-
drophobic surfaces on a range of oxide substrates, including
silica and alumina. By carefully controlling sol-gel pro-
cessing parameters such as precursor solution composition,
hydrolysis conditions, and polycondensation mechanisms,
researchers can tailor the surface morphology and energy of
the resulting films. This allows for the creation of surfaces
with desired superhydrophobic properties [111-113]. For
instance, a recent study demonstrated a cost-effective sol-
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gel route for generating superhydrophobic coatings using
a combination of Polymethylhydrosiloxane (PMHS) and -
Aminopropyltriethoxysilane (KH550) byproducts. By opti-
mizing the KH550/PMHS mass ratio (0.25), the researchers
achieved high water contact angles (WCA) of 157° and low
water sliding angles (WSA) below 1° on glass substrates.
Characterization revealed a hierarchical structure consisting
of micro-balls (~2 um) and nano-spheres (<200 nm) with
a diameter of approximately 40 um. This work highlights
the potential of this approach for creating superhydrophobic
surfaces on various substrates [114]. The suitability of the
sol-gel method for fabricating transparent superhydropho-
bic coatings on glass has further solidified its position as a
preferred technique in this field [115-117].

3.7 Layer-by-layer deposition method

The layer-by-layer (LBL) assembly technique offers a ver-
satile approach for constructing diverse nano/microstruc-
tures, including superhydrophobic surfaces. This method
relies on the electrostatic interactions between oppositely
charged species to build up multilayered thin films on a
substrate [118, 119]. By alternating the deposition of ma-
terials with contrasting charges, the LBL approach allows
for precise control over film thickness and composition at
the molecular level. Additionally, the absence of masks,
unlike techniques like lithography, makes LBL a maskless
deposition method. A key advantage of LBL for superhy-
drophobic surface fabrication lies in its ability to enhance
surface roughness through the incorporation of nano- or mi-
croparticles during the deposition process. This increased
roughness contributes to the desired water-repellent behav-
ior. Furthermore, the LBL method demonstrates remarkable
adaptability, enabling the creation of superhydrophobic sur-
faces even on non-flat or uneven substrates [120-122].

The core principle of layer-by-layer (LBL) deposition lies
in the electrostatic interactions between oppositely charged
species. This technique allows for the construction of thin-
layer coatings with precise control over both thickness and
chemical composition at the molecular level. The LBL
process involves the sequential adsorption of charged mate-
rials onto a substrate, building up a multilayered thin film.
Unlike techniques like lithography, LBL does not neces-
sitate the use of masks, making it a maskless deposition
method, further contributing to its simplicity and poten-
tial cost-effectiveness [123, 124]. While the incorporation
of nanoparticles during LBL assembly can be a valuable
strategy for generating rough surfaces, it can also introduce
challenges in precisely controlling surface patterns. An il-
lustrative example of LBL for superhydrophobic surface
fabrication is the work by Zhao and Tang [14, 120, 125].
Their study demonstrates the creation of superhydrophobic
cotton fabric through an electrostatic LBL assembly process.
This approach involved the layer-by-layer deposition of
polyelectrolyte- PDDA (poly- diallyl dimethylammonium
chloride) and silica nanoparticle layers onto cotton fibers,
followed by a final treatment with fluoroalkyl silane for sur-
face fluorination. This hierarchical structure, featuring both
micro and nanoscale features, resulted in a superhydropho-
bic surface with a high water contact angle (157.1°) and a
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low sliding angle (3.1°) after only five bilayers. The readily
available materials and straightforward nature of this LBL.
method suggest its potential for various applications [126].

3.8 Vapour deposition: In contrast with CVD, PVD

Physical vapor deposition (PVD) and chemical vapor depo-
sition (CVD) are two cornerstone techniques for generating
ultrathin coatings on diverse substrates [142]. PVD relies on
the evaporation of high-purity materials to form the desired
thin film. In contrast, CVD utilizes a mixture of chemically
reactive precursors that undergo decomposition and subse-
quent deposition on the surface to create the targeted coating
[94]. Superhydrophobic surfaces can be achieved by de-
positing minute quantities of vaporized low-surface-energy
materials. These coatings render the surface water-repellent
and water-shedding. Various methods, including thermal
evaporation, plasma-enhanced deposition, or a combina-
tion of both, can be employed for this deposition process
[125, 143]. A key advantage of plasma-assisted vaporiza-
tion is its ability to achieve deposition often at significantly
lower thermal energy input compared to traditional thermal
evaporation [144].

The scope of vapor deposition coatings can be extended
beyond inorganic metal oxides to encompass various or-
ganic low-energy compounds, depending on the specific
application and the substrate being coated. This versatility
allows for tailoring the coating properties to meet different
requirements. Recent advancements have demonstrated the
low-temperature (40 °C) surface-modulated deposition of
silica using NH3 as a catalyst within the processing chamber
[145]. This approach offers a valuable strategy for dealing
with coating materials that are susceptible to thermal degra-
dation at higher temperatures. Chemical vapor deposition
(CVD) has witnessed significant progress in controlling
the crystallinity of polymeric coatings by manipulating the
deposition conditions. Dong et al. demonstrated that the
orientation of deposited polymer chains can significantly
influence the resulting surface topography, impacting the
final surface properties [146]. Carbon nanotubes and other
graphene-based materials are inherently hydrophobic due
to their combination of low surface energy and high sur-
face roughness. This inherent property makes them attrac-
tive candidates as coatings for water-oil separation applica-
tions [147]. However, template-assisted vapor deposition of
graphene, while gaining traction for its ability to improve
porosity and morphological control, often requires addi-
tional hydrophobization through post-deposition treatment
with non-polar polymers or similar coatings [148].

A distinct advantage of plasma-assisted vapor deposition
(PA-VD) lies in its ability to achieve deposition at signifi-
cantly lower thermal energy input compared to traditional
techniques [3]. This characteristic can be crucial for sub-
strates that are sensitive to high temperatures. Researchers
have demonstrated the potential of this approach for creat-
ing superhydrophobic and highly transparent surfaces on
polytetrafluoroethylene (PTFE) films. The strategy involves
using a radiofrequency (1f)-sputtered PTFE film as a buffer
layer for subsequent catalytic chemical vapor deposition
(Cat-CVD). The rf-sputtered PTFE layer exhibits excellent
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adhesion to the glass substrate and displays a hydrophobic
surface with a water contact angle (WCA) of 122.3°. Impor-
tantly, the Cat-CVD process, facilitated by the low surface
energy of CF2 and CF3 groups and optimized catalyst tem-
perature, allows for the creation of a superhydrophobic sur-
face with a WCA exceeding 150° on top of the rf-sputtered
PTFE. This approach holds promise for applications requir-
ing both superhydrophobicity and transparency in PTFE
surfaces [149]. While CVD offers a versatile technique for
thin-film deposition, it presents challenges for large-scale
applications. The complexity and time-consuming nature
of the CVD process render it impractical to create superhy-
drophobic coatings on expansive structures such as roofs,
buildings, and automobiles. Additionally, the controlled
environment required for CVD often limits its suitability
for outdoor applications [143, 150, 151].

3.9 Electrospinning

Electrospinning presents a versatile technique for fabricat-
ing superhydrophobic surfaces. It involves the creation of an
ultrathin, fibrous coating on a substrate. The process utilizes
a high-voltage electric field applied to a polymer solution or
melt extruded through a needle or capillary tip. This electric
field induces the polymer solution to elongate into a thin,
continuous fiber that is deposited onto a collector, ultimately
forming the desired coating. By manipulating the process-
ing parameters, the electrospun fibers can be aligned in a
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specific direction or patterned to create a rough, textured
surface that promotes superhydrophobicity [152]. Electro-
spinning offers several advantages for creating superhy-
drophobic surfaces. Firstly, it enables the fabrication of thin,
lightweight coatings that are readily applicable to diverse
substrates [153]. Secondly, the versatility of electrospinning
allows for the generation of superhydrophobic finishes on
various materials, including polymers, metals, and ceramics
[154, 155]. Researchers have demonstrated the effective-
ness of this approach by electrospinning a polyvinylidene
fluoride (PVDF) and fluorinated silica mesoporous (FSM)
composite coating onto glass. This dual-layer structure ex-
hibited a remarkable water contact angle of 170.2° and a
water roll-off angle of less than 1°, signifying its potential
for promoting rapid water droplet removal in building ap-
plications [156]. However, electrospinning also presents
some limitations. The process can be time-consuming and
labor-intensive, particularly when dealing with large surface
areas. Additionally, the surface roughness generated by the
electrospun fibers can degrade over time due to wear and
tear, potentially leading to a decrease in the water contact
angle [157]. Table 1 provides an overview of advanced
approaches employed by researchers to address these chal-
lenges.

Table 1. Advanced techniques for generating the SH surfaces.

Method Application CA° Ref.

Sol-gel Flgrpg—retardant, water-oil separating, and self-cleaning 156 [127]
abilities

Convenient dip-coating Self-cleaning 158+2 [128]

The et.chmg process Lor_lg_—t_erm mecha_mcal dependability, thermostability, and 158.6-L13 [129]

Chemically anti-icing properties

Method of calcinations Enduring, transparent, and highly thermally stable 163 [130]

The spray coating Sol-gel Pro?onged utilization in household and industrial 16342 [131]
environments

Casting solutions Water and oil separation 170+£2 [132]

The acid etching and grinding procedure .Hexadeca.ne, the liquid’s §urface tt?n510n repellency due to 162 [133]
its exceptionally low tension, and its behavior

Texturing with picoseconds laser Antibacterial Adherence 161£2.5 [134]

Thermoplastic synthesizing Mechanically steadiness and corrosion resistance 156 [135]

Melting and hot pressing in a roll Wrapping, Drag-reducing and self-cleaning feature 152 and 145 [136]

The process of electrodeposition Outstan.dmg corrosion resistance and self-cleaning 154 [137]
properties

Combined chemical Enhancement and Thermostability, anti- corrosion, self-cleaning and

. . . 156 [138]

droplet etching anti-fouling

Process of solutions immersing Cohesive capability and adaptability to both high and low 16245 [139]
temperatures

Only a single-electrode Triboelectric

nano-generator along with Energy Reclamation ~99.82° [140]

microstructures of cilia

Etching and polishing In z_:lddltlon to mechanical and thermal stability, it has UV 150 [141]
resistance
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4. Applications for superhydrophobic surfaces

The unique and multifunctional properties of superhy-
drophobic surfaces, particularly their exceptional water and
liquid repellency, have attracted significant global interest
across various industries. Research efforts are directed to-
wards the development of superhydrophobic materials with
tailored properties for diverse applications. A wide range
of materials, including metals, composites, polymers, glass,
and micro/nanoparticles, are being explored and chemi-
cally modified using various techniques to achieve super-
hydrophobicity [14]. This has resulted in the creation of
superhydrophobic surfaces with varying chemical compo-
sitions and surface structures, catering to a multitude of
applications.

Due to their unique ability for repel water and other liquids;
superhydrophobic surfaces have been emerged as a promis-
ing research area with applications across various scientific
and engineering disciplines. These surfaces hold signifi-
cant potential in diverse areas including drag reduction for
improved fuel efficiency [158], anti-fogging for enhanced
visibility [159], anti-fouling to reduce bio-adhesion [160],
oil-water separation for environmental remediation [161],
anti-icing to prevent ice formation [162], anti-corrosion for
extended material lifespan [163], self-cleaning for effortless
dirt removal [155], anti-bacterial applications in hygiene
and healthcare [164], biomedical applications like implant
coatings [165], and even water collection from fog or hu-
midity in arid regions [166]. Figure 5 illustrates some of
the possible uses for superhydrophobic surfaces that are
summarized in the ensuing subsections.

Dodia et al.

4.1 Self-cleaning surfaces

Superhydrophobic surfaces exhibit a remarkable self-
cleaning property, enabling them to repel dirt, stains, dust,
organic matter, and other surface contaminants [11, 167].
Figures 6 (a) and (b), exhibit examples of superhydropho-
bic surfaces, which possess the property of self-cleaning.
This self-cleaning mechanism harnesses gravity. As water
droplets roll off the surface due to the superhydrophobic-
ity, they capture and remove contaminants in their path.
This phenomenon, observed in nature on gecko feet, wa-
ter striders, and lotus leaves, is attributed to a complex
interplay between surface morphology and chemical com-
position, creating a physiochemical process known as the
lotus effect [26, 168]. The unique surface structure, char-
acterized by micro- and nanometer-scale features, coupled
with low surface energy chemistry, disrupts the adhesion of
contaminants and promotes water droplet formation with
minimal contact area. This minimal contact area allows
water droplets to roll off easily, taking away dirt particles.
Superhydrophobic self-cleaning surfaces hold promise for
various applications across diverse sectors, including indus-
try, agriculture, and even the military.

Nanotechnology-based coatings have emerged as a promi-
nent strategy for creating self-cleaning surfaces, finding
applications in everyday products like glass, cars, and elec-
tronic devices. These coatings typically introduce a rough-
ness on the surface at the micro and nanoscale, hindering
water adhesion and preventing dirt and grime from adhering
to the surface. Rainwater collects on the treated surface,
forming droplets with minimal contact area due to the super-
hydrophobicity. As these droplets roll off, they effectively

Anti- icing

Oil- water
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Figure 5. A look at the scope of the superhydrophobic surface applications.
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Figure 6. The animation depicts the self-cleaning properties of the water droplets within the lotus petal. They gather and
eliminate dust particles from hydrophobic surfaces that are inclined, while they slide over rough surfaces as, (a) shows
how a drop via a low contact angle leaves the surface unclean, while (b) shows how a drop with an exceptionally high

interaction angle removes contaminants.

capture and remove contaminants, leaving the surface clean.
This phenomenon, exemplified by self-cleaning glass, offers
a compelling real-world application of superhydrophobic
surfaces. Buildings equipped with self-cleaning glass ben-
efit from reduced maintenance requirements, as rainwater
becomes a natural cleaning agent, minimizing the need for
manual cleaning.

Research efforts are ongoing to explore the development
and application of self-cleaning coatings, particularly su-
perhydrophobic coatings, for various surfaces including
solar cells. A study by Wang et al. [169] delves into the
development and use of these coatings. For applications
where surfaces are exposed to dirt and debris, self-cleaning
properties offer significant advantages. Numerous meth-
ods and techniques have been explored recently to achieve
self-cleaning functionality [71, 170]. Significantly, Liu et
al. demonstrated the development of a superhydrophobic
Ni-Cu coating using a combination of electrodeposition and
myristic acid modification. The resulting surface exhibited
a low surface energy and a hierarchical structure, facilitat-
ing easy contaminant removal and showcasing exceptional
self-cleaning properties [14, 16, 171].

4.2 Drag reduction

Superhydrophobic surfaces offer a promising approach for
drag reduction by minimizing frictional forces between a
flowing liquid and the surface. These surfaces are typically
engineered composites that incorporate a significant amount
of trapped air at the interface. This trapped air layer plays a
crucial role in promoting a phenomenon known as bound-
ary region slippage. Boundary region slippage refers to a

reduction in shear stress near the solid-liquid interface due
to the presence of the air layer. This essentially creates a
shear-free gap between the air-water interface and the sub-
strate or liquid interface, effectively reducing overall drag
[179].

Superhydrophobic surfaces are emerging as a revolution-
ary technology for drag reduction across various sectors.
Their ability to repel water and minimize surface-to-fluid
contact offers significant advantages in marine [180], avi-
ation [181], and automotive applications [182]. While the
benefits for everyday life may be less immediately appar-
ent, the potential for underwater drag reduction in areas
like underwater vehicles, oil pipelines, and aquaculture is
attracting considerable research interest. A compelling real-
world example is the application of superhydrophobic coat-
ings on aircraft wings. These coatings can improve fuel
efficiency by repelling water droplets, thereby minimizing
drag and reducing carbon emissions, with positive envi-
ronmental and economic impacts [183]. Nature provides
valuable inspiration for drag-reduction strategies. Studies
by Bhushan’s group on shark skin-inspired surface textures
offer insights into how natural and biomimetic surfaces can
achieve functionalities like superhydrophobicity and drag
reduction [184]. Their work on “Design and application
of sharkskin-inspired surface textures” explores this con-
cept in detail. The mechanism behind drag reduction with
superhydrophobic surfaces lies in their ability to minimize
the contact area between the surface and the fluid. This
minimized contact area leads to improved system efficiency.
The wettability of the surface plays a crucial role in this
process. Studies by Fukagata et al. investigating turbulent
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flows have demonstrated that superhydrophobic surfaces
can significantly reduce fluid drag [185]. Table 2 summa-
rizes recent research on superhydrophobic surfaces in drag
reduction applications.

4.3 Water separation from oil

The ever-increasing frequency of industrial oily effluent
production and oil spill disasters has propelled oil-water
separation to a critical global challenge [186]. Marine oil
spills and the substantial volumes of oil released by various
industries worldwide pose a significant threat to ecosys-
tems. Effective oil removal from contaminated water is
paramount. Conventional methods for spilled oil cleanup
often rely on expensive, laborious, and sometimes envi-
ronmentally hazardous chemical, physical, or biological
approaches [187, 188]. Recent advancements in innovative
materials, such as superhydrophobic surfaces, have been
offered a more eco-friendly and cost-effective approach to
separating oil from water.

Superhydrophobic surfaces hold promise for diverse oil-
water separation applications, including spill cleanup and
industrial wastewater treatment. Their ability to repel water
while attracting oil facilitates efficient separation of the two
immiscible liquids. Superhydrophobic-superoleophobic
sponges are gaining traction in oil-water separation pro-
cesses, particularly for environmental protection and valu-
able oil recovery [189]. Researchers have addressed scal-
ability challenges associated with superhydrophobic sur-
faces by developing a fluorine-free, brush-dip- or spray-
applicable coating termed MSHOs (modified silica hyper-
branched organosilanes). These MSHOs exhibit remarkable
self-cleaning properties, maintain water repellency after
abrasion, and demonstrate high oil-water separation effi-
ciency exceeding 93 %. Coated meshes showcased sus-
tained high separation effectiveness (>95 %) over 20 cy-
cles, signifying a straightforward and scalable approach for
producing multidimensional surfaces with practical appli-
cations in self-cleaning oil-water separation [190]. Various
materials, including fabrics, membranes, foams, and sor-
bents, have been explored for oil-water separation using
diverse techniques [71, 191]. A compelling real-world ex-
ample is the Oleo Sponge, a revolutionary development
in oil spill cleanup technology by researchers at Argonne
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National Laboratory. This innovative material addresses
the critical challenge of effectively removing oil from water
surfaces during oil spills, which pose severe environmental
risks to coastal areas and marine ecosystems [192].

4.4 Anti-icing

Ice accumulation on exposed surfaces presents a significant
hazard, leading to numerous safety incidents with the po-
tential for financial losses and even fatalities [49]. Icing
disrupts daily life and hinders various economic activities,
impacting diverse sectors like transportation, aviation, mar-
itime structures (ships), satellites, wind turbines, energy-
harvesting equipment, underwater oil and gas production
facilities, and communication infrastructure [11, 49]. Con-
sequently, the development of icephobic surfaces or anti-
icing coatings is crucial.

Traditional methods for ice mitigation often involve phys-
ically or chemically removing ice after formation, which
can be environmentally detrimental and energy-intensive.
Fortunately, the unique properties of superhydrophobic sur-
faces offer promise for ice-phobic applications [71, 198].
Researchers typically evaluate anti-icing effectiveness us-
ing two primary approaches: “deicing” and “anti-icing.”
Deicing allows ice formation to occur initially and then
focuses on removing it using electrical, physical, or thermal
methods. Anti-icing, on the other hand, aims to prevent
ice formation altogether [199]. Studies by Bharathidasan
et al. [200] have shown that smooth hydrophobic silicone
coatings exhibit weaker ice adhesion compared to rough
superhydrophobic surfaces. While surface roughness may
not be a critical factor, very low surface energy has been
demonstrated to hinder ice nucleation [68, 201]. Table 3
summarizes recent research on the application of superhy-
drophobic surfaces in anti-icing technologies.

4.5 Anti-fogging

Fogging, the condensation of humid air into microscopic wa-
ter droplets on transparent or solid reflective surfaces, arises
due to temperature differences between the surface and the
surrounding humid environment [202]. Light scattering by
these water droplets reduces light transmission or reflection,
hindering visibility [203]. Fog accumulation on surfaces can
have detrimental consequences beyond mere inconvenience,

Table 2. An overview of the most current research on SHS within drag reduction appliances.

CA° Reduction rate in drag | Ref.
Acid perfluorotetradecanoic 160 20-30 [172]
Normal dodecanethiol 159.7 38.5 [173]
Perfluorooctyltriethoxysilane 163 13 [174]
Superhydrophobic coating for business purposes 165.8 20 [175]
Perfluorooctyltriethoxysilane 163 31.6 [176]
Biomimetic- polydimethylsiloxane 151.74 | 19.2 [177]
A mixture consisting of FAS17, lauric acid, and stearic acid | < 161 67 [178]
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Table 3. A summary of the most recent studies on the use of SH surfaces within anti-icing equipment.

CA° Ref.
Micro- and nanostructures and Groups of organosilane | 159 [56]
Micro cubic array-based hierarchies 149.61 [193]
Composite of graphene 155-165 | [194]
Polydimethylsiloxane 155 [195]
The concrete overlaying 160+ 1 [196]
Polydimethylsiloxane < 161 [197]

posing safety concerns and hindering performance across
various applications. Anti-fogging is crucial for surfaces
used in diverse fields, from electrical power transmission
and telecommunications to photography. In a critical exam-
ple, fogging of endoscopic lenses during surgery can impair
vision and compromise surgical outcomes [202, 204]. Dur-
ing the COVID-19 pandemic, fogging of goggles emerged
as a life-threatening issue for healthcare professionals [205].
Fortunately, various approaches exist to prevent fogging by
modifying surface wettability, offering solutions to these
societal challenges [205, 206]. Fortunately, various ap-
proaches exist to prevent fogging by modifying surface
wettability, offering solutions to these societal challenges.
Superhydrophobic coatings, characterized by a high contact
angle (>150°) and low contact angle hysteresis (<5°), are
highly desirable for achieving anti-fogging properties due
to their unique wetting behavior [11, 50]. While conden-
sation may still occur on superhydrophobic surfaces, these
surfaces can impede fog formation by promoting faster
evaporation [207]. Chen et al. demonstrated this concept
by fabricating a superhydrophobic surface using silica cap-
sule nanostructures via dip coating. This highly transparent
surface exhibited a high contact angle of nearly 152° and a
low sliding angle of around 8°. Furthermore, this surface fa-
cilitated rapid fog evaporation, leading to the disappearance
of condensed droplets [204].

4.6 Biomedical applications

Superhydrophobic surfaces, characterized by a unique com-
bination of high surface roughness and extremely low sur-
face energy, exhibit a non-wetting state. This property,
along with their biocompatible and anti-corrosive character-
istics, makes them potentially valuable in various biomed-
ical fields, including drug delivery and tissue engineering
[208, 209]. These properties differentiate superhydrophobic
surfaces from traditional biomedical implants. Furthermore,
these characteristics set them apart from other biomedical
implants. For instance, superhydrophobic coatings can act
as protective barriers, reducing the risk of implant rejec-
tion by the human body. Additionally, they hold promise
for controlled drug delivery systems, enabling sustained
and targeted release of medications over extended periods
[210]. The growing demand for such advanced materials
in biomedicine has spurred the development of transparent

superhydrophobic and biomimetic coatings [211]. These
innovative coatings offer a diverse range of potential ap-
plications, including plasma separators, stents designed to
prevent cell adhesion and thrombosis, hemostatic bandages,
and surfaces with reduced bacterial adhesion during interac-
tion with blood and human fluids [49, 212]. A real-world
example of superhydrophobic surfaces in biomedicine is
their utilization in medical devices to prevent biofouling,
enhance biocompatibility [213], and facilitate controlled
drug delivery [214]. A comprehensive review by Falde et
al. [208] delves into the design and applications of superhy-
drophobic surfaces within the biomedical field.

Superhydrophobic surfaces (SHSs) represent a burgeon-
ing technology with immense potential to revolutionize
the field of biomedical implants. Their unique properties
offer a compelling solution to current challenges in im-
plant technology, paving the way for improved patient out-
comes and healthcare delivery [215, 216]. The integration
of SHSs into biomedical implants holds significant promise
for overcoming existing limitations. By repelling water and
biomolecules, SHSs offer a two-pronged attack: reducing
the risk of infection and mitigating biofouling, a critical
concern during implant surgery [217, 218]. This not only
enhances biocompatibility but also minimizes the likeli-
hood of foreign body reactions, fostering better integration
with surrounding tissues and lowering the risk of rejec-
tion or adverse reactions, ultimately leading to improved
patient outcomes. SHSs further contribute by enhancing
implant durability and functionality. Their inherent abil-
ity to repel biological fluids and water protects implant
materials from degradation and erosion, thereby extend-
ing their lifespan and maintaining structural integrity over
time [219, 220]. Moreover, SHSs open new avenues in
tissue engineering and drug delivery by enabling the con-
trolled release of growth factors or therapeutic agents near
the implant site. This capability unlocks possibilities for
regenerative medicine and personalized treatment strategies.
Furthermore, SHSs can contribute to reduced friction and
wear between the implant and surrounding tissues. This
translates to a lower risk of mechanical failure or loosening,
ultimately enhancing patient comfort [221, 222]. In gen-
eral, the incorporation of SHSs into biomedical implants
has the potential to transform the medical implant industry
by offering safer, more efficacious, and ultimately, more
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patient-centric healthcare solutions.

5. Future outlook

Superhydrophobic surfaces (SHSs) have revolutionized nu-
merous industries, but significant hurdles remain. A critical
challenge lies in maintaining their water-repelling properties
over time, especially under harsh conditions or mechani-
cal stress. Addressing this necessitates the development
of novel, robust materials, and innovative fabrication tech-
niques. These advancements would ensure the sustained
effectiveness of SHSs in real-world applications. Further-
more, the high cost and limited scalability of current SHS
production methods hinder widespread adoption. Research
efforts should focus on exploring cost-effective and scalable
manufacturing approaches, such as scalable Nano structur-
ing or roll-to-roll processing, to bridge the gap between
promising research and practical implementation.

Beyond durability concerns, further research is necessary to
endow SHSs with additional functionalities without compro-
mising their water-repellency. This necessitates exploring
novel hybrid materials and surface engineering techniques
to create multifunctional self-healing surfaces. The focus
should be on incorporating features like antibacterial prop-
erties or self-healing capabilities while maintaining the deli-
cate balance for specific applications like medical implants
or marine coatings. Furthermore, a thorough investigation
into the environmental impact and biocompatibility of SHSs
is crucial for their responsible development and applica-
tion. To ensure the responsible and sustainable application
of superhydrophobic technologies, future research should
prioritize the development of environmentally friendly and
biocompatible materials, safeguarding human health and the
environment. Additionally, research should explore meth-
ods to improve the dynamic responsiveness and adaptive
behavior of SHSs. Many current SHSs are static, lacking
the ability to adjust to changing environmental conditions
or stimuli. This limits their functionality and necessitates
further investigation into smart materials that can dynam-
ically adapt for optimal performance in various scenarios.
Despite the advancements in superhydrophobic surfaces
(SHSs), challenges remain. A key focus should be on de-
veloping durable, cost-effective coatings. While various
fabrication techniques exist, concerns regarding raw mate-
rial costs and mechanical durability persist. The ideal SHS
would be semi-permanent or permanent, possessing a suite
of functionalities like self-cleaning, anti-biofouling, optical
clarity, and superoleophobicity, all while being environmen-
tally friendly. To achieve this, interdisciplinary collabora-
tion between material scientists, chemists, engineers, and
biologists is paramount. Overcoming large-scale manufac-
turing hurdles and achieving these advancements will be
crucial for unlocking the full potential of SHSs and their
real-world utilization. Furthermore, future research should
prioritize the development of environmentally benign and
biocompatible materials for sustainable and responsible use
of SHSs. Additionally, exploring stimuli-responsive materi-
als and smart surface designs that can adapt their wetting
behavior based on external cues holds promise for enhanced
functionality and broader applicability of SHSs.

Dodia et al.

6. Conclusions

This review article explores superhydrophobic surfaces,
drawing inspiration from their intricate natural counterparts.
Following a brief overview of the fundamental concepts and
background, the article delves into various fabrication pro-
cesses for superhydrophobic coatings. It then highlights a
multitude of potential applications and explores the diverse
approaches to surface energy manipulation for achieving su-
perhydrophobicity. The review concludes by summarizing
recent research advancements in this field. Superhydropho-
bicity, a property observed in nature, can be replicated ar-
tificially to create highly water-repellent surfaces. These
surfaces offer not only water resistance but also a range of
additional advantages, making them valuable across vari-
ous industries and extending their service life. Researchers
have successfully produced superhydrophobic surfaces for
a broad spectrum of applications, including drag reduc-
tion, anti-fogging, anti-fouling, self-cleaning, anti-icing,
anti-corrosion, anti-bacterial properties, oil-water separa-
tion, ice-repellency, biomedical applications, and more. The
article provides a concise overview of several fabrication
methods, such as lithography, plasma etching, chemical
etching, laser ablation, template-assisted assembly, sol-gel,
layer-by-layer deposition, PVD, CVD, and electrospinning.
These methods, guided by principles that relate a substrate’s
micro- and nanostructure to its chemical composition, are
designed to mimic naturally occurring superhydrophobic
surfaces.
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