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Abstract:
The present study aimed to determine the quality and quantity of groundwater resources for agricultural
purposes in the Qazvin Plain (northwest of Iran) using the spatial and temporal distribution maps of agricultural
water quality classes prepared by machine learning models during three study periods of spring 2012,
2016, and 2020. Modeling was performed based on geological maps, annual precipitation maps and 12
hydrogeochemical parameters measured for 63 piezometric wells. Appropriate hydrochemical parameters
were selected for each statistical period to model agricultural water quality using the machine learning models
of Random Forest (RF), Boosted Regression Tree (BRT) and Multinomial Logistic Regression (MnLR). The
results introduced the best models to be RF in 2012 (kappa coefficient (κ = 0.54, overall accuracy (OA)=
69%) and MnLR in 2016 and 2020 (κ = 0.83 and 0.75; OA = 88 and 84%), respectively. The percentage
of area for C4-S3 class (very high salinity with high sodium) increased from 5% in 2011 to 23.9% in 2019.
Giving the increased precipitation in 2019, the agricultural water quality class in the southern region changed
from C4-S3 in 2015 to C4-S2 (very high salinity with medium sodium) in 2019. Additionally, the simulated
maps showed an elevation in the percentage of C4-S3 class area from 2012 to 2020 in the central part of
the region where agricultural lands are concentrated. Our findings revealed the trend of adverse changes in
water quality at different regions of Qazvin Plain during the years of study, highlighting the need to make
purposeful management decisions. And The study utilized both advanced machine learning algorithms and
traditional classification methods, including the Wilcox diagram, to assess agricultural water quality based
on twelve physicochemical parameters. And The 12 parameters used in the study were selected based on
data availability and relevance to agricultural water quality standards. Due to inconsistent data across years,
variables such as nitrate and organic matter were excluded.
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1. Introduction

The scarcity of surface water resources in arid and semi-
arid regions today has made underground water one of the
most important and valuable water sources in such areas
(Mohammadi et al., 2023). Hence, comprehensive explo-
ration and proper exploitation of these water resources can
significantly affect sustainable development and various
agricultural and socio-economic activities in such regions
(Eslaminezhad et al., 2022; Masoudi et al., 2023). Follow-

ing the growth of the population and the subsequent increase
in the demand for water in diverse sectors of agriculture,
drinking and industry, the overexploitation of groundwater
resources has caused a decrease in the quality and an in-
crease in the pollution of these valuable resources, which
can leave irreparable effects on the agriculture sector and
especially on the health of society (Bui et al., 2020; Jalili,
2020). Accordingly, the management of groundwater re-
sources worldwide has become a critical issue in recent
decades.
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Groundwater sources provide drinking water for 50% of the
world’s population (Jiang et al., 2022) and also constitute
43% of the total agricultural water (Li et al., 2002; Fataei
and Shiralipoor, 2011). Groundwater resources are one of
the basic needs of the agricultural sector, especially in arid
and semi-arid areas where there is a shortage of surface
water (Dehghan Rahimabadi et al., 2022; Valiallahi, 2022).
Proper management and exploitation of groundwater re-
sources requires quantitative and qualitative evaluation and
monitoring of water resources in order to minimize damage
to the environment and reservoirs of these waters via their
optimal usage.
Considering the effects of climate change, such as increas-
ing global warming, decreasing rainfall, and extreme cli-
matic events, a unique approach is needed to study the
effects of climate elements on groundwater level changes,
which can help in better decision making. Recent years
have seen the increasing use of machine learning and data-
driven methods for groundwater modeling. Applying data-
based methods, spatial databases and developing machine
learning techniques based on non-linear interdependencies
can help predict groundwater level change. New machine
learning methods and mathematical model techniques have
recently made a significant contribution to the prediction
of groundwater level fluctuations; these methods have been
found to help simplify and eliminate complexity in calcu-
lations. According to previous findings, machine learning
methods could provide higher accuracy in the prediction
process compared to mathematical models. However, some
researchers recommended the integration of machine learn-
ing and mathematical models to predict groundwater level
changes (Afrifa et al., 2022). Machine learning methods
are capable of identifying hidden patterns in data and then
applying those patterns to predict target variables or param-
eters (Masoudi et al., 2023).
Researchers have applied a variety of machine learning mod-
els for groundwater modeling, including artificial neural
network, ANN (Adamowski and Chan, 2011; Nourani et al.,
2015; Oliveira et al., 2023), fuzzy theory, FT (Zhang, 2015;
Jeihouni et al., 2019), genetic programming, GP (Naghibi
et al., 2017; Sepahvand et al., 2019) and support vector ma-
chine, SVM (Dehghani et al., 2022). In this regard, a study
evaluated the potential of groundwater resources based on
environmental factors in the Yasouj-Sisakht area, Iran, using
Random Forest (RF) and Generalized Linear Model (GLM).
In this research, 12 layers of environmental predictors were
used as the most important factors influencing groundwater
potential. The results of the relative importance of factors
affecting the potential of groundwater resources in these
methods showed that rainfall, altitude and distance to fault
were the most sensitive factors. Additionally, the accuracy
of the models was evaluated by the receiver operating char-
acteristic (ROC) curve; accordingly, the area under curve
(AUC) was calculated to be 92% and 65% for the RF and
GLM models, respectively, indicating the higher accuracy
of the RF model in mapping groundwater potential com-
pared to the GLM (Avand et al., 2019). In a study,
Accordingly, in different regions of the world, including the
Qazvin plain, which is one of the most important agricul-

tural regions of Iran, it is vital to identify the parameters
affecting water quality. Due to the lack of surface water re-
sources in the Qazvin Plain, more attention needs to be paid
to the purposeful exploitation and management of ground-
water resources.
To the best of our knowledge, since no study has been done
on water resource management, as well as temporal and
spatial distribution maps of water quality parameters using
machine learning models in the Qazvin Plain, extensive and
comprehensive research in the field of water resources man-
agement and groundwater quality modeling of the Qazvin
plain using machine learning approaches can be a suitable
guide for planning and adopting management strategies
compatible with groundwater. Correspondingly, the pur-
pose of this research was to determine the most important
parameters affecting groundwater quality considering the
effect of drought index (standardized precipitation index,
SPI) and mean annual precipitation (MAP), and to investi-
gate the potential of RF, boosted regression tree (BRT) and
multinomial logistic regression (MnLR) models in distribu-
tion and prediction of groundwater quality based on USSL
diagram and finally to map the groundwater quality classes
for agricultural use in Qazvin Plain.

2. Materials and models

2.1 Study area
Qazvin plain is located in the middle of 35◦18′ to 36◦30′

northern latitude and 49◦11′ to 50◦40′ eastern longitude.
The area of the studied plain is 952,623 hectares and its
altitude varies from 952 to 2911 meters, so that the central
and eastern parts of the plain have a lower altitude than the
northern, western and southern regions. Figure 1 illustrates
the geographic location of the studied area and the studied
piezometric wells.
The land use map of the region reveals that agricultural
lands (29.47% of the region’s area), behind barren lands
(41.54% of the region’s area), occupy the largest share in
the Qazvin plain, thus indicating the position of agricultural
activities in the region (Fig. 2). Discontinuous sediments,
including new terraces and alluviums, cover the largest area
(574,468 hectares) in the plain. In these Quaternary for-
mations, water infiltration rate and permeability are very
high and they form the bed of very large aquifers, subse-
quently developing groundwater sources in these formations
(Fig. 3).
In terms of climatic factors, the lowest average annual tem-
perature in the Qazvin Plain is 2 ◦C, which is observed in
the northern and northeastern highlands of the region. In the
central and flatten parts of the plain and the inner parts of
the province, the average annual temperature reaches 14.5
◦C (Abdullahi Dehki, 2019). According to the MAP (256.6
mm) and average annual temperature (13.5 ◦C) in Qazvin
plain, this plain has an aridity index of 10.92, which has a
semi-arid climate based on De Martonne climatic classifi-
cation. The rivers flowing in the Qazvin plain eventually
lead to Namak Lake. Abhar, Chay Khar Rud, Haji Arab
rivers join Kordan River and form Shur River, which finally
drains into Namak Lake (Abdullahi Dehki, 2019).
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Figure 1. Location of Qazvin plain relative to the existing provinces in Iran and spatial distribution of the studied piezo-metric wells.

2.2 Methodology
In the current research, temporal and spatial changes in the
quality of agricultural water in Qazvin Plain were generally
designed and investigated in seven basic steps as follows:

1. Collecting and normalizing data related to water qual-
ity parameters for the spring of 2012, 2016 and 2020

2. Determining the most suitable chemical parameters
of water quality using principal component analysis
(PCA)

3. Determining the agricultural water quality classes of
each well according to the USSL diagram

4. Spatial modeling of agricultural water quality into two
groups of training (80%) and testing (20%)

5. Modeling the agricultural water quality index using
RF, MnLR and BRT machine learning models in R
software

6. Determining the most appropriate water quality param-
eters in each period based on their relative importance

7. Mapping the spatial and temporal prediction of agri-
cultural water quality during the studied years and
mapping the SPI in Arc GIS software

In this research, groundwater quality data was provided
from the IRAN Water Resources Management Company.
According to the available statistics, 12 hydrogeochemi-
cal parameters, including potassium (K+), sodium (Na+),
magnesium (Mg2+) and calcium (Ca2+) as major cations,
sulfate (SO2−

4 ), chloride (Cl−) and bicarbonate (HCO3−)
as major anions, pH, total hardness (TH), electrical con-
ductivity (EC), total dissolved solids (TDS), and sodium
adsorption ratio (SAR), measured for 63 sampling wells
were considered as inputs to determine the groundwater
quality in the Qazvin plain during the years under study.
Normalization, if needed, was done for all the parameters
related to 2012 by logarithmic transformation method and to
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Figure 2. Land use map of Qazvin Plain, Iran.

2016 and 2020 by SPSS version 21 software and integrated
method (ranking of cases and computation of variables).

2.3 Selection of hydrochemical and environmental fac-
tors

In this part of the research, two methods of PCA (Pallant,
2020) and expert opinion were used to select the most suit-
able dataset among the tested quality parameters and en-
vironmental variables to reduce the interference between
parameters and determine the most effective ones. There-
fore, among the 12 measured hydrochemical factors for
each statistical period, the most appropriate ones were se-
lected based on the PCA approach. Simultaneously with
the hydro-chemical characteristics, the geological maps of
the studied area as a representative of the parent material of
the main producers of the area and the MAP as an effective
climatic index in drought were prepared as input data for
modeling. In addition to the mentioned factors, the maps
of SPI and water elevation contour were also drawn in 135
wells to investigate and interpret the changes in groundwater
quality and influencing factors as well as possible.

2.4 Determination of agricultural water quality class
The water quality class with a discrete nature was deter-
mined to identify agricultural use based on the USSL dia-
gram (Table 1).

Table 1 Classification of agricultural water quality for agri-
cultural purposes based on the USSL diagram (US Salinity
Laboratory Staff 1954).

2.5 Spatial modeling of groundwater quality

Data mining is the analysis of a large set of data in order
to reveal hidden and significant patterns and rules within
the data (Gorunescu, 2011). In this research, three RF,
BRT and MnLR algorithms were used to predict the spatial
distribution of agricultural water quality; the structure of
these three algorithms is briefly discussed below:

2.5.1 Random Forest model

One of the algorithms used in this research was the RF
model presented by Breiman (2001). This model is devel-
oped from the Classification and Regression Tree (CART)
model that separates the data iteratively to obtain the rela-
tionship between the target variable and the independent
variables, and perform estimation. Unlike other tree-based
algorithms that draw a limited number of trees, hundreds
or thousands of classification trees are generated in the RF
method (Breiman and Cutler, 2005). It is a group learn-
ing model and works for classification by building a large
number of trees (Breiman, 2001).
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Figure 3. Geological map of Qazvin Plain, Iran.

2.5.2 Boosted Regression Tree model

This algorithm improves the fit of a model by adapting
several other models and integrating them to make model
predictions. BRT is one of the subsets of decision tree,
which has been greatly developed in the last two decades.
The BRT model uses two groups of regression tree and
decision tree algorithms, on the one hand, and the combi-
nation of a set of models along with their boosting, on the
other hand. Boosting is a machine learning technique that

integrates the results of multiple model comparison (Jafari
et al., 2014; Elith et al., 2008).

2.5.3 Multinomial Logistic Regression
Logistic models are a special type of generalized linear
models (GLMs), which can be implemented in two ways: 1-
Binomial logistic model and 2- Multinomial logistic model.
In the binomial logistic model, the dependent variable is in
the form of presence or absence (zero and one); for exam-
ple, the presence or absence of a characteristic soil horizon,

Table 1. Classification of agricultural water quality for agricultural purposes based on the USSL diagram (US Salinity Laboratory Staff 1954).

Classes Water quality for agriculture

C1S1 Sweet, completely effective for agriculture

C2S1,C2S2,C1S2 Brackish, approximately perfect for agriculture

C1S3,C2S3,C3S1,C3S2,C3S3 Passion, usable for agriculture

C1S4,C2S4,C3S4,C4S4,C4S3,C4S2,C4S1 Very passion, harmful to agriculture
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while Multinomial logistic model covers the dependent vari-
able with several classes, such as different classes of soil in
the same area.

2.6 Model validation test
In this study, the validation method or the test sample was
used to evaluate the validity of the models used. To this
end, 80% of the data of groundwater wells were used for
measuring the accuracy of the model and 20% of the data
were used for the validation of the model. The criteria of
overall accuracy (OA) and Kappa coefficient (κ) were used
to evaluate the accuracy of the classification, which are as
follows (Byrt et al., 1993).

2.7 Overall accuracy
In Eq. (1), OA represents overall accuracy, N represents all
classified pixels, and ∑

n
i=1 Xi j represents the total pixels of

the main diameter of the error matrix (correctly classified
pixels). OA cannot provide information about each of the
classes separately.

OA =
∑

n
i=1 Xi j

N
(1)

2.8 Kappa coefficient
The kappa statistic is a powerful index that calculates the
probability of presence or absence of classes correctly pre-
dicted by the model; Therefore, it is always slightly less
than the map purity. The range of Kappa statistic changes
is between zero and one (Jafari et al., 2014). In Eq. (2),
n stands for the number of rows in the matrix, Xi j for the
number of observations in row i and column j (main di-
ameter entries), Xio and Xoi for the sum of the margins in

row r and column i respectively, N for the total number of
observations.

Kappa = N
n

∑
i=1

Xi j −
∑

n
i=1(Xio −Xoi)

N2 −
n

∑
i=1

(Xio −Xoi) (2)

3. Results and discussion
In addition to machine learning models, the Wilcox dia-
gram was applied to classify irrigation water quality based
on salinity hazard (EC) and sodium hazard (SAR). This tra-
ditional method enables a comparative assessment of water
usability for agriculture. The water samples from different
years (2012, 2016, 2020) were plotted on the Wilcox dia-
gram to provide a standard reference framework. Results
obtained from Wilcox classification were then compared
with outputs from the applied machine learning models.

3.1 Statistical description of agricultural water quality
factors

After normalizing the agricultural water quality data, the
most suitable ones were selected by PCA method for all
three years 2016, 2012 and 2020 separately, as shown in
Tables 2, 3 and 4. Based on the results of the PCA method
for the statistical year 2012, EC, pH and HCO3− had eigen-
values greater than one. In this regard, TDS and HCO3− for
2016 and EC, pH, K and HCO3− for 2020 had the highest
weight, respectively.
The statistical summary of each of the selected factors of
agricultural water quality by the years under study is pre-
sented in Table 5. According to

Table 5, the mean concentration of HCO3− was 3.79
milliequivalents per liter (mEq/L), with the minimum and

Table 2. Matrix of components related to agricultural water quality factors in spring 2012 in Qazvin Plain, Iran.

Principal
components

Quality
factors

Ca2+ Mg2+ Na+ K+ EC SAR TH TDS pH HCO3− Cl So+4

PC1 0.85 0.93 0.94 0.87 0.99 0.81 0.95 0.99 -0.50 -0.008 0.95 0.89

PC2 -0.42 -0.06 0.29 0.17 0.06 0.50 -0.24 0.07 0.60 0.353 0.20 -0.24

PC3 -0.08 0.052 -0.01 0.001 -0.035 -0.039 -0.008 -0.034 -0.51 0.91 -0.09 -0.02

Table 3. Matrix of components related to agricultural water quality factors in spring 2016 in Qazvin Plain, Iran.

Principal
components

Quality
factors

Ca2+ Mg2+ Na+ K+ EC SAR TH TDS pH HCO3− Cl So+4

PC1 0.828 0.893 -0.94 0.70 0.99 0.77 0.93 0.99 -0.518 -0.210 -0.956 0.890

PC2 0.238 0.150 -0.163 0.089 -0.017 -0.322 0.211 0.019 -0.396 0.772 -0.199 0.132

Table 4. Matrix of components related to agricultural water quality factors in spring 2020 in Qazvin Plain, Iran.

Principal
components

Quality
factors

Ca2+ Mg2+ Na+ K+ EC SAR TH TDS pH HCO3− Cl So+4

PC1 0.843 0.874 0.917 0.26 0.993 0.645 0.918 0.99 -0.265 -0.054 0.925 0.765

PC2 -0.256 -0.207 0.306 -0.621 0.083 0.557 -0.252 0.08 0.673 -0.178 0.08 0.102

PC3 -0.251 -0.148 0.168 0.246 0.018 0.409 -0.223 0.00 -0.201 0.899 -0.262 0.358
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Table 5. Statistical summary of selected parameters for modeling agricultural water quality in Qazvin Plain, Iran, during three study periods of spring
2012, 2016, and 2020.

Study periods Parameters Unit Minimum Maximum Mean
standard
deviation

Coefficient of
variation (CV%)

Skewness Kurtosis
Transformation

method

2012

HCO3− mEq/L 1.69 5.52 3.79 0.87 22 -0.44 -0.30 -

pH - 7.10 8.20 7.67 0.25 3.32 0.14 -0.52 -

EC mS/cm 481 6523 1842 129 70 1.42 2.31 Logarithmic

2016
HCO3− mEq/L 0.80 9.20 4.22 1.55 36.8 0.75 1.72 -

TDS 216 4317 1036 794 76.6 2.27 6.90 Integrated

2020

HCO3− 1.02 7.18 4.06 1.28 31.7 0.321 0.132 -

pH - 7.33 8.71 7.97 0.28 3.6 0.075 -0.153 -

K 0.02 0.82 0.09 0.11 116 4.98 31.8 Integrated

EC mS/cm 3.72 6689 1731 1130 65.3 1.40 4.60 Integrated

maximum concentrations of 1.69 and 5.52 mEq/L in the
spring 2012. The minimum, mean and maximum pH val-
ues were 7.10, 7.67, and 8.20, respectively; the maximum
values of this factor in the region seem to be in the alkaline
class, which can make the soil of the region face the risk
of sodification. The mean EC value was 1842 millisiemen-
s/meter (mS/m), with minimum and maximum values of
481 and 6523 mS/m.
The mean concentration of HCO3− and TDS in 2016 was
4.22 mEq/L and 1036, respectively, which were considered
as selected quality parameters. For 2020, HCO3−, pH, K
and EC were selected as four qualitative parameters for data
mining. EC with a minimum value of 3.72 mS/m and a
maximum value of 6689 mS/m showed a wide range of
changes in this year. In addition, the maximum value of pH
(8.71) was in the alkaline class.

3.2 Spatial distribution of agricultural water quality
factors

Table 6 shows the semivariogram fitted for each selected
qualitative parameter.
The results of fitting the experimental semivariogram on the
parameters affecting the agricultural water quality in the

region showed that the exponential and spherical models
were the most appropriate fitting in most of them, respec-
tively. In terms of spatial dependence class, all of them
were in the medium class, except for the EC factor in 2012
and 2020, TDS in 2016, and pH in 2020, which were in the
strong class (Cambardella et al., 1994). Similar results were
observed in the geostatistical analysis of agricultural water
quality factors in Fars province, Iran (Masoudi et al., 2023).
The strong and medium spatial dependence of agricultural
water quality factors indicates that the use of geostatistical
methods can be useful in the spatial analysis of the studied
characteristics (Mousavi et al., 2017).
And One of the important but often overlooked factors af-
fecting groundwater quality is the geological structure and
lithology of the aquifer. The presence of evaporite and
carbonate rocks, which are rich in soluble salts, plays a
significant role in elevating the salinity and electrical con-
ductivity of groundwater. Studies such as Ebadati (2016) in
the Qazvin Plain have shown that geological formations, par-
ticularly sedimentary layers containing gypsum and halite,
significantly impact groundwater chemistry. Therefore, in-
corporating lithological information is essential for a more
comprehensive understanding of spatial variations in wa-

Table 6. Agricultural water quality parameters and the most appropriate model fitted on the semivariogram of water quality parameters in Qazvin Plain,
Iran, during three study periods of spring 2012, 2016, and 2020.

Study
period

Water quality
parameters

Semivariogram
model

Block variance
(C0)

Threshold
(C)

Impact range
(meters)

Spatial dependence
(C0/C)

2012

HCO3− Spherical 0.02 0.04 17539 Medium

pH Exponential 0.0005 0.00096 109040 Medium

EC Spherical 0.1 0.50 58975 Strong

2016
HCO3− Exponential 0.43 0.95 8373 Medium

TDS Spherical 38649 600180 45321 Strong

2020

HCO3− Stable 0.13 0.45 42813 Medium

pH Exponential 0.0093 0.07 8781 Strong

K Gaussian 0.2 0.37 9210 Medium

EC Exponential 321330 1460700 52807 Strong
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ter quality. Previous research has explored the geologi-
cal influence on groundwater quality in the Qazvin region.
Ebadati2016<empty citation> highlighted the relation-
ship between lithological composition and salinity varia-
tions across the plain, emphasizing the importance of geo-
logical mapping in water quality management strategies.
The spatial distribution map of water quality parameters in
all three periods was drawn using ordinary kriging method
(Fig. 4, 5 and 6). This method is the best unbiased predictor
in random sampling in unsampled areas. Another advan-
tage of this method is to reduce the impact of outlier points
(Triantafilis et al., 2001).
In 2012, the highest value of EC was in the central part to-
wards the south and east, and the lowest value was observed
in the northern and western parts of the region. The highest
pH value was reported in the north and northeast parts and
the lowest value was obtained in the west and south parts.
The highest concentration of HCO3− was observed in the
northern, central and western parts and the lowest level was
found in the eastern parts, a little towards the south. The
pH value in the northern to eastern parts of the study area
indicated the alkalinity of the groundwater.
In 2016, the spatial distribution map was drawn for TDS
and HCO3−, where the highest TDS value was observed in
the central part towards the east and south, and the highest
concentration of HCO3− was found in the northern, western
and central parts, and the lowest concentration of HCO3−

was recorded in the eastern part.
In 2020, the highest concentration of potassium was ob-
served in the central parts towards the south and parts of the

west, the highest EC value in the central part towards the
east, and the highest concentration of HCO3− in the north-
ern and western parts. The pH value in the northeastern and
eastern parts towards the center of the studied area indicated
the alkalinity of the groundwater.

3.3 Maps of mean annual precipitation and standard-
ized precipitation index

In order to investigate the effect of climatic factors in this
study, SPI (Fig. 7) and MAP (Fig. 8) maps were prepared
for all three periods of 2012, 2016 and 2020, using the
inverse distance weighting (IDW) interpolation method.
The results of SPI maps (Fig. 7) showed that, in general,
the amount of drought in the region improved slightly from
2012 to 2020, and the lowest amount of drought in 2012
was observed in parts of the northern regions that include
high areas. In 2016, the lowest SPI values were observed
in parts of the northern and eastern regions. In 2020, the
lowest SPI values were found in the southern areas and a
small part of the north, which were close to the highlands
of the study area.
The MAP maps in 2012, 2016 and 2020 highlighted that
the average rainfall had generally increased in the region.
The highest amount of precipitation in 2012 and 2016 was
related to the northern and northeastern regions, and the
highest amount of precipitation in 2020 was related to the
northern and southern regions, which have higher altitudes
in the mountainous regions.

Figure 4. Distribution of selected quality parameters in 2012 based on the best semivariogram for each parameter in Qazvin Plain, Iran.
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Figure 5. Distribution of selected quality parameters in 2016 based on the best semivariogram for each parameter in Qazvin Plain, Iran.

3.4 Evaluating the efficiency of machine learning mod-
els

Spatial modeling of agricultural water quality was done
based on three machine learning models, RF, BRT and
MnLR, and the results of comparing the efficiency of the
used models based on the Kappa coefficient and OA indica-
tors are presented in Table 7.
Comparing the efficiency of the models showed that the
RF model provided the highest accuracy in spring 2012
(κ = 0.54, OA = 69%). In this regard, Jafari et al. (2021)
used the RF model to predict the agricultural water quality
class of Zayanderud River in Iran, the results of which were

κ = 0.88 and OA = 96%. Another study compared the
effectiveness of RF, BRT and MnLR data mining models
in spatial prediction of groundwater resource quality. The
results of all three methods showed acceptable accuracy for
prediction during both study periods, but the results revealed
that the RF model was more accurate than the other two re-
gression models in predicting the agricultural water quality
classes and spatial distribution of water quality parameters.
These results indicated that the tree-based algorithm created
between the target variable and hydrochemical parameters
for the modeling process had increased the accuracy of
the RF model compared to the BRT and MnLR models

Figure 6. Distribution of selected quality parameters in 2020 based on the best semivariogram for each parameter in Qazvin Plain, Iran.
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Figure 7. Spatial distribution of standardized precipitation index; (A) spring 2012, (B) spring 2016 and (C) spring 2020, in Qazvin Plain, Iran.

Figure 8. Spatial distribution of mean annual precipitation (MAP); (A) spring 2012, (B) spring 2016 and (C) spring 2020, in Qazvin Plain, Iran.
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Table 7. Validation of the efficiency of machine learning models.

Study periods Machine learning models
Validation

Overall accuracy Kappa coefficient

Spring 2012

Random Forest 69 0.54

Boosted Regression Tree 54 0.40

Multinomial Logistic Regression 48 0.25

Spring 2016

Random Forest 81 0.71

Boosted Regression Tree 72 0.52

Multinomial Logistic Regression 88 0.83

Spring 2020

Random Forest 69 0.57

Boosted Regression Tree 74 0.60

Multinomial Logistic Regression 84 0.75

(Masoudi et al., 2023). In our study, the MnLR model in
spring 2016 and 2020 with κ = 0.83, 0.75 and OA = 88,
84%, respectively, provided better performance than the RF
and BRT models in predicting agricultural water quality
classes. Similarly, a study compared the performance of
MnLR, BRT and RF models for predicting water quality
and found that MnLR with OA = 82% had a relative supe-
riority over RF (78%) and BRT (74%). Moreover, the κ

value was 0.78 for MnLR, while 0.62 and 0.69 for BRT and
RF, respectively (Mishra et al., 2021). Therefore, based on
past studies, MnLR as a prediction model of agricultural
water quality class can outperform BRT and RF models.
Some researchers believe that logistic regression methods
can be highly effective in spatial modeling of the quality of
groundwater resources due to the simplicity and speed of
calculation, as well as the ability to use qualitative variables,
accurate prediction, use of big data and high interpretability
(Bivand et al., 2013).

3.5 Spatial distribution of agricultural water quality
classes

In the next step, in order to make a better comparison, the
agricultural water quality distribution map was drawn based
on the simulated results using machine learning algorithms
for all three models during the studied periods (Fig. 9, 10
and 11); the area related to the agricultural water quality
classes for the superior model by each year is presented in
Tables 8, 9 and 10.
In relation to the map prepared with the superior RF model
in 2012 (Fig. 9), the results showed that most of the cen-
tral, eastern and southern parts of the study area had the
agricultural water quality of the Very passion class (C4-S1,
C4-S2, C4 -S3 and C4-S4). In 2012, 35% of the studied area
had agricultural water with C3-S1 quality in the northern,
northeastern and western parts, accounting for the highest
percentage of the agricultural water quality class (Table 8).
Regarding the map prepared with the MnLR superior model
in 2016 (Fig. 10), the results showed that most of the central
to southern parts, parts of the northeast, southwest, and east
of the study area had agricultural water quality with the

Very passion class (C4-S1, C4-S2, C4-S3 and C4-S4). In
2016, 52% of the studied area had agricultural water with
C3-S1 quality, accounting for the highest percentage of agri-
cultural water quality class (Table 9).
In 2020, the results showed that most of the central to south-
ern parts, parts from the north and northeast, southeast of
the studied area had agricultural water quality with Very
passion class (C4-S2, C4-S3). In 2020, 44.5% of the studied
area had agricultural water with C3-S1 quality, accounting
for the highest percentage of agricultural water quality class
(Table 10).

3.6 Groundwater elevation contour map

The groundwater elevation contour map (Fig. 12) was drawn
during all three study periods to better interpret the cause
of the change in agricultural water quality in the region.
The results indicated that the highest level of groundwater
access was in the central to south and northeast areas in
every three years (Fig. 12). In addition, the highest level
of access to groundwater increased from 108 m in 2012 to
131 m in 2020, revealing the withdrawal of the groundwater
aquifers in the region.
The spatial distribution maps of EC showed that the maxi-
mum value of this factor in 2020 (5203 µS/cm) compared
to 2012 (4183 µS/cm) had an increasing trend. The spatial
distribution maps of HCO3− from 2012 to 2020 showed an
increasing trend with a maximum of 4.75 mg/L in 2012,
5.60 mg/L in 2016 and 6.07 mg/L in 2020.
The percentage of the area belonging to the C4-S3 class
increased from 5 in 2012 to 23.9 in 2020, indicating a de-
creasing trend in the water quality of the region. However,
due to the increase in rainfall in 2020, the irrigation water
quality class in the south of the region changed from C4-S3
in 2016 to C4-S2 in 2020; the reason for this improvement
in the quality class in this area could be due to the seasonal
increase in rainfall at this point, the mountainous nature
of the area, and the lack of agricultural land. It should be
noted that the quality of irrigation water was still in the very
passion class.
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Figure 9. Spatial distribution of agricultural water quality using machine learning algorithms; (A) Random Forest, (B) Boosted Regression Tree and (C)
Multinomial Logistic Regression in 2012, in Qazvin Plain, Iran.

Figure 10. Spatial distribution of agricultural water quality using machine learning algorithms; (A) Random Forest, (B) Boosted Regression Tree and (C)
Multinomial Logistic Regression in 2016, in Qazvin Plain, Iran.
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Figure 11. Spatial distribution of agricultural water quality using machine learning algorithms; (A) Random Forest, (B) Boosted Regression Tree and (C)
Multinomial Logistic Regression in 2020, in Qazvin Plain, Iran.

Table 8. The area of agricultural water quality classes in 2012 based on the superior model of Random Forest in Qazvin Plain, Iran.

Classes
Area

Hectare Percentage

C2-S1 19052460 20

C3-S1 33341805 35

C3-S2 14289345 15

C4-S1 952623 1

C4-S2 20957706 22

C4-S3 4763115 5

C4-S4 1905246 2

Total 952623 100

Table 9. The area of agricultural water quality classes in 2012 based on the Multinomial Logistic Regression model in Qazvin Plain, Iran.

Classes
Area

Hectare Percentage

C2-S1 38371 7.21

C3-S1 495747 52

C3-S2 34526 3.62

C4-S1 27820 2.92

C4-S2 113657 11.9

C4-S3 201509 21.2

C4-S4 10634 1.12

Total 952623 100
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Table 10. The area of agricultural water quality classes in 2020 based on the Multinomial Logistic Regression model in Qazvin Plain, Iran.

Classes
Area

Hectare Percentage

C2-S1 125390 13.2

C3-S1 424149 44.5

C3-S2 3681 0.40

C4-S2 171767 18

C4-S3 227637 23.9

Total 952623 100

3.7 Relative importance of environmental variables
Fig. 13 shows the relative importance of predictor variables
for determining agricultural water quality.
The results (Fig. 13) demonstrated that EC, HCO3− and
pH in 2012, 2016 and 2020 respectively, justifying about
50, 65 and 40% of the changes, were recognized as the
most effective factors in determining groundwater qual-
ity, indicating the central effect of these parameters on the
quality of groundwater resources for agricultural uses. Agri-
cultural water quality is important in terms of influencing
soil management and crop quality (Piri and Bamri, 2014;
Bakhshandehmehr et al., 2017; Zehtabian et al., 2004), and
the increase in salinity has the most negative effect on the
reduction of production and productivity (Salehi Rezaabadi
et al., 2020). Regarding the effectiveness of HCO3− and
pH parameters, the cause can be attributed to the geological
features of the region. The largest area in the map of the
geological formations of the study area is related to the

Quaternary formations and young terraces, so that the most
concentrated agricultural activities in the current conditions
are also directed to these areas; it seems that Quaternary
formations and young terraces have high carbonate concen-
tration. This feature causes the groundwater from these
formations to have high pH and high water hardness. These
inherent features in these formations are consistent with the
results of the current research and the effectiveness of these
parameters in groundwater quality.
Limitation:
Parameters were selected based on data availability, rele-
vance to regional standards, and consistency over all three
time points
The selection of the 12 water quality parameters in this
study was based on three main criteria: (1) data availabil-
ity across all three time periods (2012, 2016, and 2020),
(2) consistency with national and international guidelines
for agricultural water quality, and (3) relevance to machine

Figure 12. Groundwater elevation contour map for (A) spring 2012, (B) spring 2016 and (C) spring 2020, in Qazvin Plain, Iran.
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Figure 13. Relative importance of qualitative parameters and environmental variables for (a) spring 2012, (b) spring 2016 and (c) spring 2020, in Qazvin
Plain, Iran.

learning classification models. Parameters such as nitrate,
TSS, TOC, and organic matter were not included due to the
lack of consistent, reliable data across the selected years.
While these indicators are important in water quality assess-
ment, they were excluded to ensure model consistency and
comparability over time.
One of the main limitations of this study was the unavailabil-
ity of some key water quality parameters, such as nitrate,
total suspended solids (TSS), and organic matter, for all
three time periods. Their exclusion may limit the compre-
hensiveness of the analysis. Additionally, the study did not
directly integrate lithological or hydrogeological data into
the models, which could further enhance prediction accu-
racy. Future studies are encouraged to address these gaps
by combining geochemical and biological indicators with
machine learning techniques.

4. Conclusion
The present study was conducted with the aim of investigat-
ing the effectiveness of machine learning approaches (RF,
BRT and MnLR) in modeling and predicting the spatial and
temporal groundwater quality classes based on the USSl
diagram in the Qazvin plain, along with the introduction of
the most important parameters affecting the quality of agri-
cultural water. In addition, in order to investigate climate
changes, the effect of mean annual precipitation and stan-
dardized precipitation index on groundwater quality was
also studied. The results of spatial modeling in the spring of
2012 showed that the RF model had higher overall accuracy
and kappa coefficient than the other two models. On the
other hand, for the two years 2016 and 2020, the results
indicated a higher efficiency of the MnLR model.

The trend of changes in agricultural water quality classes for
all three maps showed that the percentage of the area of C4-
S3 class in the central part of the region where agricultural
lands are concentrated increased from 2012 to 2020, high-
lighting the decrease in agricultural water quality in these
regions. According to the type of land use in the central
areas (agriculture), increasing the level of water extraction
from groundwater could be the reason for the decrease in
water quality.
The groundwater elevation contour maps showed that, de-
spite the increase in rainfall and the improvement of the
drought index in 2020 in the region, the groundwater level
in the central areas towards the south still had a decreasing
trend, and the quality class of agricultural water in the cen-
tral areas had decreased. Therefore, the amount of precipi-
tation in the region could not compensate for the excessive
exploitation of groundwater resources. In addition, this ex-
cessive exploitation could cause irreparable effects such as
soil compaction, subsidence, destruction of vegetation and
flood risk.
According to the land use map, parts of the east of the study
area consist of barren lands with a low concentration of
piezometric wells; therefore, because there is no extraction
of groundwater resources, the increase in water level and
better water quality was observed in the eastern regions.
The results of the relative importance of hydrogeochemical
factors showed that EC, HCO3− and pH were identified as
the most effective parameters affecting groundwater quality
in 2012, 2016 and 2020, respectively. On the other hand,
the climatic factor of mean annual precipitation was not
recognized as influencing factors on groundwater quality
modeling.
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Correspondingly, in addition to the above-mentioned re-
sults, overexploitation of groundwater resources, geological
formations and land use change (anthropogenic activities)
can lead to a drop in the groundwater level, salinization and
subsequent soil degradation, decreased yield and ultimately
the development of the desertification process.
Spatio-temporal prediction of water quality is considered a
fundamental and practical ability to evaluate the process of
water quality changes over time and in any geographical lo-
cation, which provides basic information for monitoring and
managing water quality in the study area. In this research,
three widely used machine learning methods were used,
which made it possible to evaluate the effect and degree of
influence or the relative importance of different parameters
in the state of groundwater quality, as well as to predict the
spatial distribution of water quality classes in the form of
a map over time. The findings of our research showed that
the trend of changing water quality in different regions of
Qazvin Plain during the years 2012 to 2020 has changed in
an unfavorable way, which emphasizes the need to make
appropriate management decisions in order to improve the
conditions. Based on the findings of this study, several rec-
ommendations are proposed for water resource managers,
agricultural planners, and future researchers:
For Managers and Planners:

• Implement regular spatial and temporal monitoring of
agricultural water quality, especially in regions with
high salinity and bicarbonate concentrations.

• Integrate machine learning-based water quality clas-
sification systems into national agricultural monitor-
ing programs to enable early detection of degradation
trends.

• Promote adaptive irrigation strategies that account for
temporal changes in water quality, including crop ro-
tation and the use of salt-tolerant crops in affected
areas.

• Develop region-specific guidelines for the reuse of
marginal-quality water in agriculture, supported by
real-time data from monitoring networks.

For Researchers:

• Future research should integrate geological and geo-
chemical data (e.g., lithology, sediment composition)
into water quality prediction models.

• Further studies can explore the impact of climate
change, land-use change, and groundwater extraction
rates on water quality dynamics.

• Comparative analysis of different machine learning
models across multiple basins in Iran (or globally) will
improve model generalizability and reliability.

• Investigating the role of biological indicators and or-
ganic pollutants can enhance the multi-dimensional
assessment of agricultural water quality.

These recommendations aim to support more sustainable
water management practices and foster cross-sectoral
collaboration between hydrologists, geologists, agricultural
experts, and policymakers.
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